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ITapakoMmakTyy ~ MEUKHHIUKTEPIH YHU()OPMHU3ALHATIOO0 Macesecu oup KaJIBIIITYY
MEHKHMHIUKTEPAUH MAaHWIYY >XaHA KBI3BIKTYY MaceleJepruHEH. ABBIPKBl ME3TWIIe OHp KaJBIITYy
MEHKUHIUKTEPAUH OUp KaJbIITyy HapaKkoOMIIAKTYyJdyryHyH Oup Hede BapwaHTTapbl Oap. byn wmte
MEHKUHIUKTEPANH >KaHa YarbULABIPYYJIapAblH MapaKOMIAKTYyJAyTyYHYH OWp KalbINTyy aHaloTyHYH
JKaHbl aHbIKTaMaJIapbl OEPHUIITEH.

VYpyHTTYyy ce3nep: bup kaipmTyy NoKalayy YeKTYy OMp KaJbIITYy >KaOnyy, YeKTYY aIJuTHBIYY
ayvbIK ’kabyy, OUp KaJbIITyy HapaKoMIIaKTyy MEHKHUHIHUK.

3amaya yHU(OpPMH3ANHUs MAPAKOMIIAKTHBIX IPOCTPAHCTB SBISIETCS BAKHON W MHTEPECHOW 3amadeit
TCOPHU PaBHOMEPHBIX MPOCTPAHCTB. B HacToAIEEC BpEMs CYLCCTBYIOT pa3jIM4YHbIC BapUaHTLI
pPaBHOMEPHOH NapaKOMIIAKTHOCTH PaBHOMEPHBIX MPOCTpaHCTB. B Hacrosmeil paboTe moka3biBaeTcs
HOBbIE€ HOAXOAbl K OIPENCICHUI0 PAaBHOMEPHOIO aHajJora MNapaKOMIIAKTHOCTH IPOCTPAHCTB U
OTOOpaKCHHMIA.

KnroueBrlie cioBa: PaBHOMepHO JIOKaJIbHO KOHCYHOC PAaBHOMCPHOC IMOKPBITUC, KOHEYHO aI/ITUTUBHOC
OTKPBITOC MOKPBITUEC, PABHOMCPHO IMaPAKOMIIAKTHOC IPOCTPAHCTBO.

For a family « of subsets of a set X, we put St(x,a)={Aca:xeA},
St(M,a)={Aca:M A=}, xe X, McX. Then a(x) = USt(x, @)
and (M) = USt(M, @) . For the infinite cardinal ¢, a, = {Ug: B a,|f]<}. A family
a 1s called r-additive if «, =« and accordingly, a N,-additive family will be
called finitely additive and denoted by «“.

Lemma 1. If « and g are uniformly locally finite uniform coverings, then
a A g is also a uniformly locally finite uniform covering.

Proof. Let «, g are uniformly locally finite uniform coverings. Then there

exists zeU and n eU such that for any M ez and N e it follows M anJAi and

i=1

whereA ea, B,ep, i=12..n, j=12..k.  Therefore,



n k n k
MANcUA)NUB)=UU(A nB,), ie. the set M N euan intersects only
i=1 j=1 i=1 j=1

with a finite number of elements of the uniform covering o A g. Therefore, a A g
is a uniformly locally finite uniform covering.

Lemma 2. Let f:(X,U)—(Y,V) be a uniformly continuous mapping. If g isa
uniformly locally finite uniform covering of a uniform space (v,v), then g is
also a uniformly locally finite uniform covering of a uniform space (X,U).

Proof. Let g be a uniformly locally finite uniform covering of a uniform
space (Y,V). It is clear that the cover f~g is a uniform covering of a uniform
space (X,U).We show that f g is a uniformly locally finite covering. There is a
uniform covering z<U, each element of which intersects only with a finite

number of elements of the uniform covering g, i.e. for any M e u, there are
B,,B,,....B, from g such that M CQJlBi. Therefore f*'M f*l(_k;lBi):ngflei , Where

f'B ef’p,i=12..nand f*M e f*u.Since, f *uecU,then f'x is the desired
uniform covering. Thus, f g is a uniformly locally finite uniform covering of the
space (X,U).

Definition 1. A uniform space (X,U) is called uniformly paracompact if every
finitely additive open covering has a uniformly locally finite uniform covering
refinement.

Every uniformly paracompact space is a uniformly R-paracompact in the
sense of M.D. Rice.

Proposition 1. If (X,U)is a uniformly paracompact space, then the topological
space (X,r,) is paracompact. Conversely, if (X,r) is paracompact, then the
uniform space (X,U,), where U, is the universal uniformity, is uniformly
paracompact.

Proof. Let « be an arbitrary open covering of the space (X,z,). Then for a
finitely additive open covering «“ of the uniform space (X,U) there exists a

locally finite uniform covering g <U which is a refinement of it. It is known that
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the interior () of the uniform covering g is a uniform covering. Put y =(p) . Itis

clear that » is a locally finite open uniform covering of (X,U). For each
I'eychoose 4, ea“such that < 4,, where AF:iszlAi, Aeca, i=12..n. Let

a,=Vla,:Tey}, a,={n4 :i=12,..n}. Theng,is an open locally finite
covering of the space (X,z,), and it is a refinement of the open covering « . So, the
space (X,z,) is paracompact.

Conversely, let the space (X,r) be paracompact. Then the set of all open
coverings forms the base of the universal uniformity U, of the space (X,7). It is
easy to see that a uniform space (X,U,) is uniformly paracompact.

The following theorem gives a characteristic of uniform paracompactness in
the spirit of Tamano.

Theorem 1. Let (X,U) be a uniform space and bX be a certain its compact
Hausdorff extension. The uniform space (X,U) is uniformly paracompact, if and
only if for each compactum K cbX\X there exists a locally finite uniform
covering « €U such that [A],, "nK =2 forall Aca.

Proof. Necessity. Let (X,U) be a uniformly paracompact and K cbX \X be
an arbitrary compactum. Then for each point x e X there is an open neighborhood
O,in bX such that [0,],, "K=@. It is clear thaty ={O, n X :xe X} IS an open
covering of the uniform space (X,U). We form an open covering y“ of (X,U),
taking as elements of . Then < is a finite additive open covering of the space
(X,U). According to the condition of the theorem, it is possible to refine a

covering y“ by a locally finite wuniform covering pgeU. Then

[B]bxc[u(nOXimX)]bxcg:Jl[Oxi]bx. As [0,]x K= for any i=12..n, then

i=1
[Blx "K =2 forany B e j.
Sufficiency. Let the condition of the theorem be satisfied. Let « be an

arbitrary finite additive open covering of a space (X,U). Then there is an open



family g in bXsuch that pA{X}=«a. Let K=bXx\ug. It follows that K is a
compactum. Then, by the condition of the theorem, there exists a uniformly locally

finite uniform covering y U suchthat [I'],, "K =@ forany rey. Since [I'],, IS

a compactum lying in bX there are B,,B,,....B, € # such that [I7], c_@lBi. Then

I c ik:)lAi , Where ;JlA e a. Consequently, (X,U) is a uniformly paracompact space.

A uniform space (X,U) is called strongly uniformly locally compact if there
exists a uniformly locally finite uniform covering consisting of compact subsets.

The following theorem gives a connection between uniform paracompactness
and strongly uniformly local compactness.

Theorem 2 Any strongly uniformly locally compact space is uniformly
paracompact.

Proof. Let « be an arbitrary finitely additive open covering. Then there exists
a uniformly locally finite uniform covering g consisting of compact subsets. It is
easy to see that the covering g is a refinement of the additive open covering « .

Proposition 2. Any uniformly paracompact space is complete.

Proof. The proof follows easily from the fact that any uniformly R-
paracompact space is complete.

The following two proposition show that uniform paracompactness is
preserved when passing to a closed subspaces and any disjoint sum of uniform
spaces.

Proposition 3. Any closed subspace M of a uniformly paracompact space
(X,U) is uniformly paracompact.

Proof. Let y be a finitely additive open covering of the space M . Denote by
7 the open cover of the space (X,U) consisting of all elements of the cover y and
the set X \M . It is clear that 7 is a finite additive covering. By hypothesis, there

exists a uniformly locally finite uniform covering g<U has in 7 refinement. Let

B, be the trace of g on M. Then g, is a uniformly locally finite uniform



covering of the subspace M has in y refinement. So, the subspace M is uniformly

paracompact.
Proposition 4. The sum of any family of uniformly paracompact spaces is
uniformly paracompact.

Proof. Let {(X,,U,):ae M} be an arbitrary family of uniformly paracompact

spaces (X,,U,)and (LI X,, HU,) is the sum of uniform spaces. Consider an
aesM aeM
arbitrary finitely additive open covering « of the space (11 X,, [1U,). Itis easy to
aesM asM

see that the family pg={X,~A:aeM,Acqa} is a refinement of the covering

« again a finite additive open of the space (II X,, [1U,). For each a, e M we put
aeM asM

B, ={X, nA:a, e M,Aea}. Itis clear that it is a finitely additive open covering of
the space (X, .U, ). Then there exists a uniformly locally finite uniform covering
7., €U, hasin g, refinement. Let » be the union of all uniformly locally finite
families y,, ae M. Then it is easy to see that the family y is a refinement of the

covering « of the uniform locally finite space (1I X,, I U,) .
asM aeM

The following theorem shows that uniform paracompactness is preserved in
the preimage direction by uniformly perfect mappings.

Theorem 3. Uniform paracompactness is preserved in the preimage direction
by uniformly perfect mappings.

Proof. Let o be an arbitrary finitely additive open covering of a space (X,U).
It is clear that the covering {f'y:yeY}refines the covering «. Then
B=Tf'a={f"A:Aca}, where f*A=Y\f(X\A), is an open covering of the space
(Y,V). Considering all possible finite unions of sets of B, we construct an open
covering #“. It is a finitely additive open covering. By the condition of the
theorem, there is a uniformly locally finite uniform covering y eV of it. It is easy to
see that the covering f < is a refinement of the covering «. The fy is a
uniformly locally finite uniform covering of the space (X,U), and it is a refinement

of «. So, the uniform space (X,U) is uniformly paracompact.
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Recall (see, for example, [1]) that a continuous map f: X —Y of a topological
space X to a topological space Y is called a »-mapping, where «» is an open
covering of X if for every point yeY there exists a neighborhood 0, and W e w,

such that f(0,) cW.

The following theorem is a uniform analogue of the Dowker-Ponomarev
theorem.

Theorem 4. A uniform space (X,U) is uniform paracompact if and only if for
every finitely additive open coveringew of (X,U)there exists a uniformly
continuous w-mapping f:(X,U)—(Y,v)of the uniform space (X,u)onto a
metrizable uniformly paracompact space (Y,V).

Proof. Necessity. Let (X,U) be a metrizable uniformly paracompact space and
o be an arbitrary finitely additive open covering. Then the identity map of a space
(X,U)is the required uniformly continuous »-mapping of (X,U) into a metrizable
uniformly paracompact space.

Sufficiency. Let o be an arbitrary finite additive open covering of the space
(X,U). Then there exists a uniformly @-continuous mapping f:(X,U) —(Y,Vv) of
the uniform space (X,u)onto some metrizable uniformly paracompact space
(v,v). For each point yeY there exists a neighborhood 0, whose preimage f~0O,
is contained in some element of the covering . Let g={O, :yeY}. We form an
open covering B consisting of all possible finite unions of elements of g. We
refine a uniformly locally finite uniform covering y eV in it. Then covering f *yis
a refinement of the covering » of the uniform space (X,U). Therefore, a uniform
space (X,U) is uniformly paracompact.

Proposition 5. The product of a uniformly paracompact uniform space (X,U)
to a compact uniform space (Y,Vv) is uniformly paracompact.

Proof. Let (X,U) be uniformly paracompact and (v,v) is a compact uniform
space. It is known [2] that the projection =, :(X,U)x(Y,V) — (X,U) is uniformly

perfect. Then it is a o-mapping of the product (X,U)x(Y,v) to a uniformly
8



paracompact space (Y,v) for any finitely additive open cover » of the space
(X,U)x(Y,V). Therefore, according to Theorem 4, the uniform space (X,U)x(Y,V)

is uniformly paracompact.

Definition 2. A uniformly continuous mapping f :(X,U)—(Y,v) of a uniform
space (X,U) into a uniform space (Y,V) is called a uniformly paracompact, if for
each finitely additive open covering « of a uniform space (X,U) there exists a
finitely additive open covering g of a uniform space (Y,v) and a uniformly locally
finite uniform covering y eU suchthat f*gAy>«a.

Proposition 6. If f:(X,U)—(Y,Vv) is uniformly continuous and the uniform
space (X,U) is uniformly paracompact, then the mapping fis uniformly

paracompact.
Proof. Let « be an arbitrary finitely additive open covering of the uniform

space (X,U). Then there exists a uniformly locally finite uniform covering y cU
such that y - «. Let g be some finitely additive open covering of the space (Y,V).
Then f*pAry=a.So, f isauniformly paracompact mapping.

Proposition 7. If f:(X,U)—(Y,V) is a uniformly paracompact mapping and
M c X is a closed subset, then its restriction f|,:(M,U,)—(Y,V) is also a

uniformly paracompact mapping.

Proof. Let «, be an arbitrary finitely additive open covering of the space
(M,U,). Let 2 be an open family of space (X,U) such that A A{M}=«,,. It is
clear that the family « ={4, X \M} is a finitely additive open covering of the space
(X,U). Then there exist a finitely additive open covering g of the uniform space
(Y,V) and a uniformly locally finite uniform covering y €U suchthat f*BAy>~a.
Easy to see that (f |,,)" B Aryu = a, - Consequently, the mapping f|,, is uniformly

paracompact.
Theorem 5. Let f:(X,U)—(Y,V) be a uniformly paracompact mapping of a

uniform space (X,U) onto a uniformly paracompact space (Y,v). Then (X,U) is

also uniformly paracompact.



Proof. Let f and (v,v) are uniformly paracompact. Let « be an arbitrary
finitely additive open covering of the uniform space (X,U). Then there exist a
finitely additive open cover g of a uniform space (y,v) and a uniformly locally
finite uniform covering y U such that f *BAy>=a. In the cover g refines in a

uniformly locally finite uniform cover 1. Then, according to Lemmas 1 and 2, the

covering f*Aay is refinement of the uniformly locally finite covering «.
Therefore, the uniform space (X,U) is uniformly paracompact.

Proposition 8. The composition of two uniformly paracompact mappings is
again a uniformly paracompact mapping.

Proof. Let f:(X,U)—(Y,V) and g:(Y,V) —(z,w) are uniformly paracompact
mappings. Let « be any finitely additive open covering of the uniform space
(X,U). Then there exist a finitely additive open cover g of the space (y,v) and a
uniformly locally finite cover y eU such that f *gAy>«. In turn, for a cover g
of a space (Y,V) there exists a finitely additive open cover s of the space (z,w)
and a uniformly locally finite cover 21eV such that g*sA1> 3. Note that
Qo )Y ' OA(F " AAY) =t BAry=a 1. (gof)'danp=aand neU  where
n="f"2AAy . According to Lemmas 1 and 2, the covering n<U is a uniformly
locally finite covering. Therefore, composition (gof):(X,U)—(Z,W) is a
uniformly paracompact.

Theorem 6. Any uniformly paracompact mapping f:(X,U)—(Y,v) of a
uniform space (X,U) onto a uniform space (Y,V) is a complete.

Proof. Let f:(X,U)—(Y,V) be a uniformly paracompact mapping. Let F be a
Cauchy filter in a uniform space (X,U) such that fF converges to some point
(Y,V). Suppose that F does not converge at any point x of the space (X,U). Then
for each point x e X there exists a neighborhood O, and @, an element of F such
that @ nO,=g. Put a={O,:xeX}. Since the mapping f is uniformly
paracompact, there exists a finitely additive open covering g of the space (Y,Vv)

and a uniformly locally finite uniform cover y eU such that f*gAy>a«. Since
10



fF converges to some point yeY, then for any Be g suchthat B>y Be fF. It

follows that f *Be f *#~F. Note that there exists "<y such that 7eF. Then

f*'BnI=@. Since f'Bary=a, then there is ozéoxieasuch that

f‘leFCQOXI . Therefore, VO, €F and No, eF, le. (@, )N (U0, ) =T . Then
there exists a number i, <n such that , nO, =. Contradiction. Therefore, f is

a complete.
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ON THE THEORY OF COMPACTIFICATION OF MAPPINGS

'Kanetov B.E., Baidzhuranova A.M., *Almazbekova B.A.
13jusup Balasagun Kyrgyz National University, ?Institute of Mathematics
of National Academy of Sciences of Kyrgyz republic

In this article we introduces and studies a strongly t -finally paracompact and a 7 -finally
superparacompact mappings by means of compactification of mappings. In particular, the conservation of
a strongly 7 -finally paracompactness (respectively, a 7 -finally superparacompactness) under proofs of a
strongly 7 -finally paracompact (respectively, a 7 -finally superparacompact) mappings towards the
inverse image is proved.

Key words: Strongly 7 -finally paracompact mappings, 7 -finally superparacompact mappings,
compactification of mappings.

Makanaga Kyuryy 7 -QuHangyy mapakoMIakTyy >kaHa 7 -QuHanyy CyneprnapakoMIIaKkTyy
YareUIABIPYYJIap KOMIAKTH(QHKANWS apKbUTyy aHbIKTajnaT jxaHa uiwiaeHwner. Kyuryy 7 -punangyy
MapakoOMMNaKTyynykK ( 7 -QuHaNAyy CyneprnapakoMIakTyylayK) Kydryy 7 -puHangyy napakomnakryy (7 -
¢uHAITYY cyneprnapakoMITaKTyyIIyK) YarbUIAbIpyyAa Mpoodpa3 TapabbIHa CaKTalyycCy NalrIIcHeT.

VYpyarryy ce3mep: Kyuryy 7 -QuHangyy —mapakoMOakTyy — HarbUIablpyy, 7 -QUHAIAYY
CYIEpIapaKOMIIaKTyy YarblIAbIPYY, YarbUIAbIPYYIapAblH KOMIIAKTU(UKALHACHL.

B crarbe BBOJATCS W HM3Y4YAlOTCS CWIBHO 7 -QUHANLHO TAapaKOMIAKTHBIE W 7 -(QUHAIBHO
CyIepIapakoOMITaKTHbIE OTOOPaKEHUSI TOCPEJCTBOM KOMHakTH(UKAMH OTOOpakeHMid. B wacTtHOCTH
JOKa3bIBaOTCA COXpPaHCHUA CUJIBHO T'(I)I/IHEU'H)HO MapaKOMIIAKTHOCTH (COOTBeTCTBeHHO, T'(I)I/IHaJ'IBHO
CyINeprapakoOMIaKTHOCTH) MPH CHIbHO 7 -()MHAJIBHO MapaKOMIAKTHBIX (COOTBETCTBEHHO, 7 -(DMHAIBHO
CyIepIapakOMIIaKTHBIX) OTOOPaXEHHUAX B CTOPOHY ITPooOpasa.

KnroueBbie cnoBa: CuiibHO 7 -(UMHAIBHO  MApakOMIIAKTHOE  OTOOpakeHHe, 7 -(PUHAIBHO
CyHepIrapakoOMIIaKTHOE 0TOOpakeHHe, KOMIAKTH(HUKAIUSI 0TOOpaKEeHHH.

Recently, the theory of continuous mappings has been intensively
developing in modern topology. This theory is devoted, first of all, to the extension
to mappings of basic concepts and statements concerning topological and uniform
spaces. According to the results of research on the theory of continuous mappings,
a number of important analogues of spaces and mappings were revealed.

It is known that any topological space can be considered as a special case of
continuous mapping, identifying this space with mapping it to a point. The

properties of mappings are defined so that no properties are imposed on the spaces
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X and Y, ie. the properties of continuous mappingsf:X —Y are studied
independently of the topological properties of the spaces x and Y .

The article introduces and studies a strongly r - finally paracompact and a r -
finally superparacompact mappings by means of compactification of mappings.

By space is meant a topological space, by mapping a continuous mapping of
spaces.

The mapping bf :X —Y is called the compactification of the mapping
f:X oY, If

1. X <X,

2. [X]1=X,

3. bf is perfect mapping [3].

For two compactifications b, f:X, —Y and b,f:X, —Y of the mapping
f:X Y, b,f>bf is considered if there exists a mapping ¢: X, — X, such that
b,f =b,f-p and on X the mapping ¢ is identical. It is known that any Tychonoff
mapping f of the space X onto the space Y has at least one Tychonoff
compactification and that among all Tychonov compactifications of the mapping
f there exists its maximal compactification gf : g, X - Y [2].

Recall, that a topological space X is called strongly r -finally paracompact
if every open cover [1] has a locally finite of cardinality << open refinement; a
topological space X is called 7 -finally superparacompact if every open cover has
a finite component of cardinality <z open refinement.

For compactification bf : X —Y of a mapping f:X —Y with a remainder,
we will call the subspace X \ X .

Let f:X —Y Dbe an arbitrary mapping.

Definition 1. A mapping f:X Y is called a strongly r-finally
paracompact if for any closed set F = X \ X there exists a star finite open covering

a of space X of cardinality <z such that F U a]=2.

13



Proposition 1. Every perfect mapping f:X —»Y be a strongly r-finally
paracompact.

Proof. Let f:X —»Y be a perfect mapping. Then the reminder X \X is
empty, therefore, for any star finite open cover « of the space X of cardinality
<7, the condition Fu[a]=@ Is always satisfied. Consequently, the mapping
f: X >Y isastrongly r-finally paracompact.

Definition 2. Every perfect mapping f:X—-Y is a ¢-finally
superparacompact, if for any closed set F < X \ X there exists a finite component
open covering « of the cardinality << space X such that F U [a]=2.

Proposition 2. Every perfect mapping f:X—-Y is a r-finally
superparacompact.

Proof. Let f:X —Y be a perfect mapping. Then the reminder of X\ X is
empty. Therefore, for any open cover, including for a finite component open cover
a of the space X of cardinality <, the condition F U~a]=@ is satisfied. A 7 -
finally superparacompactness of the mapping f is proved.

Proposition 3. Any a r-finally superparacompact mapping f:X —»Y is a
strongly « - finally paracompact.

Proof. The proof follows from the fact that every finite component covering
Is a star finite covering.

It is known that under perfect mappings, many topological properties of
spaces pass from the inverse image to the image and vice versa. For mappings, one
can obtain similar statements.

Proposition 4. Let Tychonoff mappings f:X -»Y and g:Y »Z and a
perfect mapping 4:X —Z be given, such that 21=g-f. If the mapping g is a
strongly r-finally paracompact, then the mapping f is also a r-finally
paracompact.

Proof. The proof follows from the existence of an extension

h: B, X — B,Y such that gf =(pg)h [2].
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Proposition 5. Let Tychonoff mappings f:X —-Y and g:Y »>Z and a
perfect mapping 2:X —Z be given, such that A1=g-f. If the mapping g is a
strongly r-finally superparacompact, then the mapping f is also a r-finally

superparacompact.
Proof. The proof, with slight modifications, is similar to the proof of
Proposition 1.

Proposition 6. Let f:X —Y be a mapping. If the mapping f is a strongly
r-finally paracompact and Y ={y} then the space X is a strongly r-finally

paracompact.

Proof. Let f be a strongly 7 -finally paracompact, Y - be a one-point space,
and 41={0, :seS} is an arbitrary open cover of the space X. Then F=X\u«,
where O, = X \[X\0Q,], is a closed set. By the strongly  -finally paracompactness
of the map f there exists a star finite open covering « ={A, :s € S} of the space X
of cardinality <z such that F un[a], =@ . Since the mapping f :B, =[B,], —Y is
perfect, then B, is compact. In the covering 1={Q, :se S} of the set A, we write
the final open A, into the covering 4. Then the covering g =3 A A of the set B, is
finite open in the system X inscribed in 4. The system g’ of all elements of all
such systems g will be a star finite open coverage of cardinality <z, the space X

refined in 4. Therefore, space X is a strongly 7 -finally paracompact.

Proposition 7. Let f:X —Y be a mapping. If the mapping f is a r-finally
superparacompact and Y ={y} then the space X is also a r-finally

superparacompact.
Proof. Let the condition of the proposition be satisfied and let

2={0, :seS}be an arbitrary open covering of space X . Then the set F =X \u«,
where O, =X \[X\0O,], is a closed set. Since the mapping f is a r-finally

superparacompact, there exists such a finite component open covering

a={A :seS} space X, of cardinality <z, such that Fun[a], =&. Since the
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mapping f:B, =[B,], —Y is perfect, the compactness of the set B, follows. In the
covering 1={0, :s S} of the set A, we write the final open A, into the covering
S . Then the covering g=pAA of the set B, is finite open in the system X

refined in 2. The system g’ of all elements of all such systems g will be a finite-

component open covering of cardinality <z, the space X refined in 1. Therefore,
space X isa r-finally superparacompact.

Theorem 1. Let f:X —Y be a mapping. If space Y and the mapping f isa
strongly r -finally paracompact, then space X also has the same property.

Proof. Let the space Y and the mapping f be a strongly r-finally
paracompact. Let o ={A :seS} be an arbitrary open covering of space X . Put
A =X\[X\A], and F=X\ua . From a r-finally paracompactness, mapping
f there exists such a star finite open covering g ={B,:seS} of space X , of
cardinality <z that F~U[p], =@ . Since the mapping f:B, =[B,]1, —VY is perfect,
then B, is a strongly ¢ -finally paracompact. In the covering & ={A, :s S} of the
set B, , we write the locally finite open covering 4 of the cardinality <z in B,.
Then the covering 4= A B, of the set B, is locally finite open in X of cardinality

<r system refined in «. The system A’ of all elements of all such systems 2 will
be a stellar finite open covering of cardinality <z, the space X refined in «. Thus,
a strongly r -finally paracompactness X is proved.

Theorem 2. Let f:X —Y be a mapping. If the space Y is regular, and the
space X isa strongly r -finally paracompact, then the mapping f also has the
same property.

Proof. Let space X be a strongly ¢ -finally paracompact, and Y be regularly.
Then the space X is regular. Consider a set F = X \ X closed in X . For each point

xe X there exists a neighborhood O, such that [O,], nF =@. According to the

hypothesis of the theorem, in the cover o ={0O, : xe X} we write a star finite open

16



cover g of cardinality <z inthe space X . It's clear that F ~nU[B], =@ . Therefore,
f is astrongly ¢ -finally paracompact.

Theorem 3. Let f:X —»Y be a mapping. If space Y and the mapping f is
ar -finally superparacompact, then space X also has the same property.

Proof. Let Y, f be a strongly r-finally superparacompact and an arbitrary
open covering a={A,:seS} of space X .Let A =X[X\A], and F=X\ua. Then
there exists a finite component open covering B={B, :seS} of cardinality <«
space X such that F ~nU[p], =@ . Since the mapping f:B, =[B,], —Y is perfect,
the set B, is strongly r-finally superparacompact. Therefore, there is such a
covering A of cardinality <- that is refined in the covering ¢ ={A, :s < S} of sets
B,. Then the covering 1=1AB, of the set B, is a finite component open system in

X of the cardinality <z refined in «. The system «' of all elements of all such
systems 2 will be a finite component open covering of the cardinality <z, the
space X refined in «. Thus, a ¢ -finally the superparacompactness of space X is
proved.

Theorem 4. If space Y is regular, and space X is a «r-finally
superparacompact, then the mapping f also has the same property.

Proof. Suppose that the hypothesis of the theorem is satisfied and that a set

FcX\X is closed in X . For each point xe X there exists a neighborhood 0O,
such that [0,], . According to the hypothesis of the theorem, a finite component
open covering « ={0, : xe X} of the cardinality <z of space X can be refined the
cover p. It's clear that Fnop,]1=2. Therefore, f is a r-finally

superparacompact map.
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SOME PROPERTIES OF WEIGHT AND PSEUDO-WEIGHT
UNIFORMLY CONTINUOUS MAPPINGS

'Kanetov B.E., *Litviakova K.V.
12Jusup Balasagun Kyrgyz National University,

In the theory of uniform spaces and uniformly continuous mappings, the most important cardinal
invariants are weight, pseudo-weight, and 7 - boundedness. In this article, we study some properties of
the weight and pseudo-weight of uniformly continuous mappings.

Key words: weight, pseudo-weight, z - boundedness.

bup kampimTyy MEeHKMHAMKTEp XaHa OWp KaJbINTyy Y3TYJITYKCY3 YarbUIABIPYYJIap TEOPHUSCHIHBIH
MaaHWIYY KapIWHaJIAbIK HHBAPUAHTTAPhI OOJTYN cajMak, IICeBJOCAIIMAK jKaHa 7 -YEKTEJTCHANK caHajar.
Bbyn makanana Oup KadbIITyy Y3TYATYKCY3 YarbULABIPYYJIapAblH CaIMarbIHBIH JKaHa TICEBI0CATMATbIHBIH
alipbIM KaCUETTEPU U3UIIACHET.

VYpyHTTYY ce3nep: Bec, nceBnosec, 7 - Y4EKTENTEHANK.
B Teopum paBHOMEpHBIX MPOCTPAHCTB M PAaBHOMEPHO HEMPEPHIBHBIX OTOOPAKEHWH Ba)KHEHITUMHU
KapJuHaJIbHBIMHW WHBapuaHTaMU SABJISIIOTCA BEC, IICEBAOBEC U 7 -OI'PaHUYCHHOCTD. B HaCTOHHlefI pa60Te

HCCICAYHOTCA HCKOTOPBIC CBOMCTBa Beca U IceBA0BECAa PABHOMCPHO HEIIPCPBIBHBIX OTO6pa)K€HPIfI.
KoroueBrle ciioBa: Bec, IICEBAOBEC, T - OrPAHUYCHHOCTD.

Let (X,U) be a uniform space. The least cardinal number, which is the
cardinality of some base of uniformity U, is called the weight of uniformity u and
is denoted by wU) [1].

A system BcU is called a pseudo-base of uniform space (X,U)or
uniformity U if ~{g(x): g e B}y={x} for any point xe X [1].

Let f:(X,U)—(Y,V) be auniformly continuous mapping of a uniform space
(X,U) onto a uniform space (Y,V). A pseudo-uniformity u, U is called a base of

uniformly continuous mapping f, if for any a<U there exist y<u, and
pevsuch that f*(B)Ay=a[l]. The least a cardinal number z, which is the
cardinality of some base u,, is called the weight of a uniformly continuous

mapping f and is denoted by w(f)[2].
18



A covering system u, cu is called a pseudo-base of a uniformly
continuous mapping f if ~A{{f 'BAy)(X):BeV,yeU }={x} forany xe X [2].

The least cardinal number 7, which is the cardinality of a pseudo-base u,,
is called a pseudo-weight of a uniformly continuous mapping f and is denoted by
pw( ) [2].

Proposition 1. Let f:(X,U)—(Y,V) be a uniformly continuous mapping of
a uniform space (X,U) onto a uniform space (Y,v) and a uniformly continuous
mapping g:(Y,V) — (z,w) of a uniform space (Y,v) onto a uniform space (z,w).
If w(f)<z and w(g) <z then w(gof)<r.

Proof. Let f:(X,U)—(Y,V), g:(Y,V)—(Z,W) be a uniformly continuous
mapping and w(f) <z, w(g)<z. Let « €U be an arbitrary uniform covering. Then
there exist yeU, and pgeV such that f*(8)Ay=a. In turn, there are such
nev.and pgev that g () Aan>=p4. Then fH g uan)ay=ft7*BAry. It follows
that, (gef) un(fnry)>a. PUut U, ={f'nAyineV,,yeU,}. Because the
U=z and V,|=7z,To U, |=7. SO, w(ge f)<7.

Proposition 2. If a uniformly continuous mapping f:(X,U)—(Y,V) has
weight < ¢, then for any uniform subspace (M,U,,) of a uniform space (X,U)and
any uniform space (N,v,) of a uniform space (Y,v)of restriction
fl,, :(M,U,) > (fM,Vy,) and £ :(f*N,U . ) —(N,V,) have a weight <z.

Proof. Let «, €U,, be an arbitrary uniform covering. Then there is a
covering « €U such that a A{M}=«,,. Since the mapping f:(X,U) —(Y,V)has
weight <z, there is uniform cover geVv and uniform cover y €U, such that
f*(B)ry>a where |U|=r. It is easy to see that f‘l\MﬁM N
where B, = BA{M}, 7y =7 A{M}, 7, €U,. It's clear that |u)|=r. Hence,

w(f| ) <z.Further, itis similarly proved that w(f,)<z.
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Theorem 1. Let f=]]f,be the Cartesian product, where

aeM

f, 1 (X,,U,)—>(Y,.V,),aesM M is a countable set. A w(f)<z if and only if
w(f,)<z forany aeM.

Proof. Necessity. Let the Cartesian product f=]]f, has a weight <z,

where f,:(X,,U,)—(Y,,V,). Then all mappings f,:(X,,U,)—(Y,,V,) have weight

<r.

Sufficiency. Let all mappings f, :(X,,U,)— (Y,,V,) have weight <. We show

that the product f =J]f, has weight <. Let U, has cardinality <zand is the

aeM

basis for f,:(X,,U,)—(Y,.V,). Then uniformity U, =JJuU, has cardinality <z.

aeM

We show that U, =] JU is the base of the mapping f =]]f,.Let ac]JU,. It

aeM asM aeM

is clear that coverings __/\17r;i1aal, a, €U, , i=12..,n form the base of uniformity

[ JU.. so we can assume that o = A 7,'a, . Since U, has cardinality - and is the

aeM

base of the mapping f, :(X,,U,) - (Y,,V,), then there is a uniform covering g, of

V., and a uniform covering y, of U, such that f, “(8,) Ay, =a, , i=12.n. Put

7/=i/=\17ra"il;/ai, ﬁ:i/z\lPai‘l,Bai, 7 [ [Xa > X. s P, :]]Y.—oY.,. By definition of

asM asM

uniformity ge[Jv.and ye]Ju, . Therefore, f*(B)ay>a. So the product

aeM aeM

f =]]f, has weight <z.

aeM

Proposition 3. Let {f.} be a system of uniformly continuous

asM

mappings fa:(x,U)i(Ya,Va). If there exists a, e Msuch that the mapping

f. :(X,U)iwai V, ) has weight <z, then the diagonal product f = A{f,:aeM} has

weight <r.
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Proof. Let the mapping fai:(x,U)i(Yai,Vai)has weight <z and

m, (.. V,) = (Y,.V,) is the projection. Then f, =z, of, where f=Af,.
aeM

Therefore, the mapping f has weight <z .

Theorem 2. For a uniformly continuous mapping, the following conditions
are equivalent:

1) f:(X,U)—(Y,V) hasweight <.

2) The completion f :(X,U) — (¥,V) has weight <.

Proof. 1) =2). Let a uniformly continuous mapping f:(X,U) —(Y,V) has
weight <z and & <U is an arbitrary uniform cover. Put « =a A{X}. Due to the
fact that the mapping f : (X,U) —(Y,V) has weight <z, there is a uniform covering
£ eV and uniform covering y U, such that f*(8)Ay>a. Then there is such a
uniform cover 7eU that y=7A{X}. Easy to see that f(B)ry>d.
Therefore,w(f)<r .

2)=1). Obviously.

Theorem 3. Every uniformly continuous mapping f:(X,U)—(Y,v)of a
uniform space (X,U) onto a uniform space (Y,v) has a unigue completion
f:(X,0) = (Y,V) up to a uniform isomorphism and w(f) =w(f).

Proof. The proof follows from Theorem 2 and Proposition 2.3.17 [see 1., P.
104].

Corollary 1. Every uniform space (X,U) has a unique completion (x,U) up
to a uniform isomorphism and w(U) = w(U).

Theorem 4. Let f:(X,U)—(Y,v) be a uniformly continuous mapping. If
pw(X) <z, then pw(f)<r.Conversely, if pw(f)<z and pw(V)<z then pwU)<r~.

Proof. Let f:(X,U)—(Y,v)be a uniformly continuous mapping of a
uniform space (X,U) onto a uniform space (Y,vV) and pwU)<z. Let « eU be an
arbitrary uniform covering. Then, due to the fact that space (X,U) has weight

pw(U) <z, then there is a uniform covering y B refined in « cU. Due to the
21



uniform continuity of the mapping f:(X,U) —(Y,V) , the inverse image f g of
any uniform covering pgeVvis a uniform covering and f *(B)Ay=a. Put
B, ={f'BAry:BeV,yeB}. It's clear that|B,|=z. Therefore, pw(f)<z. The
converse, let pw(f)<z and pw(V)<r. Let « €U be an arbitrary uniform covering.
Then there are such uniform cover pgevand uniform cover y<U such that
f Y (B)Ay=a.Since, pw(V) <z, then there is g, eV such that g, - 8. Therefore, a
uniform cover f g, Ay will be refined in a uniform cover « <U . So, the family of
cover of the form B, ={f "2 Ay} where 1eB,, yeU, forms the base of space
(X,U). Since both [B,|=7 and |U,|=~, then |B,| =r. Hence, pwU)<r.

Proposition 4. If (v,v) is a one-point uniform space and pw(f)<z. Then
pwlU) <r.

Proof. Let ~n{(f'BAy)(X):BeV,yeB}={x} be for any xe X. Because
Y ={y}, that f*(B)Ayr>y, where |B=r. Therefore, n{y(x):yB}={x3 for

anyxe X, i.e. pwU) <.
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ON INDEX BOUNDED REMAINDERS AND COMPLETENESS
OF UNIFORM SPACES

'Kanetov B.E., 2Joldubaev M.M., *Sultanmamytova A.N.
123 jusup Balasagun Kyrgyz National University

In this work we study index bounded remainders and completeness of uniform spaces.
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WNnmvnii Makanaga Oup KalbITyy MEHKWHANKTEPANH OCYHIYIOPYHYH YEKTEITeHANK WHACKCH JKaHa
OMp KaibINTyy MEHKHHIUKTEPINH TOIYKTYTY U3UIJICHET.

YpyHTTYY co3nep: OCyHay, KO-kKab1yy, KO- T -4EKTEITEeHIUK, CEKBEHIUAIYY TOIYKTYYIIYK.

B Hacrosmielt paboTe UCCIeAYIOTCS UHACKC OTPAHNYCHHOCTH HAPOCTOB PABHOMEPHBIX MPOCTPAHCTB

U MOJIHOTA paBHOMEPHBIX MPOCTPAHCTB.
KroueBrle ciioBa: HapOCT, KO-TIOKPBITHUE, KO- 7 -OrPaHU4YCHHOCTH, CCKBCHIIMAJIbHA II0JIHOTA.

It is interesting to compare properties of the uniform spaces (X,U) and its

remainders (X \X,U... ). Naturally the problem arises of characterizing properties

X\X

of the space (X \X,U... ) by properties of the dual space (X,U).

X\X

The least cardinal number ¢ is said to be an index of boundedness of the
uniform space (X,U) is the uniformity U has a base consisting of coverings of
cardinality <z. A uniform space (X,U) is called totally bounded, if for each « €U
there exists a finite set M < X such that o«(M)=X. A uniform space (X,U) is

called z-bounded, if for each a U there exists a set M < X, [M|<z such that

a(M) =X [1]. A uniform space (X,U) is called pP-compact if the uniformity U has
a base consisting of coverings with property P [1]. Property Pcan be: a finite
uniform covering, a uniform covering of cardinality <, a locally finite uniform
covering, a uniform covering of multiplicity <n, a point wise finite uniform
covering, a star finite uniform covering. It is said that the dimension of the uniform
space (X,U) is not greater than n and it is written as dimuU <n if the uniformity U
has a base consisting of coverings of multiplicity <n+1[1]. A uniform space is
called uniformly u-paracompact if every of its uniformly cover has a locally finite
uniform refinement [2]. A uniform space is called strongly uniformly u-
paracompact if every of its uniformly cover has a star finite uniformly refinement
[2].

A Cauchy filter F in (X,U) is called free if ~{{N], :N e F}=@. A family « of
the space (X,U) is called co-covering of the space (X,U) if anF =@, for any free

Cauchy filter F in (X,U) [2].
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For coverings « and g of the set X, the symbol « > means that the
covering « is a refinement of the covering g, i.e. for any Ae a there exists Be g

such that AcB.

Let (X,U) be a uniform space.

Definition 1. A uniform space (X,U) is called co-¢ -bounded, if for any « eU
there exists a family x of cardinality <z of free Cauchy filters such that the
subfamily «, ={A: AcanF,F e 4} is a co-covering of (X,U).

Any r-bounded space (X,U) is a co-r-totally bounded. Indeed, let « cU be

~

an arbitrary uniform covering of the space (X,U). Then & ={A:Aeca}, Where

A= X\[X\A], is a uniform covering of the completion of (X,U) and the family
&={A:Aca} where A=A~X\X is a uniform covering of the remainder

(X\X,U.. ). Since the space (X,U) is co-r-bounded, the cover o contains a

X\X
subcover «,0f cardinality <z. Then &,={A:Aeq,} is a uniform covering of
cardinality <+ of the space (X\X,Uy,, ). Selecting one element %, from each A,
we have a set {&:i=12..n} of cardinality <r. Let B(x,) be a filter of
neighborhoods of points of £,in (X,U). Put F, =B(%;) A{X}. Then every element
of the family {F, ‘Acag} Is a free Cauchy filter. Since «, is a uniform covering,

then the family {A: Acan F. Acag} Is a co-covering of the space (X,U). Thus,

the space (X,U) is a co-r -bounded.

Theorem 1. The remainder (X \X,U.. ) of aspace (X,U) is r -bounded if and

X\X

only if the space (X,U) is co-r -bounded.

Proof. Necessity. Let the remainder (X \X,U.. ) of space (X,U) is r-bounded

X\X

and « is an arbitrary uniform covering of space (X,U). Then @ ={A: A< a}, Where

A=X\[X\A], is a uniform covering of space (X,U). It follows that the family
& ={A:Aca}, where A=A~X\X is a uniform covering of the (X\X,U.

X\X 7 *

Then there exists a set M of cardinality <r such that ¢(M)=X\X . Let B(%) be a

24



filter of neighborhoods of points % in (X,U). Then for traceF,filter of the
neighborhood B(x)of point % is a free Cauchy filter in (X,U). Put
a, ={A: AcanF}. We show that «, is a co-covering of the space (X,U). Let F
be an arbitrary free Cauchy filter in (X,U). Then it converges to some point
Re X \X.Since ¢M)=A{a(®): ke M}=X\X, then Ke&(x) for some ' eM, i.e.
exists Aeg such that A>%’ in A>%. Let B(%) be a filter of neighborhoods of
point & in (X,U). Notice, that F > B()A{X}. Easy to see that Aeca,NF.
Therefore, the space (X,U) is a co-z -bounded.

Sufficiency. Let & be an arbitrary uniform covering of the space (X \X,U ).
Then there exists a uniform covering « of space (X,U) such that @ A{X\X}=4
where @ ={A:Aca}, A=X\[X\A],.According to the hypothesis of the theorem
there exists a family {F} of cardinality <r of free Cauchy filters such that the
subfamily o, ={A: AcanF,F e{F}} is a co-covering of the space (X,U). Every
free Cauchy filter F converges to some point %. e X\ X . Then M ={&. : F e{F}}

is a subset of cardinality <+ of space (X\X,Uy,, ). Since the subfamily «, is a co-

covering of the space (X,U), the family &, is covering of the space (X\X,U; ).
Show that &,(M)=X\X. Let xe X\ X be an arbitrary point. By B(x) we denote
filter of neighborhoods of the point %in (X,U). The trace F filter of
neighborhoods B(%) on X is free Cauchy filter in (X,U). Therefore, o, "nF =&,
I.e. there is Aeq, such that A< F. By hypothesis there exists F’'e{F} such that
AeF'.Since F' converges to the point .., then K e Ac d,(%.) = 4,(M).

Therefore, that &,(M)= X\ X. Therefore, the space (X\X,U.,) is a z-

X\X
bounded.
If 7 is a finite cardinal, then a co-7-bounded space of (X,U) is called co-

totally bounded.
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Theorem 2. The remainder (X \X,U.. ) of a space (X,U)is compact if and

XAX
only if the space (X,U)is co-totally bounded and open subspace in the completion
of (X,U).

Proof. Necessity. Let the remainder (X\X,U..) be compact, i.e. totally

X\X
bounded and complete. According to the Theorem 1, the space (X,U) is a co-
totally bounded. Since any complete subspace of a uniform space is closed, then

the remainder (X \X,U.. ) is closed. Then the uniform space (X,U) is an open

X\X
subspace in the completion of (X,U).
Sufficiency. Let (X,U)be co-totally bounded and open. According to the

Theorem 1, the remainder (X\X,U.. )is a totally bounded. Since the space

X\X
(X,U)is an open subspace of the completion of (X,U), then the remainder

(X\X,U, ) is closed. Further, from the fact that every closed subspace of a

complete space is complete, the completeness of the remainder of

) follows. Therefore, the remainder (X \X,U, ) is a compactum.

(X\X,U

X\X

Theorem 3. For the remainder (X\X,U. ) of the space (X,U) is a P-

X\X
compact sufficiency if every uniform covering « U contains a subfamily «, with
property P which is a co-cover of uniform space (X,U).

Proof. Let & be an arbitrary uniform covering of the space (X \X,U...). Then

R\
there exists a uniform covering « of the space (X,U) such that @ A{X\X}=4,
where @ ={A:Aca}, A=X\[X\A],.According to the hypothesis of theorem « it
contains a subfamily «, with property P, which is co-covering of the uniform
space (X,U). It is easy to see that the covering &, has property p. Therefore, the

space (X \X,U..) isa P-compact.

X\X
Among the many corollaries of Theorem 3 we note the following.

) of aspace (X,U) is dmU... <n if

X\X —

Corollary 1. A remainder (X \ X,U

X\X
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each uniform covering « eU contains subfamily «, of a multiplicity <n+1, that is
a co-covering of the uniform space (X,U).

Corollary 2. A remainder (X\X,U..) of a space (X,U) is uniformly u-

XAX
paracompact if each uniform covering « U contains locally finite subfamily «,
that is a co-covering of the uniform space (X,U).

Corollary 3. A remainder (X \ X,U... ) of aspace (X,U) is strongly uniformly

X\X
u-paracompact if and only if each uniform covering « €U contains star finite

subfamily «,, that is a co-covering of the uniform space (X,U).

Filter F called is Cauchy H -filter, if a nF = @ every a e H [1].
Uniform space (X,U) called is H -sequentially complete, if every Cauchy H -

filter F of countable base has at least one adherent point.

The least cardinal number » called index of sequentially of the uniform space
(X,U), if there exists such systtm HcU, that |H|=» and (X,U) is a H-
sequentially complete.

An index of sequentially completeness of a uniform space (X,U) is denoted as
icy, U).

Proposition 1. Let (X,U) be a uniform space. If exist covering « U such
that every subspace (AU,), Aea of (X,U) is sequentially complete, then the
space (X,U) is sequentially complete and ic, (U) < max{sup{ic, (U,): A a}|af}

Proposition 2. Let (X,U) =] J(X,.U,). Then we have

s<5
icy, (U) <max{sup{ic, (U,):seS}|S]}.
Theorem 4. For a uniform space (X,U) the following conditions are
equivalent:
1. ic, U)<7;
2. Uniform space (X,U) can be mapped onto any sequentially complete

(Y,V) of weight w(v) <» by means of sequentially complete mappings.
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As is known, in the theory of uniform spaces there are various approaches to the definition of uniform
paracompactness of uniform spaces. In the article a uniformly r -finally paracompact spaces are
introduced and investigated.

Key words: Finitely additive open cover, uniformly 7 -finally paracompactness, conservative uniform
cover of cardinality <z .

Bup xaneintyy MEWKHHAMKTEPIUH TEOPHICHIHAA OUp KAIBINTYy MapaKOMIAKTYYIYKTYH TYPIYY
Oepuityy >xonmopy Oap skenauru Oenrminyy. Makanaga Oup KanblnTyy 7 -(QUHaNAYy HNapakOMIIAKTyy
MEHKUHIUKTEP KUPTUZMIIET JKaHa W3UIIJICHET.

Ypyarryy cesmep: UekTyy anauTHBIYY adublk kabmyy, Oup Kaueintyy 7 -QUHAILYY
MapaKOMIAKTYyIyK, < 7 KyOaTTyyJIyKTarsl KOHCEPBATUBAYY OUp KaJbIITYY Ka0Iyy.

Kak wu3BecTHO, B TEOpHMH pPaBHOMEPHBIX MPOCTPAHCTB CYIIECTBYIOT pa3IUYHbIE MOIXOABI K
OIIpEJICJICHUI0O PAaBHOMEPHON MapaKOMIIAKTHOCTH PaBHOMEPHBIX NPOCTpaHCTB. B Hactosmel pabote
BBOJIUTCS U UCCIEAYIOTCSI PABHOMEPHO 7 -(pHHAIBHO AapaKOMIIAaKTHBIE IPOCTPAHCTBA.

KaroueBeie cmoBa: Koneuno ANIUTUBHOC OTKPBITOE€ IIOKPBITHC, PABHOMCPHO 7T -(I)I/IHaJ'ILHaH
NMapaKOMIIAKTHOCTb, KOHCEPBATUBHOC PAaBHOMEPHOC IMMOKPBITUEC MOITHOCTH <r.

A r-finally paracompact spaces of topological spaces were introduced and
studied in [1].

Let (X,U) be a uniform space.

A uniform space (X,U) is called a uniformly r -finally paracompact, if every

finitely additive open cover has a conservative uniform cover of cardinality <z

refinement.
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Proposition 1. If (x,u) is a uniformly r-finally paracompact, then the
Tychonoff space (X,z,) is a r-finally paracompact. Conversely, if (X,r) is a
paracompact, then the uniform space (X,U,) is a uniformly r -finally paracompact,
where U, is the universal uniformity.

Proof. Let y be an arbitrary open covering of space (X,z,). In the finite
additive open covering < of uniform space (X,U), we refined a conservative

uniform covering g of cardinality <z. For each B < g, there is such 1, e “ that

BcI,, Where TI,=ul, T ea, i=12..n. Let ' ={y,:Bep},

7s ={BNT,:i=12,..,n}. It is easy to see that »’ is a conservative covering of the
space (X,z,) of cardinality <z refined in an open cover y. Therefore, the space
(X,z,) is a ¢ -finally paracompact.

Conversely, let a Tychonoff space (X,r) be a r - finally paracompact and y
Is an arbitrary finitely additive open covering of space (X,U,). By virtue of the 7 -
finally paracompactness of the space (X,z), a conservative open covering g of
cardinality <z can be refined into the covering . As is known, the family of all
open coverings of a given Tychonoff space (X,z) forms the base of the universal
uniformity of U, . Then g is a conservative uniform cover of cardinality <.

The following theorem is a uniform analogue of the in the spirit of Tamano’s
theorem.

Theorem 1. Let (X,U) be the uniform space, (sX,sU)is the Samuel’s
compactification of the space (x,U). The uniform space (X,U) is a uniformly r -
finally paracompact if and only if for any compactum K csXx\X there is a
conservative uniform covering y of cardinality <z such that K n[I'], =@ for any
Fey.

Proof. Necessity. Let (X,U) be a uniformly z-finally paracompact and
K < sX \ X. For each point x e X there exists a neighborhood O, open in sX such

that [0,], "K =2. We denote by g the traces of the neighborhood of O,, the
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point xe X on X . It is easy to see that 4 is an open covering of the space (X,U).

In the finite additive open covering A< we write a conservative uniform covering

y of cardinality <¢. Then the set [I'],, is contained in [(ik:)luxi N X)]« , and the latter

IS contained in Q)l[oxi]sX .Where KnI[r], =@ forany r'ey.

Sufficiency. Let 2 be any finitely additive open covering of the space
(X,U). Then there exists an open family » in (sX,sU) such that the trace of the
covering y on X coincides with the covering 1. Let K be the complement of the
set Uy to Samuel’s compactification (sX,sU). The K is compactum. Then there
exists a conservative uniform covering g of cardinality <z, such that the set

Kn[Bl, =@ for any Bepg. Since [B], is contained in sX, then there exist
I,,i=12,...,n such sets from » that [B],, cgjlri. Then Bcg)lLi, where £J1Li el.

Therefore, the space (X,U) is a uniformly z -finally paracompact.

A uniform space (X,U) is called a strongly uniformly z-locally compact if
there is a conservative uniform covering of cardinality <z consisting of compact
subsets.

Proposition 2.  Any strongly uniformly r-locally compact space is a
uniformly r -finally paracompact.

Proof. Let 2 be an arbitrary finitely additive open covering. Then there
exists a conservative uniform covering g of cardinality <r consisting of compact
subsets. It is easy to see that a conservative uniform covering g of cardinality <«
is refined in a finite additive open covering 4.

Proposition 3. Any uniformly r -finally paracompact space is complete.

Proof. Let (X,U) be a uniformly r-finally paracompact space and F is a
Cauchy filter in it. Suppose that the Cauchy filter F does not converge at any point

in the space (X,U). Then for each point xe X there is a neighborhood of O, and

N, from Fsuch that N,~O,=@. By 4 we denote the families of such

X

neighborhoods O, of a point xe X . Then, for a finite additive open covering 1~
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there is a conservative uniform covering g of cardinality <z refined in it. It

follows that the cover 1 and the Cauchy filter F have a common element i.e.

there exist O, from i=12,...,n such that the set _CJloXi is contained in 2“ ~nF. Then

the intersection of the sets éFXi and ik;loxi are not empty. Consequently,

Fy e Fand O, eF.

Contradictions. There fore, the uniform space (X,U) is a uniformly r-

finally paracompact.
Proposition 4. A closed subspace H is a uniformly 7 -finally paracompact

space (X,U) is a uniformly r -finally paracompact.

Proof. Let y,, be a finitely additive open cover of a closed subspace of H .
Put y ={r,,, X \H}. It is clear that » is a finite additive open covering. Then there
exists a conservative uniform covering « of cardinality << refined in y. Put
a,, =a ~r{H}. Then it is easy to see that «, is a conservative uniform covering of
cardinality < of the subspace H refined in y.

Theorem 2. Let » be an arbitrary finitely additive open covering. If
f:(X,U)—(Y,V) is a uniformly continuous »-mapping of a uniform space (X,U)
onto a uniformly ¢ -finally paracompact space (Y,Vv), then a uniform space (X,U)
is a uniformly  -finally paracompact.

Proof. Let » be an arbitrary finitely additive open covering of the space
(X,U) and f:(X,U)—(Y,V) is o the mapping of the uniform space (X,U) onto a
uniformly ¢ -finally paracompact space (Y,v). Then for each point yeY there
exists a neighborhood O, such that f~0O, is contained in some element of the
cover ». By « we denote the set of all such neighborhoods of O, points of yeY .
Put a“ ={ua, c a —finite}. Into the covering «“ we write a conservative uniform
covering g of cardinality <z. Then f~g is a conservative uniform covering of
cardinality << of space (X,U) refined in ». Therefore, the uniform space (X,U) is

a uniformly z -finally paracompact.
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Since any uniformly perfect mapping is a r-mapping, then Theorem 2
implies:

Corollary 1. The uniform 7 -finally paracompactness is preserved towards
the inverse image of uniform perfect mappings.

Theorem 3. The product of uniformly r-finally paracompact space (X,U)
onto a compact uniform space (v,V) is a uniformly ¢ -finally paracompact.

Proof. Let (X,U) be auniformly ¢ - finally paracompact space, and (Y,v) is

a compact uniform space. Let 2={S,,, xT,,, : (x,y) € X xY) be an arbitrary finitely

(%)

additive open covering of the space (X,U)x(Y,V). For each point (x,y)e X xY of

the set S T, there are neighborhoods of the points x and y, respectively. Let

(x,y) ?
x"e X . Then the family {7, :y Y} forms an open covering of the space (Y,v).

Due to the compactness of the latter, we select a finite subcover

Then

(X.yi)

Loy Ty Toeyat frOm an open covering {1, :yeY}. Let s, =T,
i=1

the family » ={T, : x’ e X} is a finitely additive open covering, into which, by virtue
of the uniform ¢ -finally paracompactness of the space (X,U), we can refined a
conservative uniform covering u={T,:x'e X} of cardinality <r. Put
B={S, xTy,, X eX,i=12,..,n}. The latter is a uniform covering, since covering
poand {T, T T, 3 are uniform. Easy to see that g 4. It remains to show
that g is a conservative covering of cardinality <. Since x is a conservative

covering of cardinality <z in place (X,U), then [(ws,)]=uls,] is for each
jedg j€edo )
J, = J. Therefore [0 (S X Tie90)]= Y [(S, xT )1 for each J,cJ and
jedo - " jedom "

i=12,...n.

A uniform space (X,U) is called a strongly uniformly 7 -finally paracompact
if each finitely additive open cover has a conservative uniform cover of cardinality
<z refinement.

Any strongly uniformly r-finally paracompact space is a uniformly r-

finally paracompact.
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Theorem 4. For a uniform space (X,U), the following conditions are
equivalent:
1) The uniform space (X,U) is a strongly uniform ¢ -finally paracompact;
2) The uniform space (X,U) is a uniformly r-finally paracompact and the
topological space (X,z,) is a strongly 7 - finally paracompact.
Proof. 1) = 2) Itis obvious.
2) =1). Let 2 be any finitely additive open covering of a uniform space

(X,U). The cover 2 has a star finite open cover g of cardinality <z refinement. It
IS easy to see that the cover g~ ={ug,: 3, < p— finite} is of finitely additive and
star finite covering. By the hypothesis of the theorem, we refined in a covering g~
a conservative uniform covering y of cardinality <¢. It is easy to see that the star-
finite uniform covering - is refined in the finitely additive open covering 2.
Therefore, the uniform space (X,U) is a strongly uniformly r -finally paracompact.

Corollary 2. Any uniformly < -finally paracompact space (X,U)whose

topological space is locally compact, is a strongly uniformly r-finally
paracompact.

Theorem 5. A locally compact uniform space (X,U) is a uniformly -
finally paracompact if and only if the uniform space (X,U) is a strongly uniformly

r -locally compact.

Proof. Necessity. Let a uniform space (X,U) be uniformly ¢ -finally
paracompact and a topological space (X,z,) is a locally compact. Then for every
point x there exists a neighborhood O, whose closure [O,] is compact. It is easy to
see that the family 2 consisting of the neighborhoods O, of the point xe X is an
open covering of the space (X,U). Put 2 ={u4,:4, < - finite}. Conservative

uniform covering g of cardinality <z we refined in 2. For each Be g there

exists a set ?:ioxi containing B. Closure [B] is contained in [(ik:Jluxi )]. The set [B] is

compactum, since [(ik:Jluxi )]ZiL:Jl[UXi]. So, the closed covering [5]1={[B]:Be S} is a
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conservative uniform covering of cardinality <z consisting of compact subsets.
Therefore, (X,U) is a strongly uniformly locally compact.

Sufficiency. Let « be an arbitrary conservative uniform covering consisting
of compact subsets of cardinality <z and 2 is an arbitrary finite additive open
covering. It is easy to see that « is refined in cover 1. Therefore, the uniform
space (X,U) is a uniformly 7 -finally paracompact.
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ON BOUNDEDNESS OF SOLUTIONS OF THIRD ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH FUNCTIONAL ON HALF-AXIS

Iskandarov Samandar
Institute of Mathematics of NAS of Kyrgyz Republic

Established the sufficient conditions of boundedness on half-axis all solutions and their first,
second derivatives of third-order linear differential equations with functional. For this aim developed the
non-standard method of reduce of equations to system. The illustrative example is given.

Key words: linear differential equation of third order, functional, non-standard method of reduce
to system, boundedness.

OyHKIMOHANB! 0ap YYYHUY TapTHUOTEIH CBI3BIKTYY IU(PQEepeHUNANIBIK TCHIEMEHUH OapbIK
YBITAPBUIBIIITAPBIHBIH  JKaHa ajapAblH OWUPHUHYH, O3KHHYM TYYHAApBUIAPBIHBIH JKaphlM OKTOTY
YEeKTEITCHIMTHHIH JKETUINTYY IIapTTapsl Ta0butaT. byn ydyH TeHIeMmenepaHu cucTeMmara CTaHAapTThIK
IMEC KeNTUPYY METOLY OHYKTYpYJieT. MumocTpaBark MUcai Typry3yiar.

Aukprd ce3mep: YUYHUY TapTUIETErW CHI3BIKTYY IuddepeHIHanablk TeHaeme, (QpyHKIHoHal,
TEHJEMEHHU CUCTeMara CTaHIapTThIK 3MEC KEITHPYY METO1Y, YEKTEITCH UK.

YcraHaBnuBaOTCS TOCTATOYHBIE MPU3HAKM OIPAaHUYEHHOCTH HA IOJYOCH BCEX PELICHUN U HX
MEPBHIX, BTOPBIX MPOW3BOJHBIX JHHEHHOTO AM(pQEpEeHIMATBHOTO YPaBHEHHS TPEThEro IOpsAKa C
¢bynkuonaniom. [Iyisi 3TOro pasBHBaeTCsl HECTaHIAPTHBIM MeETOJ| CBeleHHs K cucreMme. CrpouTcs
WJUTIOCTPATUBHBIN IPUMED.

Kirouersie cioBa: Jluneinoe nuddepeHinanbHoe ypaBHEHUE TPETHEro HMOpsijiKa, PyHKIIMOHAI,
HeCTaHHapTHBIﬁ METO/J CBCIACHUSA K CUCTEME, OTPAaHUYCHHOCTD.

All functions and their derivatives in this paper are continuous and the
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relations are true at t = t,;] = [ty,00); DE-differential equation; DEF-DE with
functional.

The problem. To establish sufficient conditions of boundedness on ] all
solutions and their first, second derivatives of third-order DEF:
x"'(t) + a,(e)x" () + a, ()x'(t) + a, ()x(t) = f(£) +
+F(t;x), t=t,, (1)
where F(t; x) is continuous at t = t, functional is described in [1, p.280].

The main result. In DEF (1) we made the following non-standard
replacement:
x"'(0) + p(O)x" (1) + q(0)x(0) = W)y (D), (2)
where p(t),q(t), W(t)are some weighting functions, y(t) is new unknown

function. Then from (2) by differentiations we have:

x"'(t) = —p(@Ox" () — p"(Ox' () — q(O)x' (1) — q"(Ox(t) + W(D)y'(t)
+ W' (©)y(r) =

= —p(@O)[-p®)x' (1) — q(O)x(t) + W)y ()] — [p'(®) + q(©)]x" () -
—q'(Ox(@)+WDy' (0 + W @Dy = [p*@) —p' () — q(O]x' (D) +
p(t)q(t) — ¢’ (O]x(t)

+W'(0) — p(OW(D]y() + W(E)y' (D). 3
Now by using (2), (3) we reduce the DEF (1) to following equivalent system:

[ X" (1) + p(O)x' (D) + q(D)x() = W)y (),

| ¥'(®) + by () y(2) + by (D)x' (1) + bo (£)x(t) = W(E) T [f(£) +
+F(t; x),t = t,, (4)

where

b, (1) = a,(8) — p(O) + W' (O(W(©) ",

by (£) = [a4(8) — a,Op() + p*(©) — p' () — g OIW(D) ",
by(£) = [as(8) — a,(D)q(t) + p()q(t) — g’ OIW (D)) .

The replacement (2) under p(t) = const > 0,q(t) = const > 0 is used in
paper [2].
For any solution (x(t), y(t)) the first of equation from system (4) multiplied
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x'(t), second equation - to y(t), after integrated on [t,,t], added the obtained

expressions. Then can be obtained the following energetic identity:

VO = (' ©®) +2 [ pe (') ds+ @ (x0) "+ (r®) +
2[} b()(($))%ds =V (o) + J, {g' D (x()” + 2W()y()x' () +
2(W(s)) " y(IF(s) + Fls; 0] -
2y(s)[by(s)x"(s) + b (SJx(SJ]}dS- (5)
By using the integral inequality [4] is provided the following
Theorem. Let 1) p(t) = 0,W(t) > 0;
2) q(®) > 0,q'(t) = 0; 3) by(t) = 0;

HW®) + (W) UFS] + IF(s 000+ by ()] + +|h0(5j|(Q(SJ)_§E
L*(J,R\{0D).
Then any solution x(t) of DEF (1) is bounded on [ and is true the following
properties:
(x'(0)* = q@®)0o(),
p(6)(x' (1) €eL*(,R.),
b, (1) (y(£)"€el* J,R.),
In addition, let 5) g(t) = 0(1), then Vx'(t) = 0(1);
6) p(t) = 0(1),q(t) = 0(1),|F(t;x)| = 0(1),then ¥V x"'(t) = 0(1).
Example. For DEF:

(@) + [eVFD 4 2200 4 [, 0p(0) — 241 ()
—Et
+ [az(t)q(t) +q (t)—p(t)q(tﬂtz 1 x(t)
=sine 3 —
E—Zt
— - ., t=1
1+ |f x(s]ds|
where p(t) = — q( )=
under W(tj =ef, in here
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1
241"

to=1,by(t) = et VSE b (£) = —e~t, by (L) = £(t) = sine~3,

|F(t; x)| < e 2%,
We denote, that the result of this theorem is new in case F(t;x) = 0 (see,
for example, [5]).
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UNIQUENESS AND STABILITY OF SOLUTIONS OF STIELTJES
LINEAR INTEGRAL EQUATIONS OF THE FIRST KIND WITH TWO
VARIABLES

Avyt Asanov', Zuurakan A.Kadenova®
'Department of Mathematics , Kyrgyz-Turkish Manas University,
?Institute of Mathematics of NAS of the Kyrgyz Republic

In this work dedicated to the research of the problem of uniqueness and stability for linear

integral equationss of the first kind with two variables. Here the operator generated by the
kernels is not the compact operator.
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Key words and phrases: linear, inteqral equations, first kind, two variables, solution,
uniqueness.

byn wmakanma OupuHYM TYpHery OSKH ©3TepyJIMeNYY CbI3BIKTYY HHTETrpasJIbIK
TEHJEMEJEPINH YEUUMICPUHUH JKAITbI3bITBIH JKaHA TYPYKTYYJIYTyH M3WIJleere apHalraH.
MpeIHAa, AIpOHY aHBIKTOOUYY OIEpaTOp KOMIAKTYY OIEPATOP.

YpyHTTYy ce31ep: CBI3BIKTYY MHTETpPANAblK TEHAEME, OWpUHYM Typaery, OJKu
©3repyJIMOITYY, KaJITbI3bITbI.

JlanHas paboTa NOCBALICHA MCCIIEJOBAHUIO €IMHCTBEHHOCTU M YCTOMUMBOCTH pEILECHUM
JMHENHBIX UHTErPAJIbHBIX YPaBHEHUI NEPBOrO poja ¢ ABYMs IEPEMEHHBIMU. 3/1€CH ONEPATOP,
TCHEPUPYEMBIN AIPAMH, HE SBJISIETCS KOMIIAKTHBIM OIIEPATOPOM.

Ktouesrie cioBa: HHHCﬁHBIC, HWHTErpajibHBIC YpaBHCHMS, IEPBOTO poJa, C ABYM HE3aBUCUMbIMU
IIEPEMCHHBIMHA, €AMHCTBECHHOCTD.

1. Introduction
We consider the integral equation

Ku= f(t,x),(t,x)eG={(t,x) eR*:t,<t<T,a<x<b}, 1)

where

Ku'= K (tx y)u(t )de(y) + [ Q. x,s)u(s, X)dy (5) +
a to

+[[Ctx s, yuls yde(y)dy(s)

t) a

K% y), H(t.x,5), C(t, .5, ¥) ~ are given functions, ?(X) is the given strictly
increasing continuous function in  [&PL¥(®) s the given strictly increasing

continuous function in o ThUMLX) ang  FX)  are  the desired and given

functions respectively, (LX) €G.

Here
<t<T,a<y<x<
S IS
P(t, X, Y) = A(t, X, Y) +B(t, y,X), (t, X, y) €G,, 2
where

G, {(t’X1Y)3t0£t£T,aSnygb};
G,={t,x,y):t,<t<T,a<x<y<b}
G

s ={t,x,8):t,<s<t<T,a<x<b}, G*=GxG.
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Various issues concerning of integral equations of the first kind were studied in
[1-6]. Some practical and theoretical investigations were made in paper [1] for
nonclassical Volterra integral equations of the first kind. In [2, 3] for system of
Volterra integral equations of the first kind were constructed the Volterra
regularized operators. In [4] for the systems of Volterra integral equations of the
first kind with two independent variables were investigated the problems of
regularization and uniqueness. More specifically, fundamental results for
Fredholm integral equations of the first kind were obtained in [5], where
regularizing operators in the sense of M.M.Lavrent’ev vere constructed for
solutions of linear Fredholm integral equations of the first kind.

In this work for the investigation of the integral equation (1) we it is based
on the notion of the derivative of function with respect to the strictly increasing
function [7]. Then we need the concept of the derivative defined in the work [7].
Apparently the first notion of the derivative, with respect to the strictly increasing

function, was introduced in [7].

Definition. The derivative of a function () with respect to #(X) is the

function ™ whose value at *€@Db) s the number:

£ 00 = lim LA =0
T 0 (x+A)=e(X) (3)

where ?() is the given strictly increasing continuous function in (@b)-

If the limit in equation (3) exists, we say that [(X) has a derivative (is

differentiable) with respect to  2(X). The first derivative ™ may also be

differentiable function with respect to  ?() at every point X<(@b) |f 5o, its

derivative
f, (0 =(f,(x),,
is called the second derivative of (X with respect to ¢(X). The names

continue as you imagine they would, with.
000 =(f"2(0),
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denoting the n—th derivative of (X with respectto #(X),
Similarly, we define partial derivatives of functions of many variables.

In this work, on the basis of the consepts of the partial derivative of
functions PtXY) H(XS) with respect to the increasing continuous functions

¢(X) and ¥®) and methods of functional analysis, the uniqueness theorems are
proved and estimates of the stability of solutions for the integral equation (1) are
obtained.

We asumethat only if

2

hu X)) dop(X)dy () <o

[IS——

(t X eL2

—

0

2. Unigueness and Stability of solutions of integral equations

Assume that the following conditions are satisfied:
(i).P(t,b,a)>0 telt,T],P(t,ba)eC[t,T], P, (ty,a)<0,

(t.y)eG,P, (t.z,a)eC(G), Pl (s,b,2)>0, (s,2) G,

i (30:2) £C(B), Pl (5%:2) <0, (5.%,2) <6,
P;,(Z)gﬂ(y)(svy’Z)e (Gl)

(i).Q(T,y.t)=0, yelab], Q(T,y.t,)eCla,b], Q) (s, ¥t,) <0
(S, y) eG, Q{;(S) (S, y,to) e C(G), QV'/(T) (T, y,r) >0 (y,7)€G,

Q) (T:¥:7)€C(G), Q"9 (8:Y,7) <0,
(5,¥,7)€G,, Q" (1y,6 (5 Y,7) €C(G).

(iii). At least one of the following conditions holds:
(a)P{p'(y)(s, y,a)<0 for almost all (s,y) €G;
(b)qu(Z)(s,b,z)>0 for almost all (s,z) €G;

(©)Q (51 Y:t) <0 for almost all (s,y)eG;

(d)Q',,(T.y,z)>0 for almost all (y,z)eG;
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(e) Py (p(y)(s,y,z)<0 for almost all (s,y,z) €G;;
() Q" W(S)(s y,7)<0 for almost all (s,y,7)eG,.

Forv(t,x) el?,, j At %, y)V(E, y)dg(y j B(t,x, )V(t,y)dg(y) e %, (G),

here

C[tO’T]’ c(c).c(,) and C(63)—the space of all continuous functions,

T], G, G, G,

respectively 3 and

(lV) C(t, X, S, y) € LZ(GZ) and

C(t, x,s, y):zmlxli(pi(t,x)(pi(s, y), m<o, 0< A, i=12,...,m
= (4)

where szz... and ¢1(t’x)’ (Pz(t’x)"“is an orthonormal sequence of eigen

2
functions from év (G) and /11’}”2""is the sequence of corresponding nonzero

eigenvalues of the Fredholm integral operator C generated by the kernel

C(t,X,s, y)’ with the elements Ay Ay arranged in decreasing order of their
absolute values.
Theorem 1. Let conditions (i)-(iv) be satisfied. Then the solution of the

2
equation (1) is unique in Lo (G)

Proof. Taking the multiplication of both sides of the equation (1) with u(t,
X), integrating the results on G, and integrating by parts and using the Dirichlet

formula we obtain
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iﬁ’*(wz)“(s’Z)U(S1Y)dw(2)dw(8)dco(y)+

: mp g{fu e ]dzu<s,y)d¢<y>dw<s>=

—J%)(s,y,z>@“<s,v>d¢<v>Jd¢<z>}u<s,y>d¢<y>dw<s>—
1 TP(S,y,a)lg[i“(S’V)d¢(V)]2]d¢(y)d‘//(s)+
27/ N3

j.j P (59, Z)[%U“(S’V)M(V)] ]d¢(Y)d¢(z)dt//(s) _
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y

[P(p( (s,y.z) Uu s,v)de(v ]]‘ do(z)dy(s)-
.TP&Z)w(y)(S’ y’Z)UU(SN)dco(V)J (D(Y)d(p(z)dw(s):

fe1 500 Jutsw oot 10w -
Z (6)

‘% Hp"(zm)(svy,Z)@U(S,V)dﬁﬂ(V)} do(z)de(y)dy (s).

Similarly integrating by parts and using the Dirichlet formula analogically

we have

.T]jQ(S’ y, 2z, y)u(s, y)dw(z)dw(s)de(y) =

b

=%IQ(T,y,to)EfoU(§,y)dw(s‘)J dg(y)-

_%”Q(}(s)(s’ yio)ﬁ”(f,y)d'//(?)J dy (s)d(y)+

(7)
Taking into account (6), (7) and (4) from (5) we obtain

43



have

u(t,x)=0

+%TQ(T,y,to)U”(ﬁ,y)dw(é)j dg(y)-

)

2]ty Juce N (&) | dv ()do(n)-

_%iijw(f)v (5 (8. Y, T)Uu(f y)dW(‘f)J dy (z)dy (s)de(y)+

Y [”q) (.Y dw(S)dco(y)J Ty dede). (@)
i-1 at at,

Let T(tx)=0. (tx)eG. Then by virtue of conditions (i)-(iv), from (8) we
' for almost all (t’ X) < [tO’T]X [a, b]'. The theorem 1 is proved.

v).The Fredholm operator C generated by the kernel C(t,x.5.Y). defined by

(4) is positive, i.e. all the eigenvalues {ii} of Ct.x5.Y) are positive (i=1, 2, ..., m,

m=oo) and ¢(x)eC'[ab], w(t)eC'[t,T]

The family of well-posedness depending on the parameter o is defined as

M, = {u(t, x)e L,(G): ii{“ ut| < c},

v=1

were ¢>0, O<a<ox,
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ﬁu t,X)g, (X' (x)y'(t)dxdt, v=1,2,...,0.

Theorem 2. Let conditions (i)-(ii)and (v) be satisfied. Then the solution

U(t,X)of the equation (1) is unuque in Loy (G) . Moreover, on the set

K(M, )< L,(G) is the image of M, under the action of the operator K defined by

formula (1)), the inverse K™of operator K is uniformly continuous with the Holder

exponent 2+a e
Hu(t,x)ﬂL2 SCZiO‘Hf(t,x)ﬂi;l, O<a <o (9)
were
Th
R
ta

Proof. a) In this case, the orthonormal sequence of eigenfunctions

ut,x)eM, is complete in I'Z«W(G).There fore (8) implies the uniqueness of the
solution to equation (1) in w(G) Let f(t X)e K( a)_Then the equation (1) has a
solution U(t, X)e M, and it follows from (8) that

Zﬂ "< ), e

V

(10)

o 1
+1

2 o
- u(V) } ,

o a L1
S <[ @ xYult, x)[Jee et

v=l (12)
Combining the last two inequalities gives estimate (9). The theorem 2 is

iu(‘/)z - i u(v)2 2ta [
v=l a v=l l;l v=l

On the other hand,

(11)

proved.
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ASYMPTOTIC ANALYSIS OF SOLUTIONS OF SYSTEMS OF THREE
SINGULARALLY PERTURBED FIRST-ORDER EQUATIONS

'Alybaev K.S., 2Narymbetov T.K.
1Jalal-Abad State University, 2Medical and Social Research Institute

The article considers a system of three singularly perturbed first-order equations. A degenerate
system of this system has several solutions. For solutions of a singularly perturbed system satisfying
given initial conditions, the existence of attraction regions in the complex plane to individual solutions of
a degenerate system is proved.

Keywords: singular perturbation, degenerate system, analytic function, level lines, sequential
approximation, uniform convergence.

Makanaga OMPUHYM TAPTUNTETH Y4 CHHTYISIPIBIK JYYJIYKKOH TEHJEMeNIeH TypraH cHUcTeMa

KapaJiraH. Cucrtemara Tueniesnen OOJIroH KY6y.]'Il"aH CcHuCTeéMa 6I/Ip Heue yeyumre 33 00710T. barirankel
mapTrapAabl MAPTTApAbl KaHAATTAHABIPraH CHUHTYJAPABIK  AYYJIYKKOH CHUCTEMAaHbIH YCYMMUHUH
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KOMIUIEKCTUK TETM3AUKTE KyOyJIraH CHUCTEMaHbIH alpblM 4YE€YMMAEPUHE TapThUIyy OO0JIaCTapbIHBIH
Kalllalbl JaTUIIEeHIN.

VYpyHTTYy Ce3[6p: CHHTYIAPABIK AYYIYTYY, KyOyliran cucTema, aHATUTHKAIbIK (QYHKIHA,
JEHT33J1 ChI3BIKTApHI, YAaaall )KaKbIHAAITHPYY, OUp KaJbIlTa )KbIHHATYY.

B cratee paccmaTpuBaeTcs cuCTeMa M3 TPEX CHHIYJISIPHO BO3MYILICHHBIX YPaBHEHHM IIEPBOTO
nopsaka. BelpojkaeHHas cucTteMa JaHHOW CHUCTEMBI HMEET HECKOJIIbKO pemeHui. [ng pemeHuit
CHHTYJISIDHO BO3MYIICHHOH CHCTEMBI YAOBJICTBODSIOLIME 3aJaHHBIM HAayaJbHBIM YCJIOBHSIM, JOKa3aHO
CyLIECTBOBaHME 00nacTel NPUTSDKEHMH B KOMIUIEKCHOH IIJIOCKOCTH K OTACIBHBIM PELICHUSIM
BBIPOKJIEHHON CUCTEMBI.

KiroueBbie ciioBa: CHHTYIISIpHOE BO3MYIIIEHUE, BEIPOXKICHHAS CUCTEMA, aHATTUTUYECKask (PYHKIHS,

JIMHUHA YPOBHS, IMMOCJICAOBATCIILHOC HpI/I6J'II/I)KeHI/Ie, paBHOMEpHAaA CXOAUMOCTL.

Formulation of the problem

Let the system be considered
ez'(t, &) = A(t)z(t, &) +z2(t, ) + £f(t,z(t, e)) (1)
with initial condition z(0, €) = z°(¢) (2)
where te Il c C is set of complex numbers,
N={teclo<st;<a—-B<t; <P, aBER)
z(t, &) = colon(zl(t, €),2z,(t, &), z5(t, e)), A(t) = diqg(al(t),a2 (t),a, (t)),
z2(t, &) = colon(zZ(t,€),z5(t, €), 22 (¢, €)),
f(te) = colon(fl(t, &), fo(t, e), f3(t, 5)), z%(e) = COlO”(Zm(E),220(8),230(8))-
From system (1), flat € = 0, we obtain a degenerate (unperturbed) system
AE@® + 82 =0. (3)
The system (3) has eight solutions
&,(t) = colon(0;0;0), &(t) = colon(0; —a,(t); 0),
¢3(t) = colon(—a,(¢); 0;0),£,(t) = colon(—a,(t); —a,(t); 0),
é(t) = colon(O; 0; —a3(t)), E(t) = colon(O; —a,(t); —a3(t)), (4)

&7 (t) = COlon(_aq(t)} 0; —a; (t)):57(t)
= colon(—a1 (t); —a,(t); —ay (t)).

Definition. If: 1. There exists a domain I1, € IT and z(t, €) is a solution to
problem (1) - (2) defined in II,.
2. Vte Il (z (t, &) — &;(t) in &), then the domain I, is called the attraction domain

of the solution &; ().
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For solutions (4), we prove the existence of attraction regions.
The solution of the problem
To solve this problem, we use the level line method [1].
Similar problems were investigated in [2,3,4].
Let the conditions be satisfied:
V1. vt € [I(a;(t) € QD) and Ima;(t) > 0,j = 1,2,3),Q(I1) is space of analytic
functions in II.
V2. f(t,z2) € QD) uv((t,2),(t, D e A(||ft, D) — F(£,D)| < My||z -2
where A is a certain set of variables (t, z). Further, all constants will be denoted by
the letters M,,(k = 1,2, ...).

)

We construct the functions A4;(t) = fot a;(t)dr (j = 1,2,3) and introduce the level
lines (p;1) = {t € IT| ReA,;(t) = 0},j = 1,2,3.

¥3. The level lines (p;;) in domain IT have only one common point ¢t = 0.
According to this condition, the level lines in the domain I arranged in a certain

order. We assume (clockwise) that (p,,), comes first, then (p,,) and then (p3,).

The lines (p;;) the domain IT are divided into four parts, which we denote by

M, (k =1,2,3,4).

1) For t € I1,, we assume ||z,|| < Mye¢ . (5)
2) If t € I1,, then suppose ||z, — &5(0)|| < Mye (6)
3) For t € I3, we assume ||z, — &,(0)|| < Mye (7)

4) For t € I1, we take ||zy — {5 (0) || < Mye (8)

The following theorems are correct.

Theorem 1. Suppose that conditions V.1, V.2, V5 (r=1),¥.6 (r =1), and
t € I1,. are satisfied. Then: 1. There exists a domain I1;; < II; and a solution to
problem (1), (5) defined in I1;.
2. The domain 1, is the domain of attraction of the solution &, (t).

Theorem 2. Suppose that conditions V.1-¥.3, and Y4 (r=2), V.6
(r =2), and t € [I; are satisfied. Then: 1. There exists a domain I1,; € II, and a

solution to problem (1), (6) defined in II,;.
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2. The domain I1,, is the domain of attraction of the solution &;(t).

Theorem 3. Suppose that conditions ¥.1-Y.3, and V.4 (r = 2) are satisfied.
Then: 1. There exists a domain I13; < I1; and a solution to problem (1), (7) defined
inIl;,.

2. The domain 15, is the domain of attraction of the solution &,(t).

Theorem 4. Suppose that conditions V.1-Y.3, and V.4 (r =3), V.5 (r =3)
are satisfied. Then: 1. There exists a domain [1,; € [1, and a solution to problem
(1), (8) defined in I1,,.

2. The domain I1,, is the domain of attraction of the solution &g(t).

The proof of the formulated theorems is carried out using the method of successive
approximations.

Let us prove Theorem 1. The domains 1, and II, have a common boundary (p;;).
Further, when considering the domain [1;, we assume that (p,) is not included in
1, and II,.

The problem (1), (1) is replaced by the following

z(t,e) = E(t,0,8)z, + ifot E(t,t,¢) [ZZ(T, g) + ef(r, z(z, e))]dr, (9)

where
E(t,7,e) = diag (expi (Al(t) — Al(T)), exp i (A2 (t)—A4, (‘L’)),
expi (A5(t) — A3(r))) moreover 4;(0) = 0.

We will choose integration paths. The path, for all components of the vector z,
consists of the part (p,,)[0,Z] connecting the points and a straight line segment of
the connecting point (t,t, t = t; + it,,t € I1;). In (9), we carry out the following
transformations, taking into account the chosen integration paths:

z(t,e) = E(t,t,8)[E(E,0,8)z° + ifOfE(f,r, e)|z3(z, &) +

ef(r,z(r, e))dr] +

+§fftE(t, 1,8)[z%(1,€) + ef (7, 2(1, €) )| dr. (10)

In (10), the expression contained in [...] gives the value of the function z(t, ) for
t = t. Then (10) can be represented as
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z(t, ) = E(t,t,¢) z(t, &) + ifft E(t, T, ¢) [22(1', €) + ef(r, z(z, s))]dr.(ll)
Thus, to solve the problem posed, we first need to study the function z(Z, €), then

the function z(t, ) i.e. we first consider the case t — t € (p;1) then t € I1,.

Consider the function z(£, £). We have
z(t,e) = E(£,0,¢) z, + ifOEE(E, 1,8)[z%(1,€) + ef (7, 2(1,€))|dr. (12)
We apply the method of successive approximations to (12). We define successive

approximations as follows (for the convenience of records, we omit the arguments
of an unknown function):
z™ =E(t,0,e)z, + ifofE(f, 7,)[(z™ D% + ¢f (r,z™ 1) ]dr,
Z29(t,e) =0, m=12,.... (13)
Given the chosen integration paths (13), we represent in the form
" £
2™ = E(,0,8)z70 + - f E( 7, al(@" ) +ef(r,zm D]
0
+ i¢’1(T1))dT1
2%(t,e) =0, m=12,.., (14)
Where E - El + iqol(fl)l T=1T + ing(’L'l).
From (14), flat m=1, we obtain the first approximations
Z1 = E(E: 01 E)ZO + fofE(EJ T, E)f(f, 0) (1 + iqorl(rl))drl' (15)
In (14) each component of the vector function z1 = colon(z,, 251, 237) is

estimated separately. Take z,;.

21y = zyexp™ 2+ [ exp L (4, (D) — 4, (D)1, 0) (A + i’ (z))dT,  (16)

&

In (16) we introduce the notation f,(7) = f;(z,0)(1 + ip’, (71)) and we apply

integration by parts to the integral on the right-hand side. We get

A (D) €[f11(51) _ f11(0)
aq () a4(0)

_ fotl 1;111_((:)) exp i (4:(®) — 4,(D)dry].

From here, passing to the module and considering the limitations

1 ~
Z11 = Z106Xp exp;Al(t) -
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f11(E1)
aq (1)

Al(iz) = lijl(f), |Zlo| S MOE we Obtaln |Z11| S Mlg'

(f—ll(f))’| (according  to  conditions V.1, V.2) and

’ a, (1)

Now take z,,; and zz,. Since the assessment procedures z,; and zz; do not

significantly differ, their assessment will be carried out jointly.

ReAq(T)

£
s=2,3.
According to the conditions V.5 (r =1),¥.6 (r = 1) we have
ReA,(f) = ReAy (f, + i, () = A, (£) <0 and A’y (£) <0 ie. Ay(E)

decreases with 0 <t <@, <a, which implies a limited expression

|z51| < |zg0lexp + M, |f0t1 exp i (ReA,(t) — ReA,(1))d1,|, (17)

expi (ReA,(3) — ReA,(1)).

Integrating the integral on the right-hand side of (17) by parts and taking into
account what has been said, we obtain |z;;| < M;e. As a result, we obtain
Izt < M,e.

Further

7 i
12 < ||z*]] +E fllE(t,T,E)ll + [lIz1* + €llf(z,2") — f(z,0)|[] X
0

X |1+ ig" (11)]d7y|.
Hence, given the condition V.2, |[E({, 7, &)|| < 1,
|1+ i¢';(z,)] < My, and an estimate for ||z1|| we obtain
1221l < Mye + (e(M{ + M, M)M, 1)t < e(My + (MP + MMM, ay),
where 0 < a, < «a
Let a satisfy the inequality ay, < (M, — M,)/M, ,
where M, = (M? + M;M)M,, and believe that M, > M,.
Then we have ||z2|| < M,¢ .

For the third approximation, we obtain

£y
1 -
1221 < 11zl +— fIIE(t,T,E)II + [Iz2)1? + ellf (z,2%) — f(z, 2Dl %
0
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X [1+ip" (1))|dry| < Mye + e(MZ + M - My)My, a0 =
=e(M;+ (M2 + M- M,)M,,a,.
Let ag < M, —M,/(MZ? + M- M,)M,,, (18)

Then ||z3|| € M,e . Continuing the process, we get

|z < Mye, m=1,2,... . (19)
(19) is valid under constraint (18). Now we prove the convergence of successive
approximations {z™(t, €)}. To do this, it suffices to prove the uniform convergence
of the series Yoo _,(z™ — z™™ 1),
Because [|Xm-1(z™ —z™ DIl < Xnllz™ — 2",
then we will evaluate ||z™ — z™~1|| using the series comparison feature.
Given the chosen integration paths and the estimation of successive

approximations, we have.

M2+M-M, (Mqq-(2My+M)E)™ 1
2M,+M (m—1)!

|z —zm 1| <e m=23,... (20)

The uniform convergence of the series follows from (20)
X0, (z™ — z™ )| for values t < a.
Therefore, the sequence {z™(t, &)} uniformly converges to some function z(t, €),
which is a solution to system (12) in the part (p,,) € (p;,) satisfying the condition
t; < ay, Where a, has restriction (18). If we take into account the estimate (19),
then for this solution we have the estimate
Iz, )l < Mae, T € (p1o) (21)
Let t € I1,. For this case, the solution to problem (1), (5) is represented by
formula (11). To (11), as in the previous case, we apply the method of successive

approximations. Sequential approximations are defined as
_ 2. o (F 1t Y -1
z™ =E(t,te) z(f,e) +- [ E(t,7,9)[(2™)? + ef (r,z™ )]dr,
z2°%(t,e) =0, m=12.., =1t +it,. (22)
We estimate successive approximations (22). In evaluating successive

approximations, we take into account that ||E(t,t,¢)|| is bounded according to
condition V.3 and estimate (21).
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For the first approximation, we obtain
tZ

Izt < |E(t, £ e)llllz(E &)l + fIIE(t. g, e|lllf(r,0)lldr; | =
£a

< M,e+M |fft22||E(t,r,£|| drz|.
To estimate the obtained integral, we take the integral

féz expi(l‘?e/lj(f1 +it,) — ReA;(f; + it,))dr,
and to the difference (ReA;(t; + it;) — ReA;(f, + it;)) on the segment [£,, t,]
we apply the finite increment theorem and obtain the following representation
ReA;(t;, + ity) — ReA;(E; + ity) = A';1(£,,0)(—t, — 1),
wheret, < @ <t,,j=1,23.
According to the condition ¥V.1 vVt € I'Il(A’jl(fl,e) < —m, = const,my > O).
Thus

ffzz expi(l‘?e/lj(f1 +it,) — ReA;(; + it,))dr, <

< fftzz exp_TmO (t, — 1,)dt, < £/my.
Given the calculations, we obtain

||le| S M28+ EM/mO - €M20’M20 - M2 +M/m0

We estimate the second approximation
tZ
2 1 1 i2 1 1
lz=]l = Iz II+E NECE, 7, Iz 117 + el f (T, 27) — F(z, O)lldz ]| < llz* ]| +
ta

+e? (Mgﬂ +Myg-M)/my < (M, + ¢ I:MSD + M, - M)/my).
Let e < (M3o — My)mg/ (M3, + Mao - M), e M3o > M,.
Then ||z2]] € eM;,.

For the third approximation, we have the estimate

ty
1
1231 < [Iz*]] +2 fllE(t,T, alllllz?lI* + ellf (z, 2*) — f(z, 0)|ldz.]| <
&2
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< eMyo + e2M2,(+M3y - M) - mio
= e(Myo + & (M3 + M3 - M)/my).

Let e < (M3o — My)my/ (M3, + M3g + M).
Then ||z2]] € eM;,.
Continuing the process we get

|z < eM3ze,m = 1,2, .... (23)
Now we prove the convergence of successive approximations (22). To do this, we
estimate the difference (z™ —z™ ), m= 1,2, ....
We have

m m—lll

< ™ (M3 + MM30)/(2M3q + M) - ((2M30 + M) /mg)™ 1.
It follows that under the condition e (2M;, + M)/m, < 1, the sequence (22)

||z — z

vt € I1,, < I1,, according to the constraint (18), converges uniformly to some
function z(t, £), which is solving problem (1), (5). Taking into account (23) for
this solution, we have the estimate

lz(t, )| < eMsq, VE € 14, C I1,. (24)
Denote (p,0)UII;, =1II;; and combining estimates (21 and (24) we obtain.
vt € I, (z(t,&) - 0 nye). The theorem is proved.

It follows from the theorems proved that in the considered domain the
solutions &, (t), é:(t), é¢(t), &, (8) do not have attraction domains.
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BOUNDARY LINES FOR ATTRACTION AREAS

Tampagarov K. B., Murzabaeva A.B., Narymbetov T.K.
Medical and Social Research Institute, Jalal-Abad State University

This article explores the occurrence of boundary lines under various conditions. A new definition
of the boundary line has been introduced.
Key words: singular perturbation, degenerate equation, region of attraction, boundary lines,
level lines.

Byn Makamaga 4eKTHK CBI3BIKTAPIBIH ap TYPAYY LIapTapiaH maiaa 0oiyy ydypiiapbl Kapajijbl.
YeKTHUK ChI3bIK TYLIYHYT'YHYH JKaHbl aHBIKTaMachl KENTHPHIIAH.

VYpyHTTYy ce31ep: CHHIYISPIABIK AYYIYTYY, KyOyJiraH TeHIEME, TapThUIyy OOJIaCTbl, YEKTHK
CBI3BIKTAp, JIEHII3J CHI3BIKTAP.

B nanHOi cTaTtbe HccleNOBaHBl  BO3HUKHOBEHHE IIOTPAHMYHBIX JMHUH TPH  Pa3IMYHbBIX
ycioBusiX. BBeZieHO HOBOE OIpe/ieieHre OrPaHUYHOM JTMHHH.

KiroueBsie ciioBa: CHHTYISIpHOE BO3MYIIICHHE, BRIPOXKACHHOE YpaaBHEHUE, 00J1aCTh MPUTSKEHUS,
NOTpaHUYHbIC IMHUH, TMHUU YPOBHSL.

In [1], for the solutions of singularly perturbed ordinary differential
equations, concepts were introduced: boundary lines, regular and singular domains
and the existence of boundary lines for linear and weakly nonlinear singular
equations was proved in [2].

As our studies show, boundary lines also arise in other cases.

1. Let the equation be considered
tole}



ez'(t,e) = f(t,z(t, E)), (1)
with initial condition
z(t,, &) = 2", (2)
wheret € D € C — set of complex numbers, and D simply connected region
and tg her inner point; 0 < esmall material parameter. Assume the degenerate
equation corresponding (1) at € = 0 has decisions &;(t) (j = 1,2.,.., n) .
Definition 1.1. Existz(t, €)- the solution of the problem (1) — (2) defined
inD, € D,
2. VteD;(z(t, &) — &(t) by &).
By under these conditions, the domain D; is called the attraction domain of the
solution &; ().
Definition 2. If:1. There is a solution to the problem (1)— (2)and
areas D,, D;having a common border (pg ).
2.Vt € (py)(lim,_, z(t, s) — doesn't exist but| z(t,£) | —limited).
3.Vt € D,(z(t, &) = & (1)),Vt € D,(z(t, &) = & (D).
Then (p,) call the boundary line of the regions of attraction Dyand D,.
Consider the following examples
3. Let the equation be considered
ez'(t, €) = (z —a,)(z — ay), 3
with initial condition
z(ty,e) = 2°, 4)
wherea,,a, €EC;t € (.
The degenerate equation corresponding to (3) has solutions
§1=a4, & =a,. (5)
We pose the problem of studying the existence of attraction regions for solutions
(5) according to the accepted definition.

To solve the problem posed, the solution of problem (3) - (4) can be represented as

Z—ﬂ-l Zn—ﬂ-l ﬂ-l_ﬂ-z

= exp (t—to) (6)

— o_
Z—ag z%—a, z
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according to the theorem of the existence and uniqueness of the solution
z% # a,andz? # a..
Let be a; = ay;y+iay,, A =a +ia,; , t=ty+it, , to="=te +itpy ,

where a4,a45,054, 055,151, @go—real numbers, t4,t, — valid variables.

In view of the notation introduced, we have

(a, —a,)(t—tgy)
= [(ay; —az) +ila;, —az;]- [t — toy +i(t; — )] =

= [(a;; —ay )t — ty1) — (t; —to) (@, — azx)] +i[(ag; — az ) (E; —
tor) ++(ag; — azy)(E; — tg2)]

We introduce the notation
Ay (ty, 1) = [(ay; — ap )t — toy) — (ay; — @z )t — to)]
Ay (ty,t2) = [(a1; — az2) (8 — to1) — (@1 — az1)(t; — toy)]
and consider the line

(By) ={tecC| A.(t,,t,) =0}

Line (F,) is a straight line passing through a point t,. (F,) plane C divided
into two half-planes.The opening of the half-plane is denoted by Cyand C;. In
each of these half planes 4, (t,,t,) < 0or 4, (t;,t,) > 0. For definiteness, we take

Yt € Cy(A,(t,,t,) < 0).
ThenVt € C,(4,(t;,t,) = 0).
Let be t € (F,). From (6) we have

_ 0_q, L
Z—ily . F4 1258 e E{tl .tz:] (7)
Z—ag z%—a.

Z—a

= has no limit, but

Gg

It follows from (7) as € — 0 that the function

| 2% | = | =% | jie, that is limited.

— o_
Z—ag z0—a,

Let bet € Cy . For this case for values t, when 4,4 (t;,t,) << 0 from (6) we

get=* — 0. From herez = a,.

E—anq
According to the adopted definition 1 exists Cp; © Cyand Cy, is the domain of

attraction of the solution &; = a,.
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The boundary of area Cy; can be a straight line
(o) ={t € G |A1(t1-t2) = elne} .

Let be t € C;. Were write function (6) in the form

z—a, Zu—ﬂ.z —Ay [ty t2)—iA(E,E2)

o e (®)

z—a, z%—a,

Because theVt € C,(A4,(t,,t5) > 0), then for the half-plane Cy; © C (with
border Cy4is a straight line (pg.) = {t € C; | A,(t,,t,) = —elne}) from (6) we

have

Z— ﬂ-z

—0orz —as,.
Z—ay

The half-plane C,; is the domain of attraction of the solution &, = a5 .
The line (py) is surrounded by lines (pg.), (pa.) is the boundary line according to
the adopted definition 2.
In this example, a boundary line and regular regions exist, but no singular regions
exist. Thus, the concept of boundary lines can be expanded.
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A new general notion of equation was introduced by us with assistance of the notion “predicate”
on the base of the principle of preservation of solution while transformations and elements of the cate-
gory of equations were constructed on the base of well-known categories. Further, we introduced the
notion of the category of correct equations including the known “correctness by Hadamard” and
presented examples of transformations.The aim of this paper is to connectthis notion with other
categories.

Keywords: category, morphism, equation, predicate, solution, correctness.

Mypaa e3repTyy/iepne YbITapbUIBIIITEI CaKTOO MPUHIMOWHWH HETH3WHAE ‘‘TIpeiauKar”’
TYLIYHYTYHYH KapamMbl MEHEH TeHJEMECHHUH >KaHbl JKaNIbl TYIIYHYTYH KUpru3reHou3. bus omonmoii ane
Oenrunyy OonroH “Amamap OOroHYa KOPPEKTTYYIYKTY  KOLIYy MEHEH KOPPEKTYY TeHIeMeIepAnH
KaTEerOpUsUIapbIHBIH TYILIYHYT'YH KHUPIU3IMK JKaHa KOPPEKTYYIYKTY CAaKTOO MEHEH O3ropTYYIepayH
MUCAJIAAPbIH KEJITUPAUK. Eyn MaKaJIaHbIH MaKCaTbl — 6}0’[ TYWYHYKTY Oarka KaTeropusjiap MCHCH
OaliJIaHBIITHIPYY.

YpyHTTYY ce3aep: KaTeropus, Mop(pusM, TeHAeMe, TPEAUKAT, YBITapbUIBIII, KOPPEKTTYYIYK.

Panee mamu ObLTO BBEIEHO HOBOE OO0IIEE MOHSATHE YPABHEHHUS C TIOMOILBIO MMOHATHS “‘TIpenuKaT”
Ha OCHOBE IPUHIIMIIA COXPAHEHUS PEIECHHS IPU MPeoOpa30BaHMUIX U IOCTPOEHBI JIEMEHTHI KaTerOpUU
YpaBHEHHH Ha OCHOBE HW3BECTHBIX KaTeropuid. MBI Takke BBENH IMOHATHE KATErOPUH KOPPEKTHBIX
yYpaBHEHUH C BKJIIOYEHHEM H3BECTHOM «KOPPEKTHOCTH 1O Ajamapy» M TpPHUBEIH MpUMEPHI
npeoOpa3oBaHuil ¢ COXpaHEHHEM KOppeKTHocTH. Llenb HacTosimei cTaTbu - CBsI3aTh 3TO TOHSITHE C
JPYTUMH KaTeTOPHUSIMH.

Knrouessie croBa: kateropus, MOppu3M, ypaBHEHHE, IPEIUKAT, PEIICHUE, KOPPPEKTHOCTb.

1. Introduction

The approach of categories as notions being more general than sets and
families of sets is used in various branches of mathematics. It was introduced in
[1]. In Kyrgyzstan the first works on the category theory were [2] and [3]. We
introduced the principle of preservation of solution while transformations (supra it
was meant implicitly). We proposed to introduce the category Equa of equations
and its subcategories including the category of correct equations ([5], [6], [7], [8]).
(A category for one of types of equations was built in [4]). The aim of this paper is
to connect this notion with other categories.
2. Review of known results and definitions in the theory of categories

In addition to mathematical objects modern mathematics investigates more
and more the admissible maps defined between them. One familiar example is
given by sets. Besides the sets, which form the mathematical objects in set theory,
the set maps are very important. Much information about a set is available if only
the maps into this set from all other sets are known.

Definition 1. A category K is defined
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1) By its objects A4,B,C, ...of Ob(K);
2) By its morphisms f,g,A, ...of Mor(K);
3) By the operations domand cod which yield objects dom(f) and cod(f)
(beginning and end of a morphism f).
((f)= and(f) =B) =(f : A — B).
4) By operation of composition of morphism and such that dom(f) = dom(g)
which yields a morphism gof:A—C.
5) By operation | which yields the identity morphism I: —A4 by an object A. The
assemblage of all morphism — in the category K is denoted as K(A4, B).
The following conditions are necessary:
1. Associativeness of composition
(7. g h, f:A — B: g:B— C: h:C — D)(hog) of = ho (gof).

2. ldentities oly = f, lgof = f.

The main categories are the following:

The category of sets Set. Ob(Set) are non-empty sets, Mor(Set) are
functions.

The category of functions Func. Ob(Func)=Mor(Set), Mor(Func) are
transformations of functions.

These categories are used in building of the category Equa.

The category of topological spaces Top. Ob(Top) are topological spaces,
Mor(Top) are continuous functions.

This category is used in building of the category Equa-Par-Top.

3. Building the category of equations
Supra equations were subdivided informally into algebraic ones, differential

ones, integral ones, with initial or boundary conditions etc. We used the fact that
equations and systems of equations of various types are equivalent. Moreover, the
well known technique of reducing order of differential equations, various
techniques of substitution and transforming of argument, the method of

transforming of solutions developed in Kyrgyzstan, the method of additional
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argument and the method of reducing differential equations to systems of operator-
differential equations created in Kyrgyzstan demonstrated that equations with
various solutions and even in various spaces can be equivalent.

Hence, ween larged the notion of equation including «systems of equationsy,
«with initial or boundary conditions» to formulate main notions, objects and
morphisms of the category Equa of equations and its subcategories.

Definition 2. Ob(Equa)contains tuples
{Non-empty sets X, Y, predicate P(x) on X, transformation B:X—>Y}.

If (FxeX)(P(X)A (y=B(x)) then ye&Y is said to be a solution of the equation
{X,Y, P, B}.

Particularly, if B is the identity operator I, then we obtain the equation
“P(x) only.

Mor(Equa) are such transformation so ftuples{X, Y, P, B} that solutions (or
their absence) preserve.

Example 1 of morphism (transformationof the set X). Considered the
equation in Equa

"P(x)" xeX,
{y =x (X=Y,B=l). 1)

Let ¥.Z—X be a bisection. Then the equation
"P(H(2))", zeZ,
by = ) () @

is equivalent to (1). (Usually the second assertion is written in another place of a
paper or is meant. We propose to write it evidently).

Remark. If ¥ is a surjection then (2) is equivalent to (1) too. If ¥ is an
arbitrary function then (1) is a consequence of (2).

Some subcategories for the category Equa.

The category of equations forfunctions Equa-Func.

Definition 3 . Ob(Equa-Func)contains tuples

{XeOb(Func), Y eOb(Fuc), predicate P (x)on X, t ransformation B:X—>Y}.
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Mor(Equa-Func) containstinvertible transformations of functions inherited
from Mor(Equa)and specifictransformations.
Example 2:Transformation of argument.

Considered the equation inEqua-Func

{ P ()", x(£): U—V, .
y(t) = x(t) (X=Y, B=l). )

Let t=y(s) be a bijection U—U. Denote z(s)=x(y(s)):U—V and build an

equivalent equation

()",
Lo = 010 )

Illustrative example 3 of transformation of argument.Considered the

"x(t) + f:x(v)dv =t,0<t < oo",
y(t) = x(t).

Lett=y(s)=s>x(s2) + f:x(v)dv = 52,0<5% < . Denote z(s)=x(s?)and

equation{ (5)

substitutev=w?: z(s) + foz z(w) 2wdw = s2,0<s < 0. Z(S):sz—8/5; y(t)=t—8/5.

For equations with parameters

Definition 4. Ob(Equa-Par)are tuples
{non-emptysetsX, F, Y, predicate P(x,f) on XxF, transformation B:X—>Y}.

If (K eX)(P(x,)A(y=B(x))then then yeY is said to be a solution of the
equation {X, F, Y, P, B}.

Mor(Equa-Par) are such transformations of tuples {X, Y, P, B} (except F)
that solutions (or their absence) preserve.

4. Category of correct equations

By our approach «correctness» can by a parameter only, hence the category
of correct equations Equa-Par-Top is a subcategory of the categoryEqua-Par.

Definition 5.0b(Equa-Par-Top) are tuples
{topological spaces X, F, Y, predicate P(x,f) on XxF, continuous transformation
B:X—Y} such that 1) ( vf eF)(Ay €Y)(Fx eX) (P(x,H)A(y=B(X));

2) the element y depends on the element f continuously.
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Mor(Equa-Par-Top) are transformations preserving properties 1) and 2).

Example 4. If the predicate is written as P(x,f)=«A(x)=f», where 4 is an
operator an dB =1 then we obtain «correctness by Hadamard».

The category Equa-Func-Par-Top of correct equations for functions also
can be defined:

Example 5. If x(t) is a smooth function, the predicate is written as P(x,f) =~
x’'(t)=a(t)x(t); x(0)=feR”, a(t) is a given continuous function, B =I then we obtain
«continuous dependence of the solution of initial value problem for ordinary

differential equation on initial datay.

The transformation Py(x,f) =" x(t)—fota(s)x(s)ds=f “reduces to Example 5

for functions. The transformation Pyzjf) =" z(t)=a(t) (f + fotz(s)ds)

Ba(z(t))=x’(t) changes an initial value problem for differential equation to integral

one with parameter.

Conclusion
We have proven correctness of some integral equations of the first kind [9].
We hope that the proposed presentations of equations and correct equations would
make investigation of related tasks more uniform and strict.
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SMAIL PARAMETER ASYMPTOTIC EXPANSIONS OF THE
SOLUTIONS OF A DEGENERATE PROBLEM

Jyldyzbek Turkmanov
Bishkek state university named after K.Karasaev

In this section we consider a quasi — liner parabolic equation under the assumption that a solution

of the corresponding degenerate problem has for t = 0 one or several lines of discontinuity of
derivatives.In case of one line of discontinuity of derivatives generated by a «breaking» of the continuous
initial function, we construct a complete asymptotic expansiuon of the solution of the nondegenerate
problem.

64


http://elibrary.ru/item.asp?id=25577679
http://elibrary.ru/item.asp?id=25577679
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Byn Genymae Ou3 KBa3u—ChI3BIKTYy Hapabonanbik TeHaemeHu t > 0 OonroHmory TyyHIyHYH
Y3TYATYKTYYJIYTYHYH OHp ke Oup KaH4a ChI3BIKTap ydypyHIarsl KyOyJaraH Macenere THemenyy OOJIroH
YBITaPBUTBIIIBIH KapaObI3.  Y3TYJNTYKCY3 alradksl QYHKIMSHBIH «Y3TYITYKTYYIYTY» 0ap, TYyHIyHYH
Y3TYJATYKTYYJIYTYHYH OUp CBI3BIKTBIH Y4YypyHAa KO3TOJTOH MAacCENCHHH YbITapbUIBIIIBIHBIH TOIYK
ACHMITOTHKAJIBIK KBIPOOCY TYpry3yJar.

VYpyurryy ce3nmep: KBasu—ChI3bIKTyy, mapa0oiaibk TeHAeMe, KyOyiraH TeHAeMe, 4YednM,
ACHMITTOTHUKAIIBIK aKbIPOO, QYHKIMS, Y3TYITYKCY3 TY3OTYJIOp KaHa CTaHAAPTTHIK AJITOPUTMED, TYYHIY,
YEKHT.

B otoM pasmene MBI paccMOTpHM  KBasWJIMHEHHOe mapaboiudecKkoe ypaBHEHHE B
NPEATOJIOKEHHN, YTO PEIIEHHE COOTBETCTBYIOLICH BBIPOKIACHHOW 3aqaun uMmeeT npu t > 0 oaHy WM
HECKOJIBKO JIMHWH pa3pblBa TPOW3BOJAHBIX. B ciydae oOJHOM JWMHHMM pa3pbiBa POHU3BOIHEIX,
HOPO’KACHHOW «pa3pbIBOM» HEMPEPHIBHON HAYaIbHON (YHKIWH, CTPOUTCS MOJHOE ACHMITOTHYECKOE
pasioKeHHe PEHICHUS] HEBBIPOXKICHHOM 3a1auH.

KimoueBsie cmoBa: KBasu—numHeiHOe, mapaboiluveckoe YypaBHEHHE, BBIPOXKIEHHAs 3a/ada,

pelICHne, ACUMITOTUYECKOE pa3lIoKeHHE, (YHKIMs, HENpephlBHbIE IONPAaBKA W CTAHAAPTHBIC
AITOPUTMBI, XOTTCOBCKHE, 3CTUMEHTOBBIE.

Inthe strip Il = {(t,x)|0 <t = T,—o < x < oo}, let us consider the

Cauchy problem
_ 5 Fu & A
LEH:;SJE_I;D’(H)E—EZD, u.|t:0=f(x). (1)
The function f(x) will be assumed to be continuous and bounded for
X € (—oo;+00), possessing for the x # 0 bounded continuous derivatives of any

order and having finite limiting values as x — —0, and x — +0.

An asymptotic expansion of the solution of problem A, will be sought in the form
U (6 X)~Eie €1, (6, 1) + B, e (1, %) @)
Here the functions u.; (t,x), k=1 are defined just in the preceding section as well
as of their derivatives with respect to the variable x have as £ — 0 the order O(t).
As usual, it will be assumed that the functions vy, (t, £) as a function of the
variable ¢ are boundary layer character as 1§ |— o2, Taking into account the

expression written out in the previous section for the derivative of the function

Uy (L, x), we can write a recutsion system of equations

_8%*v, Bv, B [1_- at:
lel_a____i[_vl+1+airt?l =0 (3)
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+ az: )1?;:] = a%‘bk 9, (4)

1+a%t
k = 2. Here a* = lim,_ ., f'(x) and the functions ¢ (t, £) can be easily defined
successively for k=2,3,... by using the standard algorithms; the functions
&, (t, &) are represented by a sum whose each summand is a product of a
polynomial F;(t, &) of degree s with functions of the variable t as coefficients by
one or several functions v;(t,&),s < k,i =1,2,...,k—1.]1], [2].

The equations (3), (4) are solved separately for &< 0 and &> 0. We will

seek for such solutions of the equation (3), (4) which satisfy the conditions

[V2001 (6,8)] = 0, [(V2e41 (£, )] = —[uai (£, %)), ()
[v2; (£, §)] = —[uwp; (8, x)], [1?21'(t- ‘sr]]if] =0, (6)
v (0,$) =0 (7)

[z(t,y)] = z(t,+0) — z(t,—0),i = 1,2,...
The fulfillment of the conditions (5), (6) implies the continuity (along with the first

order derivatives) of the formal asymptotic expansion (2) of the solution of the

problem (1).
Considerthe problem (3), (5), (7) for i = 0. The change of the unknown function
w,(t,&) = v, (t,&) + ::rf,t leads us to the equation

'-"*'1115 R m;g —wy; =0 (8)

Whose solution must satisfy the additional conditions  w, (0,&) = a*¢,
w; (t,+0) = w, (t,—0), [wi: (£,8)] = 0.
Thus the solution of the equation (8) must be continuous in the domaint>0

and possess in that domain the continuous derivative with respect to the variable ¢.
Note that the equation (8)
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w, (£,%)
:{ (a* —a )Wt exp (_{_2)
JA+at)(1l+a't) 4t
a‘m a
l4at [ 4(1—!—(1 t

vl+a

l+a 4(1+a t

TraTem|— 2%
*{ 1+a texp[ t1+a0

e~ dw
E(tfl

f “"zdm}
at(t.§)

f e~ daw
&(t.8)

+§

a+é-2 oo . -1
+V1l+at > e “dwy 9
@ EXP[ 4(l—|—a+t f_5+.»z,¢;.€ m} ®
Where §*(t,¢&) = 6(t, &) = . The expression (9) implies

24 1+att’
that the equality v, (¢,0) = 0 (+/t) is fulfilled.
To investigate the behavior of the function w, (t,&) as |&| = oo, we will
use the well-known asymptotic formulas for the integrals appearing (9)
Applying these formulas, for 1& 1 > 1 we can get
+§

+att

wy (t,8) =

21?2 (a* —a™) E? (1
Pl Tar(1+ at0)]
72 /(1+at)(1+a*t)
+o(1)),

Where the symbol «x" takes the values «-» for & << —1 and «+» for
& > 1. On the basis of the above- obtained asymptotic representations can
formulate the following.
Lemma 1. A solution of the problem (3), (5), (7) exist and exponentially tends to

zero as | ¢ |— <o; moreover, for that solution there holds the estimate

v, (t,F) < Mﬁ{exp [— L] + exp ["C—Z]}

4t(1+att 4t
For our further investigation we have to study the behavior of the derivatives of the

function v, (t,é)as 1& 1= ccandt =0
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respect to the variable ¢ the estimates

Lemma 2. For the derivatives of the solution of the problem (3), (5), (7) with
dv, (£,$) &
—| =M -+
ac Pl gt v ate| " ¢
a*v, (t,c)

5-2
xp [_El}
9E?

2 &7 & &’
= Mt 2 (1 + ?) {exp [—m] + exp [—a]}

We can prove that lemma by means of an explicit expression for the

(=

are valid.

function v, (t, &). From Lemmas 1 and 2 and the equation (3) in follows the
estimate for the function %

Let us pass to the consideration of the functions v, (t, £),k = 2. Suppose that the

estimates

| =M1+ lﬂm {exp [_4t{1+a+t] p[——]}
| = Ve g {ewp [ o]+ ew [
Hold for the right- hand side of the equation (4). Note that by the change of

3513*.;

variables

y=—_ 1=—"" 5, =(1+att)u, (10)

1+aXt ' 1+att

The equations (3), (4) are reduced to those with bounded coefficients which,
generally speaking, are discontinuous for y = 0:

oY), — 0,07, — 0%, = 0.

Oy — (010,)) — 03 = {F (1,0)/[1 - a*1]},,

The existence of bounded solutions of either equation can be substantiated, for
example, by the methods developed in [3]

Let us show that functions vy, (t, ) and their derivatives are of boundary layer
character as |&| — oo

Theoreml. For y <0 and ¢'(b) r < v, for the difference

Zo(r,¥)=u(r,v,&) — uqy (r, y) the inequality
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1zo (r, )| = M {exp [-y?* /(4r)]+exp [-(y — ' (DIT)*/(47) ] } is fulfilled
Proof. Let us consider an auxiliary function ¥ (r,y) = exp [—y?/(41)] for
r=>0,y(r,vy) =0 forr=0. Obviously.

L.y = azl,:; — ¢’ (W %— W _ YUY 114 yé' )] and hence for y<0 the

a v ar 2r
relation Ly(M ¢y £ z,) =M ¢ [—(2r)* + &' (wy/(2r)] < 0 holds, since the
function ¢’(u) for the initial function is nonnegative. Moreover, the function
M y £z, is nonnegative for r = 0, and for large values of y, if the constant M is
sufficiently large. According to the maximum principle, the function
M y =2z, is positive for y = 0,which implies the validity of the assertion of the
lemma fory < 0.

Using the function y(r, v) = exp[—(y — ¢'(b)r)? /(4 )], we can
analogously prove the assertion of the lemma for the case y= &' (b)r.
Theorem2. For the solution of problem A, under the above- mentioned conditions
the asymptotic expansion (2) is valid. Moreover, the estimate

||ult, x, &) — u ) (t.x.s]"cl = [[ult, x, £) — ZN_, ey, (£, %) —
it ef ot x e| L, = MeY
holds
Proof. Consider the difference z, (t,x, £) = u(t, x, &) — u™ (t, x, ). The function
zy(t, x, £) satisfies the zero initial condition for £ = 0 and is twice continuosly
differentiable for t = 0,x + 0.
Everywhere in the strip I1;, with the exception of the points of the axis x = 0, the

function zy (t, x, €) satisfies the equation

2820 _ gy 2m_ D omy_ _
e ' (u) dx . e N o V(6% €) (11)

Where
1
Q! = f @" (U™ (1-8) +ub)ds,
i)

|, (t,x, g < Me2V+2
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According to the maximum principle, everywhere in the strip I1; the estimate

zy(t,x, £) for the function |z, (t,x, ) | < Me*M*? is valid.

|7, (t,x,€) = T, (t,y,8)| < M2 1t 72 |x — .
Using this estimate, we can, as when proving Theorems

[zn (8%, )] | < M2 (VT + £72).

Which provides us with the estimate for the function den(txe)

at

Getting back to the variables t and x, we can rephrase the obtained results in terms
of the following [4].

Theorem 3. Everywhere outside some neighborhood of the origin the estimate

u(t,x) — uy(t/e?,y/e?)| <

Me2YtYexp(myx* /e*t if x<0,
= sMeg?rey if 0=x<d (b
Me2YtYexp{—m,[x— ¢'(b)t]? /%t if d'(b)t=x

Is valid (m is a positive constant), note that the radius of that neighborhood is of
order O(?).

Obviously, Theorem 3 may be considered to be valid for all t>0 if the
constant M is sufficiently large; note once more that one can obtain the
corresponding estimates for finite values of t by using the same techniques we
have used in the first section.

Theorem 3 gives us an idea of the character of variation of the solution of
the problem under consideration as t — <o,

REFERENCES
1.Sushko V.G., On the asymptotics with respect to a small parameter a one
parabolic equation. Dokl. Akad.Nauk SSSR 205(1972), Ne4, 794-797.
2. Oleinik O.A. and Kruzhkov S.N., Quasilinear parabolic equations of second
order with several independent variables. (Russian) Uspekhi Mat/Nauk 16 (1961),
Neo5, 115-155.
70



3.Ladyzhenskaya O.A., Boundary value problems of mathematical physics. Nauka,
Moskow, 1973.

4.0leinik O.A. and Ventzel T.D., The first boundary value problem and the
Cauchy problem for quasilinear equation of parabolic type. (Russian) Mat. Sb.
4(1957), Nel, 105-128.

MSC 34A26, 35A16

FUNCTIONAL RELATIONS FOR ORDINARY AND PARTIAL
DIFFERENTIAL EQUATIONS

Kenenbaev E.
Institute of Mathematics of NAS of KR

There are considered such differential equations of various types in the paper that some functional
relations connect values of a solution in different points. For examples, even, odd and periodical
solutions, Vallée-Poussin’s assertion, Lagrange interpolation polynomial, Hermite interpolation
polynomial, spline-functions for ordinary differential equations, Asgeirsson’s identity and its
generalizations for partial differential equations of hyperbolic type. An application of such relations to
solve some problems is demonstrated.

Keywords: functional relation, ordinary differential equation, partial differential equation,
solution.

Makanaza, 9pIrapbuIbIITaphl YUYH, aJlap/IblH MaaHUJIEPH ap KaiChl YeKUTTepae OupH
O6upu MeHeH OailnaHbiliTa OOJATOHIOM, (PYHKIMOHAIIABIK ©3 apa OailmaHbImbl O6ap ap KaHIail
tUnTeru TudGepeHuanabpK TeHaeMenep kapanaT. Mucan Kataphl Tak, XKyI jkKaHa ME3THIIYY
ypIrapbuibiluTap, Bamne-Ilyccenaun o3 apa Oaiinmasblmbl, Jlarpan HHTEpHoaUpiIee Kerl
MY4ecy, DpPMHUT HUHTEPIIOINPIIOO KO MY4ecy, KaquMKu auddepeHnnanasik TeHaeMenep YIyYH
crulaitH-QyHKIMsIap, AcrefpccoH  TEHJCIITUIW KaHAa aHbIH TUNepOoJalNblk  TUITETH
nudepeHIHaNIBIK TEHAEMENep YUYH KaIMbUIAHBIIbl KenTupuiredn. Kios Oup macenenepau
ypIrapyy YUYH yIIyHJai 3 apa OaillaHbIITap KOPCOTYIITOH.
VYpyHTTYYy co3mep: (GYHKIMOHAIABIK  ©3 apa OalJIaHbINl, YbITapbUIBII, KaJUMKA
TuddepeHImanIblK TeHIeMeNep, Kekeue TYYHIYIyy TuddepeHanabK TeHIeMenep.

B crathe paccmarpusarotcs auddepeHIranbHble YpaBHEHHS Pa3IMYHBIX THUIIOB, JUIsS pEeICHUN
KOTOPBIX HMEIOT MeCTO (DYHKIIMOHAIBbHBIE COOTHOIICHHS, CBS3BIBAIOIINE MEXIY COOON 3HAYeHUs
pEIIEHUs] ypaBHEHUS B Pa3UYHBIX TOYKaxX. B kadecTBe NMpUMEpOB IPHUBEACHBI UETHBIE, HEUETHBIE U
MEPUOANYECKUE pEIIeHUs, cooTHomeHne Bate-Ilyccena, nHTEpONALMOHHBIN MHOrowlieH Jlarpanxka u
WHTEPIIOJISIIUOHHBIT MHOTOWIEH JpMHUTA, CIUTalH-QYHKIMK I OOBIKHOBEHHBIX JU(EpEHITHATBHBIX
ypaBHEHUH, TOXIecTBO AcreiipccoHa u ero o0oOmenust ans auddepeHInanbHbpIX  ypaBHEHUN
runepOoarueckoro Tumna. [lokazano npruMeHeHHe TaKUX COOTHOLICHUH [T PELICHHUs] HEKOTOPBIX 3a/1a4.

KirroueBsie CJIOBa: (hyHKIIMOHATBHOE COOTHOILICHHUE, pelieHue, OOBIKHOBEHHOE
muddepeHnnansHoe ypaBHeHHE, TU(PepeHIINATLHOE YPaBHEHHE B YACTHBIX MPOU3BOTHBIX.

Introduction
To investigate differential equations of various types we propose to use the
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following fact. Solutions of some types of differential equations have functional
relations connecting their values in different points. By given values of solutions in
several points one can find their values in other points.

For examples in the first section, even, odd and periodical solutions, Vallée-
Poussin’s assertion, Lagrange interpolation polynomial, Hermite interpolation
polynomial, spline-functions are considered for ordinary differential equations are
considered.Their approximations are in the second section. Asgeirsson’s identity
and its generalizations for partial differential equations of hyperbolic type are
described in the third section.

In this paper we will use functional denotations of type x[n]instead of x,.

1. Functional relations for ordinary differential equations

Denote the functional relation number F for every equation as the minimal
number of connected points (if it exists):

1.1. The simplest differential equation of the first order with the zero initial
valuey (x)=a, y(0)=0, a=0:F=2:

y(x[1])x[2] -y(x[2])x[1]=0. (1)
1.2. The same equation with arbitrary initial value: y(0)=yy: F=3:
(YLD ~y(XEBD)X[L]x[2]) - (y(x[1]) -y (x[2]) (x[1] x[3])=0. (2)

1.3. The linear differential equation of the k-thordery®(x)=0, or a
polynomial of (k—1)-th order: F=k+1. Let numbers x/1], x/2],..., x[k+1], y[1],
v[2],..., v[k+1] be given. Construct the Lagrange interpolation polynomial of the
(k—1)-th order by the values x/1], x/2],....x[kjuy[1], y[2],...,v[k] then

L(x[k+1])-y[k+1]=0. (3)
Ifx/1], x/2],....x[k]forman arithmetic progression then (3) can be rewritten as
T (DyeDh = 0. (4)

1.4. Introducea generalized functional relation: between values of solution
and its derivatives. The first example is the Hermite interpolation polynomial: for
given numbers x[jl,v[j,k],j = 1..m,k = 0..p[j] — 1, there is the unique
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solution (polynomial) of the equation y™(x)=0 where n= X7, p[j1+1
meeting the conditions
P [n)(x[j]) = ylj,klj = 1..m k = 0..n[j] — 1. )
1.5. The first result on functional relations (inour terms) for a linear ordinary
differential equation was obtained by C. J. de la Vallée Poussin (for instance see
[1]): the multipoint value problem
YO )+p1(X) Y VX)+. .+ pa(X) Y(X) = 0, a< x< b,
p(X)eCla,b], y(x[i]) = c[i], i=1,...,n
has a unique solution when
I Pallisa(0— @)+ Il Pellasy (b= 2)%128 +.... + [| pallasy (b-2)n! < L.
2. Approximate functional relations for ordinary differential equations
Below ¢ is a small positive parameter and the “small” function |{(X)|<e&.
2.1. See 1.1. If “@” is known approximately then we obtain the following
differential inequality: |y(x)—al<g, y(0)=0,0r y(x)=a+<(x), y(0)=0.
Hence y(x) = ax + [ ¢(s)ds, [y (e[1Dx[2]-y(x[2Dx[1]] =

x[1] x=[2]
=‘(ax[1]+f -;(sjds)x[z]—(m[z]—kf ;Ts)ds)x[l]‘i:

< gx[1]]-|x[2] — x[1]] + elx[1]]{x[2] — x[1]] = 2é&x[1]]-x[2] — x[1]].
2.2. See 1.2. We have

| (1D -y 3D (x[1] ~x[2]) - ((x[2]) -y (I3 (X[ 2] - x[3]) | =
|(aGeI31=01D) + [[7,) ¢()ds) (x[2] =1~ axl2][1]) +
+ [ ds)ds ) ({31 <1
x[3] x[2]
| | AOds el x{1D- | Leds 1311

x[1]

=

< 2&x[3] — x[2]]-|x[2] — =[1]].
3. Functional relations for partial differential equations

aZ
Denote: X := (Xx3,%5, ..., X ) ER™, A =270, —.

o izlax?
3.1. Consider the Laplace equation Au(x)=0. Let m=2, points x[1],

x/2],...x[k] and numbers u/1], u/2],...,ulk] be given. Construct the Lagrange
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interpolation  polynomial L(x)as a function of complex variable:
L(x[j])=ulj] j=1,....k, and define the harmonic function U(x)=Re L(x). Then
U(x[j])=Re L(x[j])= Reulj]= u[j], j=1,...,k. Hence the Laplace equation does not

have finite functional relations.

3.2. A solution of the hyperbolic equationaxazx u(x,,x,) =0 meets the
Asgeirsson’s identity (F=4):
u(W].’ V1)+ U(Wz, VZ)_U(W11 VZ)_U(W21 Vl)EO (6)

. . a2 a2
3.3. A solution of the wave equation Eutxl,xzj =§u(x1,x2] meet
1 2

sthesimilar Asgeirsson’s identity (F=4): for four vertices of a rectangle obtained
by means of rotation of the rectangle (6) on 45°.

34. A solution of the multi dimensional hyperbolic equation

m
i u(xq,x,, ..., x,,,) = 0 has the form

dx, Oxg, ..Bxmy
U(X): gl(Xz, ceey Xm)+ e gq(Xl, cees Xq-1s Xg+1, «ees )Cm) + ...+ gm(xl, ...,Xm,l)
and meets the meets the generalized Asgeirsson’s identity (F=2")[15].

35. A solution of the two-dimensional wave equation

8% a2 a2 .
—ulxy,x,,x3) = —ulxy, x;5,x3) + — ulxy,x,,x3) in contrast to 3.3 does not
dxg dx3 dxg

have finite functional relations.

4. Conclusion

Are view of publications [2], [3], [5], [6], [12], [18], [20], [21] and other

ones demonstrates that there does not existaunified classification of multi
dimensional partial differential equations and some existing classifications were
base don formal writings of them. Authors of[23], [24] proposed to classify
equations by properties of their solutions. Examples in this papers ubstitute this
point of view.
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Supra the author constructed and implemented the following algorithms on a computer. Given an
equation with power coefficients by integral summands, the algorithm presents data to detect existence of
solutions and occurrence of arbitrary constants in it; also, given an equation with a coefficient, specific
values of the coefficient are found. In this paper these items are considered for non-linear equations.

Keywords: integral equation, non-linear equation, Volterra equation, algorithm, analytical
function.

ABTOp TOMOHKY aJITOPUTMIECPAN TY3YN JKaHAa KOMIBIOTEpIE JKy3ere amblprad. Jlapaxamtyy
KOOOUTYHIYITYY MHTETPaJABIK KOIIYIyydyJaapsl Oap Tenmeme OepwireH. TeHaemene YYYH alrOpHTM
YBITapBUIBILIIBIHBIH JKAIOOCYH aHBIKTOO JKOJYHa MYMKYHIYTYH >KaHa aHJa KaanaraHaaid TypakTyy caH
0ap SKEHIOWTMH aHBIKTOO YYYH MaibIMaTThl Oeper. OmoHAol s1e KodpHUIUEHT MeHEeH TeHaeMe
CyHyIITaNTraH, Oyn TeHaeMene KodpUIMeHTTHH 63reue MaaHUCHH Tabyy, aHAITN3/100 MacellecH Kapaar.
Byn makanana OyJ ChISIKTYY Macesesiep ChI3BIKTYY dMeC TeHJeMelep YIYH Kapaar.

VYpyHTTYy co3lep: HHTETpajIbIK TEHAEME, ChI3BIKTYY 3Mec TeHaeMe, Bonbreppa THOMHIETH
TeHJIEME, AJITOPUTM, AHATUTHKAJIBIK (QyHKIHU.

Panee aBTOp moOCTpomMia W peajM30BaNa Ha KOMIIBIOTEpE CJEAyIolre anropuTMbl. JlaHo
YpaBHEHUE CO CTETICHHBIMUA COMHOMXHTEISIMU TPU MHTETPAJBbHBIX CIAracMbIX, allTOPUTM MPECTABISICT
JIAaHHBIC JUIS OTPENENICHUS CYIIECTBOBAHMS PEIICHHS W HAUYUS B HEM MPOU3BOJIBHBIX TMOCTOSHHBIX;
TaKkKe JaHO ypaBHEHHUE C KO3(DPHUIIMEHTOM, HaXOIATCs OCOOble 3HaueHUs Kod(duiuenta. B manHou
CTaThe TAaKKE BOMPOCHI PACCMATPUBAIOTCS [T HEIMHEHHBIX YPaBHEHUH.

KiroueBple crmoBa:  HMHTErpallbHOE YpaBHEHHE, JHMHEHHOE YpaBHEHHME, YpaBHEHHE THUIA
BonbTeppa, anroputm, aHanutTHueckas QyHKIHS.

Introduction
Supra the author constructed and implemented the following algorithms on a
computer [1-4]. Given a linear equation with power coefficients by integral
summands, the algorithm presents data to detect existence of solutions and
occurrence of arbitrary constants in it; also, given an equation with a coefficient,
specific values of the coefficient are found.
In this paper these items are considered for non-linear equations.

1. Survey of preceding results

As is customary, if the equation can be rewritten as u™(t) =Y(u(s),0 <s <?)
where the right hand part depends (continuously) on past only and contains lower
derivatives and integrals then it is said to be a Volterra equation of the second kind,;
one of type b(tu™(z) = Y(u(s),0 <s <) (the function p(t) sometimes vanishes but
IS not zero) is said to be a Volterra equation of the third kind.

We will use denotations
R :=(-0;0); Ry :=[0; ©); Riy := (0, ©); Z:={.,-2,-1,0,1,2,3, ..}
No:={0,1,2,3,.};N:={1,23, ..}
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We will use the term ”Algorithm” as it is usually understood in Analysis:
arithmetical operations and comparison over numbers in R (for rational numbers
this definition coincides with the strict one).

We will write discrete arguments in brackets to bring denotations nearer to
algorithmic ones and to bypass the common ambiguity of expressions such as ay;,

We will consider given and unknown real-valued analytical functions in the
form

fO)=fo+ fit+ fut? +..., (1)
u(t) = ug + ugt + uyt? +... (2)
Denote h[j]=0 (j<0); h[j]=1 (j=0). We introduced the function

Alm,n] = mh[n]h[n —m].

Example 1 of applying the algorithm for linear integral equations. Consider
the equation
tu(t) +3 [; u(s)ds — [ [T u(v)dvds = £(¢). (3)
Input of initial data in the program:
Venera Ordinary IDE 2019
Input number of summands 2<=K <=5: 3
Input coef. b[1], t"p[1], int/dif m[1]: 110
Input coef. b[2], t"p[2], int/dif m[2]: 30 -1
Input coef. b[3], t"p[3], int/dif m[3]:-10 -2
Result:
Equation
+tu(t) +3* int_0"t u(s)ds - (int_0"t)" 2 u(s)ds = f(t)
System of equations for coefficients
+A( 0,n-1) u[n-1] +3*A(-1,n-1) u[n-1] -A(-2,n-2) u[n-2] = f[n]
First equations for coefficients
0 =f[0]
+01/0! *u[ 0] +3*0Y/1! *u[ 0] =f[ 1]
+11/1V *u[ 1] +3*11/2! * u[ 1] -0Y/2! * u[ 0] =f[ 2]
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+21/2V *u[ 2] +3*2!/3! *u[ 2] -11/3! * u[ 1] =f[ 3]

... (similar summands)

+81/8! * u[ 8] +3*8!/9! * u[ 8] -71/9! * u[ 7] =1[ 9]
+91/9! * u[ 9] +3*9!/10! * u[ 9] -8!/10! * u[ 8] = f[10]

It is seen that firstly u[0] is defined, further u[1] is done by means of u[0],
u[2] is done by means of u[1] etc. Coefficients by u[n] are greater than 1 wherein
coefficients by u[n—1] are less than 1. Hence,

Theorem 1. If f(0)=0 then the equation (3) has an analytical real-valued
solution u(t). Its radius of convergence is the same as one of the function f(t).

The following examples demonstrate that sometimes linear integral
equations do not have analytical solutions.

Example 2. The following equation tu(t) = 1 does not have an analytical
solution.

Example 3. Consider the following equation

—t2u(t) + [ u(s)ds = t,t € R,. (4)

The formal series u(t) = 1 + 2t + 2*3t° + ... + (n + 1)It" + ... exists but does not
converge.

2. Some auxiliary results

Lemma 1. The sum », of numerical coefficients by t" in expansion of a func-
tion u’(t) equals (n+1).

Proof. If n=2k is even then we have the coefficient

Co(W) = Uf + 2UplUp + voo + 2Up_ 1 Ups 1
the sum », of numerical coefficients is 1+2(k+1)=n+1.

If n=2k+1 is odd then we have the coefficient

Co(u) = 2uplypyq + o+ 2UpUp s
the sum %, of numerical coefficients is 2(k+1)=n+1.

Lemma 2. Formally [ (uo + uys + ups? + -+ )2ds =

= ust + uguy t? + (u? + 2ugu )t /34 - = X0, o (W)™ /n
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3. Algorithm for quadratic integral equations

Consider the following type of equations
P(O)u(t) + A [ju?(s)ds = f(t),t € R, (5)

where P(t) is a polynomial (if P(0)=0 then f,=0).

The algorithm is the following.
3.1. Substitute (1) and (2) in (5).
3.2. Substitute w?(s) by means of ¢, (w).
3.3. Calculate the integral and equalize coefficients by powers of t.
3.4. Consequently, for t°, t*, t% ... obtain equations for 1.
3.5. By condition of non-solvability with respect to 4 define the set of values of A.
3.6. By using Lemma 1, estimate domain of convergence of the series (2) with
respect to one of the series (1).
3.7. Intersection of the set of 3.5 and the domain of 3.6 yield the spectrum for A.

4. Examples of applying the algorithm

Example 4. Consider the equation which can be solved in evident form:
u(t) + Af, u(s)ds = a; w'(£) + A(t) = 0; u(t) = a/(1+ at).
A spectrum is absent; the series converges for |t|<1/|Aa].
Example 5. Consider the equation
tu(t) + A [, u(s)ds = £(¢), £(0) =0. (6)
Ut + U t2 + uptd + - + )Lfot(ug +uySs +uys? + - )2ds =
= fit + fot> + f5t7 +...
Ut + Ut + Uyt + o + )Lfot(u% +ufs? +uis* + -+ 2uguys + -+ )ds =
= fit + fot> + f5t7 +...
wy + Aud = fi; wy + Auguy = fo; uy + 1/3-u + 2/3 Auguy, = fi;
us + 2/4-Auguz + 2/4-Auguy, = [y .
The first equation:
if of; = 174 thenuy, = (—1£/1+42£)/(2A). (7,)
The second equation:
if g,15 =1+ Aug 1,20 then w1, = £,/G515. (7,)
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The third equation:
if g312 =1+ 2/3-Aug 1,20 then uy 1, = (fs — 1/3-4u2) /q3.12- (73)
... The n-th equation: denote q,, 1, :== 1 + 2/n-Aug 15,
if gn1z=0thenwu, ;15 = (f — ACr1 (W) — 2Up12Un_112)/1)/An12- (7,)
Remark. "u,_, ,," is absent in the right side.
Theorem 2. If (74), all g,,,,=0 and [f(t)] is sufficiently small in a neighbor-
hood of zero then (5) has a solution in a neighborhood of zero.
Proof. Let |f,| < pw™ (n > 0).
Choose n, > 4|Au,| then q,, > 1/2(n>n,) and denote
vo = min{1/2, min{lq,|:2 < n <ny}}
then |q,|>vy;
[tn—1|<(fal + 1A Crm1 (W) = 2ugun—1|/n) /vy (n22). (8)
Choose u, = (-1 +./1 + 42£,)/(22). We have |u,| < |f,| < pw. Further,
lwil = 1f2/ 2] < pw? /v,
Denote v, == max{1;1/v,}. Then |u,| < pv,w; |uy| < pv,w?. Letus prove by
induction that |u,| < 2pv,w™* .
Estimate by Lemma 1:
|Croa (W) — 2ugup_q|<y,_ nmax{luygun,_ |1 1<k <n-2}<
< y,_, max{dp*viw w1 L Sk <n - 2} = 4ptuiw™
[un—1|< (W™ + 4|14 P*viw™ ) fvo <pryw™ (1 + 4| A pwovi) (n22).
If pis small: 4]4] pwv? < 1then |u,_,| < 2pv,w™.
The series (2) converges for |t|<1/w.
Theorem is proven.

5. Conclusion

Theorem 2 demonstrates that there exist non-linear VVolterra integral equations of
the third type which have infinite spectrum.
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As a specification of the second law of thermodynamic for isolated systems, supra the authors
introduced new definitions, proposed general hypotheses and derived estimations from below on
increasing of entropy while motion of a material point both without friction and with friction
over definite distance on depending on time in permanently unstable (affect table) systems. Such
estimations are generalized in this paper.
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UerTeTmiIreH cucTeMazia TepMOJIUMHAMUKAHBIH SKWHYH 3aKOHYH TAaKTBIKTOO KaTapbl, Oyra 4ednH
aBTOPJIOP >KAaHBl aHBIKTaMajap/lbl KUPTU3UIIKEH, XaIMbUIaraH TUIOTe3alapAbl CYHYIITAlI-KaH >KaHa
TaaCHp OJOTWIYYYY CHCTEMaJa MaTEpHAIAbIK YEKUTTH CYPYJIYYCY3 »KaHa CYPYIAYYHYH HETU3UHIE
KaHJANabIp OMp apajblKKa JKBULABIPYyla yOaKBITTaH Ke3 KapaH/Ibl OOJITOH SHTPONHUS-HBIH 6CYYCYHYH
TOMOHKY 0aachlH aNbIIIKaH. byn Makanasa »koropy/ia KepceTyJreH 0aaaooiop *KalblIaTbUITaH.

YpyHTTYY ce3mep: dHTpomus, Oamkapyy, muGdepeHIUaIIsK TEHIAEME, Taacup STHIYYIY
cucTrema, CYpyiayy, KbIMMbLII00.

Kak yTrodHeHue BTOpOTo 3aKOHa TEPMOJUHAMUKH JJIS U30JIMPOBAHHBIX CHUCTEM, paHEe aB-TOPHI
BBCJIM HOBBIC onpeﬂeneHI/m, Hpell.]'IO)KI/IIH/I O6HII/IC TUIIOTE3bI U HOJ'[yT-II/IJ'[I/I OLCHKHN CHI/I3y JJIA BO3paCTaHI/I$[
SHTPONHMU TPU TEPEABMKCHUH MaTepPUAILHOW TOYKH O€3 TPeHHs W C TPEHUEM Ha OIpeielicHHOE
paccTosiHuE B 3aBUCUMOCTH OT BPEMEHU B IEPMAHCHTHO HEYCTONYMBEIX CUCTeMax. B JaHHOW cTaThe
TaKkHe OLEHKHA 000OIIEHEI.
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HEYCTOWYMBAs CHCTEMA, TPEHHE, IBIKEHHE.

Introduction

The second law of thermodynamicfor isolated systems states increment of
entropy but does not give quantitative estimations.

One estimation was proven in [2]: the minimal energy (increment of
entropy) to treat one bit of information is the Shannon-von Neumann-Landauer
boundary:

Evi = ks T In 2 where kg is the Boltzmann constant and & is an absolute
temperature.

A hint to such estimation in general case was in [3]: “In any mechanical system the
energy that must be expended to work against friction is equal to the product of the
frictional force and the distance through which the system travels. Hence the faster
a swimmer travels between two points, the more energy he or she will expend,
although the distance traveled is the same whether the swimmer is fast or slow.”

Basing on the notion of economical (cruising) speed, taking into account
ide-as of Ecological Rallies and Shell Eco-marathon for cars we specified the
second law of thermodynamic for “almost isolated”, “permanently unstable”,
“affect table” sys-tems. We proved some estimations in mathematical models
describing such concrete systems. In this paper we generalize some these results.

1. Definition and formula for entropy

By one of definitions, entropy is the measure of a system’s thermal energy
per unit temperature that is unavailable for doing useful work. Because work is
obtained from ordered molecular motion, the amount of entropy is also a measure
of the molecular disorder, or randomness, of a system.

In processes considered below increment of entropy is de fined by the
formula AH = ), AQ/E where AQ is a quantity of transferred heat energy or
energy that was converted to heat irreversibly and & is an absolute temperature
[1].

2. Definition of almost isolated systems
[o26]



Definition 1. If low energetic outer influences can cause sufficiently

various reactions and changings of the inner state of the system then it is said to be
an “almost 1solated”, “permanently unstable”, “affecttable” system.

Such outer influences are said to be commands (these reactions and
changings are implemented by means of inner energy of the object or of outer
energy entering into object besides of commands).

3. Main hypotheses
Let there is an almost isolated physical system. Let it is in any stationary

state A now and there it can pass to any other stationary state B.

Hypothesis 1. There exists such time T, (the adiabatic time of the system),
depending only on the initial state of the system, that the increasing AH of the
entropy of the system is not less than any positive value for any transition from the
state A to the state B during T<T, Moreover, there also exists such positive
constant Co that AH > C, /T ?(the dimension of C, is mass x length xlength /
temperature).

Remark. If we accept the principle of determinism then there is only scenario of
the future for any isolated system, that is, there cannot be different possibilities of
transitions. Hence, the system is to be almost isolated: different possible actions
within the system, transforming it from the state A to the state B are controlled by
any outer impetus (control) of sufficiently small energy.

Give a more concrete hypothesis. Let any point of mass m does not move in
any inertial coordinate system at the moment t; and it is at the distance d from its

initial state and does not move at the moment t, =t; + T.

Hypothesis 2. There exists such time T, (the adiabatic time of the system),
depending only on the initial state of the system, that the increasing of the entropy
fulfills the inequality AH> Gy m d %/T 2 for any transition from the state A to the
state B during T<T, (the dimension of G, is 1/ temperature).

Denote AH for adiabatic time as AH,.
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Substantiation. To move the point has to acquire velocity ~ d/T, i.e.

kinematical energy Ex,~md*/T 2. As the point is motionless in the final state, this
energy has to pass into other kinds of energy. But possibilities of kinematical
energy to pass into potential, chemical etc. ones during bounded time are bounded.
Hence a greater part of kinematical energy has to pass into heat, i.e. the increment
of entropy must be AH ~md*/T %/ 6.

Another substantiation. If any estimation on AH exists then it must be of

dimension of entropy: mass x length xlength /(time xtimextemperature).

Remark. The notions of adiabatic time and corresponding optimal speeds of
the system generalize the well-known notion of cruising speed (which is applicable
to homogeneous motion on sufficiently large distances only).

4. Examples

Example 4.1. Let B be over A at the height h in gravitation field. There is the
load of mass m being based on many compressed short almost ideal springs at the
point A, the massive brake with the absolute temperature & along the segment AB
and the catcher at the point B. It is necessary to deliver the load from the point A to
the point B during the time T.

The adiabatic time T, := W(2h/g) coincide switch the free fall time from B to
A. Correspondingly, AHy=0 in this case. We release some springsto launch the load
with initial velocity vo:=%2gh) necessary to deliver the load to the point B with
zero velocity. Falling back the load will com press same spring sand the system
will return in almost initial state.

If T<T,then the initial velocity v;>Vv,. Braking near the point B we obtain

viT —gT?%/2 =h, (1)
and the velocity before braking approximately is
Vg:=v; —gT. (2)
We have from (1) and (2):
vy =h/T+ gT/2, vg=v; —gT = h/T-gT/2. (3)
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Hence, before braking the kinetic energy of the load is Eyn:=mvg®/2. All it
must turn to heat,

AH ~ AQ/ @ = E/6 = mvg®/2/6 = m (hIT- gT/2)°/2/ G;

AH ~ mh?/T? (1- gT?/(2h))*/2/ @ = mh*T? (1- T?/ To2)*12/ 6.

Hence AH~ mh?/T?/2/@as T— 0;G,=1/(2 G).

Example 4.2. Let A be over B at the height h in gravitation field and B be on
an absolutely elastic plane. There is the load of mass m at the point A, the massive
brake with the absolute temperature @ along the segment AB and the catcher at the
point A. We can apply unbounded force to the load. It is necessary to return the
load to the point A by repelling at the point B during the time T.

We have the following problem of optimal control:

y'(t) = % —g0=t=T),y(0) =Ky (0)=0;, y(D=hLy'(T) =0 (4)

with the additional condition: there exists such moment we(0,T) that
yw)=0,y’(w=0)>0; y'(w+0)= —y’(w=0).

Here the controlling (piecewise continuous) function w(t) has the
dimension of force[u(t)] = [m][L]*[T]~2. The goal is to minimize AH.

We obtain the adiabatic time (with u(t)=0)T, = 2,/2gh.

Obviously, the optimal control is: u(t )is very large at the initial moment and

further u(t)=0. Lety'(+0) = —v, theny(t) = h — vt — %gt2 (y(t) > 0).

Hence h —vw — %ng = 0, bysymmetry w = %T and

1 1
v=_(h-— ngz)/w =2(h— ggTz)/T.
Kinetic energy of the load in the end almost equals kinetic energy of the load

in the beginning and all it transforms to heat. Hence
2 2

1 1 1
A~ (Z(h - §gTZ)/T) /6= 2m ((h - ggTZ)/T) /0T
< 2./2gh.
As T—0 we obtain AH~2mh?/T? /6. This substitutes Hypothesis 2.
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Example 4.3. We consider the example of swimmer [2]. Let the segment [A,
B]=[0, h] be horizontal. Suppose that friction F in the water is proportional to any

power of velocity. Obviously, for optimal motion x’(t)>0.

x"(t) = —p(x’(t))k +%(0 <t<T),p>0k>0,

x(0) =0;x'(0) =0; x(T) = h,x'(T) =0, (5)
AH~](x,u):= pr(x’(t))k x'(t)dt —»min.

0
Pass to dimensionless variables: t=Tz (0<z<l), x=h& x’(t)=h&’(D)IT;
dt=Td~z

= | ptreo/mn s =it | (2(9) " ds

Hence, AH~ph**1/T*/®-» where y is an absolute dimensionless constant.
On one hand, it is well-known that k~2 for high velocities; on other hand, the value
k=2 corresponds to Hypothesis 2.
Conclusion
We hope that these hypotheses would be substituted by investigation of other
processes. We see: the less is the time of transition the more is spending of energy
for braking and the more is the (unavoidable) increment of entropy which is
proportional to pollution of environment. Probably, it explains some processes of
modern civilization.
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WHTepakTHBIUK MPOrpaMMaliblK Jkabayy YUYH JKalIlbl MaTeMaTHKAalbIK MOJENACp Kapaibl.
[IporpamMManbik kaOayyHyH y4dyplarbl jkaHa MYMKYH OOJNTOH TYPJIOpYH®O, aHbIH WYWHJIIE aBTOPIIOP
CyHyLITaraH >XaHa WINTEN YBbIKKaH TYPJIOPYHO cepel JKyprysyireH. Makamaga ap kxaHzmail typaery
MPOrpaMMAIIBIK XKaOyyHYH, aHbIH WYUHJIC OOBEKTTH ‘KO3 KapaHBIChI3 YarbLUIABIPYYHYH MaKCcaTTapbl
’KaHa ©3reuelTyKTepy 0aca OeNTHICHET.

YpyHTTYY ce3liep: alaMJIbIH Oankapyycy, MaTeMaTHKAIIBIK MOJIENTb, KOMITBIOTEPIUK MOJICIb,
KJIacCU(UKALHSIO0, KOJIOHYY, MAIIbITYy, YHPOHYY.

PaccmoTpena oOmass maremaTtHdeckass MOJENb JUISL  MHTEPAKTHBHOTO — MPOTPAMMHOTO
obecnieyenusi. [IpoBeneH 0030p CyIIECTBYIOIIUX M BO3MOXKHBIX BHUIOB MPOrPAaMMHOTO OOECIICUEHHS, B
TOM 4YHCIE NPEAJOKECHHOIO M pa3padOTaHHOrO aBTOpaMu. B craTbe MOTYEPKUBAIOTCA LEIU U
0COOCHHOCTH PAa3NUYHBIX BHJOB MNPOTPAMMHOTO OOECIHeueHHs, B TOM YHCIE “HE3aBUCHMOC
npezacTaBieHue" 0ObeKTa.

KiroueBbie ciioBa: yenoBeyeckoe ynpaBieHHe, MaTeMaThuiecKas MoJelb, KOMIIBIOTEPHAS MOJEb,
KJTaCCH( UKLV, TPHIIOKEHHNE, TPEHUPOBKA, 00ydeHHe.

1. Introduction
Training devices for hunting, horsemanship and war are known since ancient
times. Mechanical flight simulators appeared together with the development of
aviation. Computers gave the opportunity to create simulations with real-time
feedback and elements of virtual reality. These ideas were also implemented in
computer games. Educational computer software and educational games developed
together with the development of personal computers.

The paper contains a general mathematical model of such software, remarks
on its implementation as a computer model, a list of known and possible kinds of
software (some of which has been implemented with authors’ participation).

2. Mathematical model for human control
No-={0,1,2, ...} contains values of discrete time t; R.:=[0,0);

Denote X as the space of states x (including virtual media and objects in it); Xoc X
as the set of targets; Q: X— R, as the target function to be minimized;

V as the set of observable (affectable by human interaction) elements of X; W: X—
V is a given function;

P as the set of random elements p;

U as the set of possible actions u by the user (control).

We will consider discrete models. Continuous models are obtained from
discrete ones by setting time divisions/steps to zero.

We propose the system
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X[0] (x[0]=Z(p[0])) is given (either x[0] & X, or Q(x[0]) >0); (1)
v[t]=V(X[t]); x[t+1]=F(x[t], u[t], p[t]), or x[t+1]=x[t] +G(x[t], u[t], p[t]), t € N
()
where u[t] is the action of the user influenced by information v[t]; Z(p):P— X is a
function of random generation of initial data.
The goal is either to reach x[t+1] € X, in minimal time or to minimize
Q(X[t+1]) in a given time.
Two options of input *x[0] by the user* and *random* give us two modes:
learning mode and exam mode.
In advanced software TaskLang [6] the user can choose functions F (or G)
too.
It may be x={Xy,....xn}, Xs,...,xn are input independently; it is a necessary-
collective task for n users.
The principle of duality [1]: (narrow V and wide U) and (wide V and
narrow U) yield similar efficiency.
This principle extends for different kinds of human activity: Duality of
available information and available goal achievement capacity.
3. Computer model specifics
3.1. Input of information v[t]
- common (by means of eyesight, hearing, vibration - vestibular apparatus);
- by means of special devices (earphones, binocular displays);
- to brain immediately.
3.2. Output of control u[t]:
- common (by means of hands, foots and voice; by top of head in diving suits);
- by reading nerve impulses in hands [2];
- from brain immediately.
General conclusion from [2]: using appropriate equipment for feedback,
each physiological display (breath, pulse etc.) by human or animal with cognitive

ability (ape, dolphin, dog) can be used for control.
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3.3. There is Galileo-Einstein’s principle of relativity: if we observe uniform
movement of an object towards us then we cannot detect whether the object is
moving, or we are.

For virtual motion the condition of uniformity (i.e. no acceleration) is not
necessary. Hence, we receive a principle of relativity in virtual motion: if we
observe movement in a kinematical space [3] then we can interpret it either
movement of space toward us or our movement toward space.

The first interpretation prevails in software for scientific purposes
(Mathematica, MathLab, MathCad) and the second one does in computer games.

4. Some cases of computer-human control

4.1. Simulation cases of real control where real training is too difficult,
expensive or dangerous include: spaceship, aircraft, boat, U-boat, artillery,
launching big rockets, manufacturing processes, medical operations. They consist
of random generation of media and random generation of emergences. Simulation
made for a crew (for instance, pilot, co-pilot and navigator at aircraft) is an
example of necessary-collective activity.

Remark. Some simulators are mixed computer-mechanical solutions that
involve vibration and physical inclinations.

4.2. Computer games. Notes:

- some computer games arose from items listed in 4.1,

- computer games involving simulations of real objects (geographical map,
concrete vehicles) may be considered educational;

- there are some hints in computer games useful to forthcoming proposals.

Remark. We do not consider games “person versus person” and “team
versus team” by means of computers.

4.3. Imitation of physical-chemical experiments - “virtual laboratory”.

4.4. Enhancing virtual reality. We [3] proposed to present abstract spaces in
form close to presentation of the metric space.

Definition. A pair: a set X of points and a set K of routes is said to be a

kinematic space (each route M, in turn, consists of the positive real number Ty
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(time of route) and the function my : [0, Ty] — X (trajectory of route)) if the
following conditions are fulfilled: (K1) For xq # x; €X there exists such M eK that
mm(0) = X and my(Ty) = X, and the set of values of such Ty, is bounded with a
positive number below (infinitely fast motion is impossible); (K2) If M= {Ty ,
mu(t)} € K then the pair {Ty, mu(Tm —t)} is also a route of K (the reverse motion
Is possible); (K3) If M= {Ty, my(t)} € Kand T*e (0, Ty) then the pair: T* and
function m*(t)=my(t) (0 <t <T*) is also a route of K (one can stop at any desired
moment); (K4) concatenation.

We implemented controlled motion in Riemann surfaces, Moebius band,
projective plane and topological torus.

4.5. Experimental mathematics [4]. On one hand, it is using well-known
software (Mathematica, MathLab, MathCad), on the other hand a search for new
mathematical facts (hypothesis) - a separate direction of investigations.

4.6. Training in deciphering the simplest ciphers alongside with evaluating the
knowledge of a language [5].

4.7. Complex examination (for example, [7]) including multimedia tasks,
interactive tasks of optimization and solving equations, tasks with objects with-out.
Primary versions of such software for Kyrgyz language, mathematics and
informatics were implemented and are in use.

4.8. Measuring imagery [8]. Definition. The problem is said to be
intellectual eye measurer (or measuring imagery) - its conditions are strict but the
approximate answer is permissible; using any tool (computer, pen-and-paper,
reference book) is forbidden; in sciences the time given to answer is about 20 - 30
seconds to avoid immediate mental counting. If the answer is a real number then
Q(x) = |x =Xo| or Q(x)=|log(x/xo)| (for xo,>0) where X, is the exact answer.

We have introduced competitions on students’ capacities in this subject
matter.

4.9. Necessarily-collective tasks [9]. For example such task includes:

transformation of sign systems: the first teammate is given a drawing (a set of
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similar drawings); s/he describes it in a prescribed language (during 15-20
minutes) and this text is sent to the second teammate by an intermediary; s/he
restores the drawing (the consequence of drawings) (during 10-15 minutes).

4.10. Software to correct pronunciation.

4.11. Independent interactive presentation of objects. If a computer
presentation does not depend on the user’s knowledge and skills on similar objects
then it is said to be independent.

4.11a. Interactive presentation of some mathematical objects [10].

4.11b. Interactive presentation of basic of language. Earlier, learning a living
language was implemented with the assistance (including bilingual dictionaries and
text-books) of persons who had a complete command of it; investigating of a dead
language was done by means of remained bilingual texts and texts with additional
implicit suggestions and conclusions. Invention of recording sounds gave
possibility to fix examples of an oral language objectively. Invention of talking
pictures fixed examples of phrases with connection to situations and actions.
Computer games gave the user the opportunity to choose actions with
corresponding phrases.

Before our publications, existed software to learn languages were based on
languages native to the user.

We proposed [11-15] Definition. Let any "notion™ (word of a language) be
given. If an algorithm acting at a computer: - performs (generating randomly)
sufficiently large amount of situations covering all essential aspects of the "notion"
to the user; - gives a command involving this "notion" in each situation; - perceives
the user's actions and performs their results clearly on a display; - detects whether a
result fits the command, then such algorithm is said to be a computer interactive
presentation of the "notion".

Simple mathematical models consist of fixed (F;) and movable (M;) sets and
temporal sequence of conditions of types (M; c Fi), (M; hFi =), (M; N F;i z).

Remark. 4.10) can also be involved.
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Sketches of such software were implemented for Kyrgyz, English and
Turkish languages. A proposal for Chinese language was in [16].

5. Conclusion

We hope that developing this method would yield new types of educational
software both interesting and useful for students. For instance, combination of 4.3)
and 4.11a) can give independent presentation of some physical notions; adding of
mathematical tasks with physical content can give a complex examination in
physics.
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MSC 70F99

EXISTENCE AND STABILIZATION OF SOLUTION OF SYSTEM
OF DIFFERENTIAL EQUATIONS DESCRIBING ARRANGEMENT
OF REPELLING POINTS ON A SEGMENT

Tagaeva S.B.
Institute of Mathematics of NAS of KR

Considered the system of ordinary differential equations with discontinuous right hand parts
presenting mutual repelling of points charges in very viscous media. Existence and stabilization of a
smooth solution on a half-axis is proven in come cases.

Keywords: mathematical model, particle, repelling, ordinary differential equation, system of
equations, smooth solution, stabilization.

AOIaH Ka0BIIIKaK 46ipe1e YeKUTTEPIUH TYPTYIIYYHY YarbUIIBIPYydy, OH JKaKTapbl Y3ryJ OOIroH
KaJuMKU z[H(i)q)epeHuMaﬂm)IK TEeHIAEMEJIEp CUCTEMAacChl KapaiarT. Ko 6I/Ip y4ypJa KbIMa YbIT'apbUIBIIITHIH
JKapbIM OKTO 0ap 00Iyycy skaHa TYpYKTYy abalira KenTHPYYCY JaHIIeHT eH.

YpyHTTYy ce3llep: MaTeMaTHKaIBIK MOJEN, OeNyK4e, TYPTYIYY, KaAuMKA Iu(QepeHInanIbK
TEHJECME, TCHIEMEIICP CUCTEMACHI, KbIJIMa YbIFaAPbUIBIII, TYPYKTYY a0ajra KeJITUpPYY.

PaccmatpuBaetcs cucrema auddepeHnanbHbIX YPaBHEHHH ¢ Pa3pbIBHBIMU MIPAaBBIMHU YaCTSIMHU,
nmpeacTaBjidromias B3aMMHOC OTTAJIKMBAaHHUEC TOYCK B OYCHb BSI3KOU cpeae. B HCKOTOPLIX Cliydasax
J0Ka3aHbl CYIIECTBOBAHUE U CTa6I/IJ'II/I3aLII/IH IJIaIKOTO PpEHICHHS Ha I1OJYyOCH.

KiroueBple cioBa: MaTeMaTHUeCKas MOJENb, YacTHIla, OTTaJKHBaHHUE, OOBIKHOBEHHOC
muddepeHIaIbHOe ypaBHEHHE, CUCTEMA YPaBHEHUH, IIaJKOE peleHne, CTa0uIn3anus.

Introduction

Distributions of continuous electrical (similar, repelling) charges on conductors
were considered in many papers. Also, theorems on uniqueness of such
distributions were proven. For instance, continuous charges on surfaces were
considered in [1], ones on lines were done in [2]. We considered distribution of
discrete electrical charges of same sign. We found that such distributions have
other properties, including absence of uniqueness. For example, two charges have
three stable arrangements within a regular triangle.

In [3] we put a general problem to investigate arrangements of discrete
electrical charges of same sign, considered motion of a charge under sum of all
repelling forces from other charges within the interior of a domain and along its
boundary. In [4] we proved existence of solution of task for two moving charges
on an axis; in [5] we also did for one immovable charge and one moving charge on

a half-axis. We also proved existence of solution of evident task for two
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immovable charges and one moving charge on a segment. In [6] we considered an
arbitrary number of charges on a segment. Here we consider points repelling by a
more general law.

1. Stating of the problem

Denote R:=(—c0,20), R+:=[0,20), S:=[0,1]. Let the time teR..

We will consider (n+1), n > 2 points moving on the segment S. Denote their
coordinates as x;(t), i=0..n.

They are mutually repelling by the law: the repelling force between two
points is F = ad~# where d is the distance between the charges, a = const >0, S =
const >0. Because of repelling, the marginal points are immobile:

0 =Xo(t) < Xu(t) <Xo(®)<... <xna(t) <Xa(t) =1
(while these functions exist).

Suppose that the media of S is very viscous. Then forces of inertia can be
neglected and a force pushes a body in the media as well as it is immobile each
moment. Also, suppose that the velocity of a body in the media is proportional to
the force. Thus we obtain the following system of ordinary differential equations of

the first order

(1) = ’,‘__1 ab _yn ab
k ( ) i=0 (xk(t)—xl(t))ﬁ Zl—k+1(

¥ k=l.n-1b=
x1(6)-x(0))

const (1)

with initial conditions
0<x1(0)= 23 <x2(0) = 2,<... < xp(t) = z,4<l. (2)
Without loss of generality suppose that ab=1. Denote the first sum in (1) as
F[left, k] and do the second sum as F[right, k]. Then
x;,(t) = Flleft, k] — F[right, k].
The task is to prove existence of a solution of the initial value problem (1)-(2).

2. Auxiliary estimations

L e mma 1. There exist such positive constant j, that if z;< y,, then

Xl(t)< Vn1 (3)
(while a solution of (1)-(2) exists), one can take
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AR (CESVELES )] (4)
P ro o f (by contradiction). (For brevity s:=7). Suppose that (3) does not
take place. Then there exists such t; eR. that (for the first time) x;(t;)=y. Then

Flleft, 1] = %ﬁ “Putting” all (n—1) right charges as far as possible (to the point
_ , . i _ n—1
x=1) we have F[right, 1] >  if pialemwy then

x,' (t;) = Flleft, 1] — F[right,1] <0
and we have a contradiction. The number (4) is the solution of this equation.
Lemma is proven.
Lemma 2. There exist such positive constant y3;<ys; that for n=3
if 21> >y thenxi(t)> ya (5)
(while a solution of (1)-(2) exists), one can take (for brevity 1=y, 11=y) the

1 1
Zﬂ (-y=pFf  Q=-ph’

Proof (by contradiction). Suppose that (5) does not take place. Then there

constant y as the (unique) positive solution of the equation

exists such ty eR. that (for the first time) x;(to)= . Then F[left, 1] = zlﬁ"

“Putting” the right moving (third) point as close as possible (to the point x=1—)

. 1
we have F[right,1] < (1—7—z)ﬂ+(1—z)ﬂ Thus, if y fulfills the equation then

x, (t,) = Flleft,1] — F[right,1] <0
and we have a contradiction. Lemma is proven.

Lemma 3. There exist such positive constant y,, > that for n>3 if z,< y

n2 then X (1)< yn. (6)
(while a solution of (1)-(2) exists), one can take (for brevity X=X 1=7) the

n—2
( —7)"3 1-pF

Proof (by contradiction). Suppose that (6) does not take place. Then there

constant y as the (unique) positive solution of the equatlon — +

exists such t, eR, that (for the first time) x,(t,)= . “Putting” the left moving (first)

point as close as possible by Lemma 1 we obtain F[left, 2] < +

(- 7)'5’
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“Putting” the (n—2) right moving charges as far as possible (to the point

x=1) we have F[right,2] > (1—

x,'(t,) = Flleft,2] — F[right,2] <0

and we have a contradiction. Lemma is proven.

"‘;ﬁ. Thus, if ¥ fulfills the equation then

3. System of algebraic equations for stationary states

Stationary states of the system (1) can be found from the system

g no—  k=1.n—-1. (7)

(=0 (xp—xP — Lui=k+1 (xp—x)P’
They can be either stable or non-stable.
Theorem 1. If n=3 then the system (1) has one stable solution.

P roof. We have the system of two equations:
Hy (g, x0):= 1/ ) =1/ = 2)P = 1/(1 = x,) = 0;

Hy(xy, %)= 1/ x5 +1/(x, — %)/ = 1/(1 —x,)P = 0. (8)
Obviously, x;<1/2<x,. Denote x=x;, y=1-X,. Adding we obtain
1/x) =1/ —x)P+1/x0 — 17(1 — x,)# =0;

1/ —1/A-0f=1/y" = 1/1-y)F. (9
Denote the function G(x) := 1/x” — 1/(1 — x)”. We have

G'(x) = —p/ =" = /(1 -0 <0,
Hence, the equality (9) implies x=y.

Then the system (8) reduces to one equation due to symmetry:

1 1 1
x_ﬂ o (1-x-x)# t (1-x)8 ) (10)
1 1 1 1
Denote H(x) = — - ECTy Ralewey: (0 <x< E)'

We have: for x=+0 H(x)>0; for x=2- 0 H(x)<O0. The right hand side of (10)
increases; the left hand side of (10) decreases. Hence, there exists one root x,; of
the equation (10). Denote Xqp=1— Xg1. The root {Xo1, Xo,} IS stable.

The theorem is proven.

4. Existence of solutions of system of differential equations
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It is obvious that the initial value problem (1)-(2) has a local solution (for
small t) and the task is to prove that it can be continued for any initial values

(fulfilling Lemmas 1, 2, 3).
1 _ 1
D) (1 @)

The case n=2 is obvious: one equation x;(t) =

Substituting y(t) = x,(t) —% we obtain: y'(t) = r 1 =

(§+y(r))ﬂ (3-v®)

y(t). The “coefficient” by y(t) is strictly negative.

Hence, y(t) tends to 0, x,(t) tends to % as t tends to .

Theorem 1. If n=3 then the initial value problem (1)-(2) has a solution for
all teR.; it tends to (Xo1, Xgp) as t tends to oo
P r o o f. (Non-formally): Consider the vector field defined by (1) in the
triangle (0< x;<1, 0< x,<1, X; < Xp) with one stationary point (Xo:, Xo2) being a
stable node. All angles between vectors and directions to the stationary point are
less than 90°.
Conclusion
By the obtained results we suggest a hypothesis that the initial boundary
problem (1) -(2) has a solution on a half-axis for all n>2 and it stabilizes as t tends
to oo
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CONTINUOUS DEPENDENCE OF SOLUTIONS
OF DIFFERENTIAL EQUATIONS WITH NON-MONOTONIC DELAY ON
INITIAL DATA IN INTEGRAL NORM

Zheentaeva Zh. K.
Kyrgyz-Uzbek University

Supra, the author proved that solutions of initial value problems for linear differential
equations with monotonic delay depend on initial data continuously in integral norm. Further, the
author proved an analogous result for non-linear delay-differential equations and for equations
with some delays. In this paper an analogous phenomenon is demonstrated for equations with
non-monotonic delay.

Keywords: delay-differential equation, initial value problem, monotonicity, integral norm.

Mypnaa aBTOp MOHOTOHYK K€UHUTYYIYY CBI3BIKTYY TG GepeHIHATIABIK TCHASMEIEp YIYH
OamTankbl MacelelepuH YbITapbUIBIIITAPBIHBIH OaIITanKel OEpPUITEHIEPICH WHTETPAIBIK
HOpMa OOIOHYA Y3TYIATYKCY3 K63 KapaHAbUIBITHIH TSN, AHIaH KHUWH aBTOP KEUHTYYIYY
CBIBBIKTYY 3Mec nuddepeHnaniplk TeHIeMenep YUYYH OKIIOII HATHIIKaHBl Aamuineau. by
Makajaga MOHOTOHIYK 5MeC KEUYHTYYJYY OONTOH TEHIeMesep YYYH OKIIONI KyOyriymry
KOpPCOTYIIY.

Ypyummyy ce3z0ep: xeuuryydy aprymMeHTTyy AuddepeHnmnanapik TeHIeMe, OallTarmKbl
Macelie, MOHOTOHIYK, UHTErPAJIbIK HOpMa.
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Panee aBTOp [nOKazama, 4YTO pPEIIEHUS HAYAIBHBIX 3a7ad Ul JIMHEWHBIX
muddepeHInaIbHbBIX YPaBHEHUH ¢ MOHOTOHHBIM 3alla3/IbIBAIONINM apTryMEHTOM HEMpPEPHIBHO
3aBHCAT OT HaYaJIbHBIX JAHHBIX 10 UHTETPAIbHOU HOpMeE. Jlanee, aBTOp AOKa3ala aHaJOTUYHbBIN
pe3ynbTaT Uil HEJIMHEHHBIX ypaBHEHMU. B 3ToM cTaThe NPOAEMOHCTPUPOBAHO aHAJIOTMYHOE
ABJICHUE NIl YPABHEHHUI C HEMOHOTOHHBIM 3aI1a3/{bIBAHUEM.

Kniouesvie cnosa: nubdepeHnnanbHOe YpaBHEHUE C 3aIla3/bIBAIOIIMM apryMEHTOM,
HayvaJbpHas 3a7a4a, MOHOTOHHOCTb, NHTErpaJIbHAsL HOPMA.

Introduction

Preceding results on asymptotic of delay-differential equations are in [1],
[2]. In [3] the author proved that solutions of initial value problems for linear
differential equations with monotonic delay depend on initial data continuously in
integral norm. Further, the author proved [4] an analogous result for non-linear
delay-differential equations and for equations with some delays. In this paper an
analogous phenomenon is demonstrated for equations with non-monotonic delay.

1. Review of preceding results

Since publication [1] linear differential equations both with

concentrated and distributed delays are considered in general form (we will

be restricted with bounded delay):

x(t) = [, x(s)d;M(t,s)ds + f(t), teR,, (1)
with the initial condition
x(t) = p(t) eC[—h, 0] . )

In [3] we demonstrated new peculiarities of differential equations with
concen-trated delays in linear case.

Considered the equation
X'(t) = P()x(o(t)), teRy; P(0), o(t) eC(R),t —h < o(t) <t. (3)
Introduce the following norms in C[—h, 0]:
llol| = [° 1o)lds; |Ia] = |lel|. + 100
Theorem 1. If o(t)eC'(R,) and &'(t) > 0,teR,, then the solution

X(t, ¢()) of (3)-(2) depends on ¢(t) continuously in the integral norm:
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If lim {Hgoo(t) — ot 5)”** : 57\0} = 0 then

lim{|X (t, goo(-)) — X(t, o(, E))| :e—>0}=0.
In [4] we extended this result for non-linear equations.
An ordinary delay-differential equation with bounded delay can be written in

the form
X'()=F(t, x(t-7), 0 <z <h}, te R, (4)
where h>0, F:R,xC[-h,0] — R is a continuous operator.
Denote the norm || ||, in the space C[a,b].
The following result is well-known:
Theorem 2. If the operator F(t,v(-)) fulfills the Lipschitz condition: there
exists such L(t) € C(R.) that
|F(EVv1())-F(tv2()]< L) 1] va()—va()pno
then 1) the initial value problem (4)-(2) has a unique solution;
2) X(t; ¢(-)) is continuous with respect to ¢(-) by the norm || - ||no -
In general, dependence X(t; ¢(-)) on the function ¢ (t) by the norm ||- ||« can
be discontinuous.
Example 1. Consider the initial value problem
x'(0)= Ix(-1)I, te [1,2], (5)
X()= o (t, &= exp (- (t-1)*/¢), te [ 1,0]. (6)
The solution X(t; @ (-, £)=x(0)+t|x(-1)|=exp (-1 /g)+t.
We have lim {|| ¢ (t, &) ||-«: € >0} =0 but lim{X(t; @ (-, &))e—>0} =t does
not tend to zero.
The problem is to find conditions ensuring continuous dependence X(t; ¢(-))
on the function ¢(t) by the norm ||- ||~
Consider the equation with concentrated delay
X' ()=G(t x(a(1)), te R+ (7)

where G:R, xR — R is a continuous function.
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Theorem 3. If o (t) € C}(R.), &(t)> 0, te R, and the function G(t,x) ful-
fills the Lipschitz condition: there exists such L(t) € C(R.) that
|G (tx2)- G (tx2)|< L(Y) [ X1 — X
then the solution of the initial value problem (7)-(2) depends on the function ¢ (t)
continuously by the integral norm as well as in Theorem 1.

Theorem 3 was generalized to equations with some concentrated delays, as
follows

X'(Y)=G(t, X(o1(t), X(02(2)), ..., x(on(t))), te R+ (8)

where G:R:xR" =R, oi(t):R+ — R are continuous functions,
(t-h< o (t) <t), k=1..n.

Theorem 4. If ai(t) € C*(R+), o '()>0, te R, and the function
G(t,Xq, Xy, ...,xn) fulfills the Lipschitz condition: there exists such L(t) € C(R.) that
|G(t,X11,X21, -+, Xn1)— G(t, X12,X22, ..., xn2))| < La(t)| Xa1—Xa2|+ Lo(t)| Xo1—Xo2|+
+...+ Ly()] Xn1i—Xn2]
then the solution of the initial value problem (8)-(2) depends on the function ¢ (t)
continuously by the integral norm: if lim . o || @ (t, &0 () [[-~=0
then lim , o | X(t;@ (-, €))—X(t; 0 (7)) |«= 0 for all te R,.

2. Equations with non-monotonic delay

Consider the equation (3) with h=3, P(t) =1, «t) is a 3-periodical
function, o(t) = t — At).
Define /(t) and calculate o(t) as follows:

t [0;1) [1;2) [2;3)
0 2t 2 6-2t
o(t) —t t-2 3t—6

We have: «(t) >0; ©(0)=0=y(3-0); m«(t) is continuous.
Hence, o(t)<t; o(t) is continuous; o(t) decreases for 0<t<1; increases for
1<t<3.

By (3) and (2) x(t) = ¢(0) + [, x(o(s))ds (0 <t<3).
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For 0 <t<2
X(OI=19(0)] + |f, ¢ (=s)ds| +|f] ¢ (s — 2)ds| =

= 19O + |[%, o (Dds| + |[%, ¢ ()dls| <2l p(O)]... (©)

For2 < t<3

lx(D)]=<]p(0)] + |f01 qo(—s)ds| + |f12 o(s— 2)ds| + |f23x (3s —6)ds| =

= 2llpOll... +|f; x Bs — 6)ds|; (10)
0 <3t-6 <t. (11)

Due to (11), (10) implies the following estimation in virtue of Gronwall-
Bellman inequality:

[x(O)| <2l p(0)ll..exp (t — 2), 2 < t=3.

Thus, by (9) and this estimation, x(t) depends on ¢(t) continuously in the
integral norm.

Conclusion

The results obtained demonstrate that there can be wvarious norms
(topologies) in spaces of solutions and spaces of initial data for various classes of
initial value problems for delay-differential equations.
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DEFINITIONS OF DIMENSIONS IN KINEMATICAL SPACES

Zhoraev A.H.
Kyrgyz-Uzbek University

This paper deals with controlled motion in non-Euclidean topological spaces which can be
implemented by means of computer. It contains a survey of definitions to provide motion of a point,
definitions of motion of a lengthy object and three definitions of dimension based on motion in
kinematical spaces.

Key words: topological space, metrical space, kinematical space, computer, motion, rotation, dimension.
KommbloTep apkbulyy >Ky3ere amblpbulyydy, SBKIWAIUK 5MEC MEWKHHIUKTEpHe Oarika-
pBUTYYYY KBIMMBLUIZO0O Oyl Makaiaja kKapaiar. Makanaia 4eKUTTHH jKaHa y3yH-Tyypachl 6ap 0OObEeKTTHH
KBIUMBUIIOOHY XKa0ayydy aHBIKTaMamap >kKaHa KHHEMAaTHUKaIbIK MEHKHHIWKTEPAE KbIi- MBUITOOHYH
HETH3WH/IE 6JT96MIy Y4 aHBIKTama 0ap.
YpyHTTYYy ce311ep: TOMNOJOTUSUIBIK MEUKUHIWK, KWHEMAaTUKAJIbIK MEWKHWHIHK, KOMIIBIOTED,
KBIMMBUIJI00, aHIaHABIPYY, 6146M.

B crathe paccMaTpuBACTCA YIHPABIIACMOC ABUKCHHE B HEOBKIIMAOBBIX TOIIOJIOTMYCCKUX IIPO-
CTPpaHCTBaX, KOTOPOC MOXKET OBITH pcain30BaHO Ha KOMIIBIOTEPC. Cratbs COACPKUT ONPECACIICHUS,
O6GCH6‘II/IBaIOH_II/Ie ABWIKCHUC TOYKU W MPOTSKCHHBIX OOBEKTOB H TpU ONPCACIICHUA Pa3sMEPHOCTH,
OCHOBAHHBIC HA JIBUKCHUHN B KHHEMATUYCCKUX ITPOCTPAHCTBAX.

KiroueBble clIOBa: TONOJOIrHYECKOE IMPOCTPAaHCTBO, KNHEMATUYCCKOC IIPOCTPAHCTBO, KOMIILIOTED,
ABWXXCHUC, BpAIlICHUEC, Pa3MEPHOCTH

Introduction

Since it is known, S.Ulam [6] was the first to propose an active work on
computer to present a virtual (four-dimensional Euclidean) space, but he did not
propose any concrete methods of implementation.

An another way to perform non-Euclidean spaces visually by means of com-
puter was proposed [7]. His idea can be demonstrated by the following example. If
we put the figure < onto a common ring band and we can look "along" the band
suffi- ciently far then we will see the sequence of diminishing figures
cC Cc cc..

If we do same for a Mobius band then we will see the sequence of diminishing

figuress ¢ o < o..
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We [4] proposed to use controlled (interactive) motion in non-Euclidean
topological spaces by means of computer. We implemented the Maobius band as
follows. We are standing on a band and see the figure < (the horizon is less than
half of the length of the band). We go and soon we see the figure 2.

We [1] introduced general conception of a kinematical space and
implemented some kinematical spaces (Riemann surfaces, Mobius band, projective
plane, topological torus) with search in them. Methods of constructing such spaces
and marking to facilitate motion in them were proposed in [2] and applied in [5].

A similar definition, independently of us, was proposed in [3]. We do not know
whether it was implemented by computer.

Kinematical investigation of unknown spaces defined by differential and
algebraic equations was proposed in [8].

New types of dimensions based on motion were announced in [9] and [10].
In this paper we expound this approach and give definitions of three new types of
dimensions: successful observation and "almost observation" from observable
domains; possibility of rotation of lengthy sets.

1. Review of preceding definitions on motion and dimensions
Let Q“:=[0; 1]k = 1, 2, 3,... is a k-dimensional cube (segment, square, cube, ...);
g is a small positive parameter. Also, we will extend functions to sets with same
denotations.
Natural motion of points (also implemented on computer) is presented by the
following system of axioms [2] based on the notion of time.

Definition 1. A pair: a set K of points and a set @ of routes is said to be a
kinematical space (each route ¢, in its turn, consists of "time" 7, > 0 and
"trajectory" M, : [0,T] =K if
(K1) (Vzo # 22€K)(T @ € @)((M , (0) = zo) {M ,{T ;) = z1)) and the set of times
{T,} for all such routes has a positive minimum (the kinematical distance p«(zo ,

21));
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(K1*) (if pk(zo , z1) Is always attainable then the space is said to be "flat"; the
corresponding route is said to be “straight");

(K2) if ¢ = {T}) M,;) € @ then @' := {T, M'(t) = My(T, - 1)} € @ (the reverse
motion with same time is possible);

(K3) it ={T;, My) € @and T” € (0,7,) then @ :={T";M”1) = M ,4(t) : [0,T"/
— K} € @ (during a route one can stop at any desired moment);

(K4) if My(T,) = M, (0) then ¢ and w can be concatenated with time T = T,+ T,.

Remark 1. After our publication [2] another version of presenting "motion™
based on the notion of "path" was proposed.

Denote the set of connected subsets of R as In. A path is a continuous map »
: In >X (a topological space).

Definition 2. The following definition is composed of some definitions in [3]
(briefly) reduced to a "a priori*” bounded, path-connected space; denotations are
slightly unified.
A length structure in X consists of a class A of admissible paths together with a
function (length) L : A > R..
The class A has to satisfy the following assumptions:
(A1) The class A is closed under restrictions: if y € 4, y: [a, b] > X and [u, V] c
[a, b] then the restriction |, v € A and L is continuous with respect to u,v;
(A2) A is closed under concatenations of paths and the function L is additive
correspondingly.
(A3) A is closed under (at least) linear reparameterizations and L is invariant
correspondingly: for a path y € 4, y: [a, b] — X and a homeomorphism ¢ : [c, d]
—> [a, b] of the form ¢(t) = ot + f, the composition y (¢(t)) is also a path.
(A4) (similar to (KI)).
o(z0,21) :=inf{L(») : y: [a, D] = X; y € A; y(a) = z0; y(b) =2, }.
(A4*) is similar to (K1*); the authors proposed the term "complete™.

Remark 2. In Definition 2 any topological structure is presumed while in

Definition 1 such (metrical) one arises from itself. By this reason functions A, are
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"per se" continuous (o (My(x), My(v)) < \x —y\) while continuity of the function L
IS to be required.

We mention some known definitions briefly (we restrict with metric sets):

Definition 3. Dim-dimension (or “cover"- or Lebesque one): it is defined to
be the minimum value of n, such that every open cover (set of open sets) C of X has
an open refinement with number of overlappings being (n + 1) or below.
Ind-dimension: by induction Ind(&) =-1; Ind(X) is the smallest n such that, for
every closed subset F of every open subset U of X, there is an open V in "between
F and U " such that Ind(Boundary(U)) < (n —1).

Minkovski (Min)-dimension. Min(X) := lim{ (- log N,/ log &):e—0} where N, is
the minimal cardinality of e-sets in X. If lim does not exist then lim inf (Min_) and
lim sup (Min..) to be considered.

Remark 3. For metrical spaces Dim-dimension and Ind-dimension
coincide. Obviously, Min(Q¥) = k.

2. Motion of lengthy objects in kinematical spaces

Definition 1 is not sufficient for motion of point sets. One of possible
extensions of Definition 1 is the demand of isometric of all shifts of a set during
motion but it is too binding. We proposed [11]

Definition 4. Given a set S € K. A set of routes with functions {M(p) : p € S}
with a same time T is said to be a motion of S with bounded deformation if there
are such constants 0 <a_ <1 <a, that
(ML)(¥'peS)(M(p)(0)=p);

(M2) (V'p1=p2eS)( vt & [0, TI)(ox(M(p)(1).M(p2)(1)) € [a-a+]px(p1.p2)).

Definition 5. If additionally
(R1) there exists such non-empty set (“axis") C e S that M|, is the identity
operator;

(R2) (Vp e S){M(S)(0) = M(S)(T)) (initial and final sets coincide);
(R3) (Vty=to e (0,T))(M(S)(t)) »M(S)(t) = C) (the set S is "thin" and does not pass
by itself excluding the axis);
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then such motion is said to be a "proper rotation" (with “bounded deformation”
correspondingly) around C.

Remark 4. To define "rotation" of a general (Spacious) objects in a space
without geometry is very complicated. For our purposes such "proper rotation" is
sufficient.

3. Dimensions defined by motion in kinematical spaces

Definition 6. A set B of a kinematical space K is said to be "fully
observable" if there exists a route including all this set.

Definition 7. A kinematical space K is said to be "locally observable" if
each its point has a "fully observable " neighborhood.

Definition 8. A locally observable kinematical space K is said to be
"observable" if each its bounded set is "fully observable *.

As usually, we will call a bijective continuous image of a segment [0,T] a "segment
in kinematical space". Also, we will call the trace of bijective motion of a segment
with one of endpoints fixed "triangle" etc.

Definition 9. "Orientation dimension” Ori is 1 for observable spaces. If
there exists such "segment™ with endpoints z; and z, and an inner point z, and such
rotation with bounded deformation around z, that z; passes to z, and vice versa
then Ori(K) > 2; if there exists a "triangle" with vertices z;,z, and z; and a point z,
within "segment" z; -z, which can be rotated around segment z,-z3 with bounded
deformation such that Z\ passes to z, and vice versa then Ori(K) > 3 etc.

Obviously, Ori(Q*) = Dim(Q"),k =1, 2,3,....

Remark 5. "Motion" of such lengthy sets into themselves is not sufficient
for such definition because a triangle z;-z,-z3 can be transformed continuously into
triangle z,-z;-z3 by motion along the Mdbius band but its dimension is 2.

The next definition also begins with observable spaces.

Definition 10. Kinematical (Kin-) dimension is 1 for observable spaces. By
in- duction: If Kin(K) =n and there exists such K; € K, Kin(K;) = n and function D
: Ky — @ that 1)( 7% €K1)(Mpy(Q) = X); 2) A Mo[0,To]: x €Ki} =K.

3) (Vi1 #=x2 € K1)( V't € [0, Top] 2 € [0, Topa])(Mbpay(ta) 2 (Mppe)(t2)).
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It is obvious that Kin{Q") = 1.
Theorem 1. Kin(Q?% = 2(= Dim(Q?)).
Proof. By contradiction. Kin(Q?) = 1 then there exists a trajectory S covering all
Q%. Choose a natural n and divide Q% into n x n little squares. S passes though all
centers of squares and has the length within each square not less than 1/n. Hence,
its total length is not less than n - n - 1/n = n and tends to infinity as n —.
Conclusion
The paper demonstrates that various new definitions of "dimension"” conforming
with known ones can be introduced on the base of "motion™ and "rotation™ in
kinematical spaces.
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APPLICATION OF THE METHOD OF ADDITIONAL ARGUMENT TO
QUASILINEAR DIFFERENTIAL EQUATIONS OF THE FIRST ORDER
WITH THE INITIAL CONDITION

Shaymbek Egemberdiev
Institute of Mathematics of National Academy of Sciences of Kyrgyz republic

A study using the method of additional argument of first-order quasilinear differential equations
with an initial condition. Using the methodof additional argument to reduce first-order quasilinear
differential equations with the initial condition to systems of integral equations.

Keywords: quasilinear differential equation, additional argument, initial condition, integral
equation.

Komymuya aprymeHT BIKMachlH KOJJIOHYY MEHEH KBa3HCBHI3BIKTYYy IU(QepeHInaIIbIK
TEHJIeMellep YUYH KOIJraH OallTankel MWAapTThIK Maceenepan u3uigee. Komrymya apryMeHT bIKMAachlH
KOJIZIOHYY MEHEH KBa3UCHI3BIKTYY AU (depeHIHaIIbIK TeHIEeMeNlep YIYH KOIJITaH OamTarKbl MapTThIK
Macesenepan M3WINeOHYH HETH3MHIAE KapalraH MAceleHW HTETpalAblKk TEHAEMENIep CHCTEMachlHa
KEITHPY BIKMAChIH KHPTU3YY.

YpyHTTYy ce3/1ep: KBa3UCBI3BIKTYY IudQepeHInangbplKk TeHIeMe, KOllymM4ya apryMeHT,
OamTankel MapT, HHTETPAIIBIK TEHAEME.

UccnenoBanne ¢ mNprMEHEHWEM METO/a JIOTONHHUTENIBHOTO apryMEeHTa KBa3WJIMHEHHBIX
T epeHInaTBLHBIX YPAaBHEHUH TIEpBOTO TOPSJIKA C HayalbHBIM ycinoBHeM. C  MOMOIIBI0 MeTona
JOIOJTHUTENBHOTO apryMeHTa CBECTH KBa3WJIMHEHHBIX Au((epeHInanbHbIX YPaBHEHUH IEPBOTO
MOPsIZIKA C HA4YaJIbHBIM YCIOBHEM K CHCTEMaM MHTETPalbHbIX YPaBHEHHM.

KiroueBbie cioBa: KBa3WJIMHEHHbIE JTUQQepeHIUANbHBIE YpaBHEHHE, JIOMOJHUTEIbHBIH
apryMeHT, Ha4aJIbHOE YCIIOBUE, HHTETPAIbHBIC YpaBHEHHE.

In [1,2] it was shown that a system of differential equations with different
initial-boundary conditionscan be exploredby using the method of an additional
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argument.
The present paper is devoted to an investigation of the following quasilinear

partial differential equations:

ou n ou
—+ D8 (t,xl,xz,...,xn,u)é—xi = fL(t, X, X, 40X, U) (@D
with initial conditions:  u(0,Xy,xy, ...,xn)=@(X1,xy, ..., Xn) (2)

te[o,T], T=const, (X1,xy, ...,xn)R".

It is assumed, that the functions f(t,x;,xs,...,x0,U(t,X1,x2, ..., x0)),  @(X1,X2, ...,xn)) are
continuously differentiable with respect to all their arguments.

We study the solvability of (1) - (2) by the method of additional argument [1,2].

An extended characteristic system is introduced:

dp, (S, t, X, Xy seeesX,,)
ds

dp, (S, t, Xy, Xy ye00sX,,)
ds

................................................................................................................................... (3)

dp, (S,t, X, X5,..0X,,)
ds

dw(s,t, X;, X,,...,X,)
ds

with additional terms:

=3, (S, PL(S,t, Xy, Xy ooy Xy )seees Py (S 6 Xy Xy e X )y WS, B, Xy Xy yeeny X))

=a,(S, Py (St X, Xy e s X ) P (01, X g, Xy e, X ), WS, B, X, Xy heens X))

=a,(S, Py (St X, Xy sees Xy )y P (S0 1, X0, Xg 0o, X, ), WS, T, X, Xy 40 X,)

= (S, Pr(S,t, X, Xy yee s Xy )seens P (o1, Xg, Xy e, X )y WS, B, Xy, Xy heens X))

Py (6t X, Xp 500X, ) = Xy

(4)

W(0,t, X1,...,x0)=0(p1(0,t,Xy, ...,xn), P2(0,t,X1, ..., x0), ..., Pn(0,t,Xg, ..., x0)). 5)
Integrating the first n equations of system (3) over s from s to t, we obtain n

integral equations taking into account conditions (4)
t
PLSEXL - Xn)=Xam [ @y (V, P (Vo Xy ooy X)), oo, P (), WV, £, Xy, e, X))V,

t
P2AStXL, - Xn) =X [ @ (V, Py (V6 X4y e, X )y ooy P (), WV, £, X4 e, X)) Y,

[
Pa(S.tX, X)X [ @ (V, D1 (V8 Xy ey X)), eoe, P (), WV, £, e, X)) Y,
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(6)
We integrate the last equation of system (3) over s from 0 to s, and taking

(5), (6) into account, we obtain the integral equation

Xy — j: ay,(v,py(V,t, Xy, e, X)) ooy P (o), w2 )V,
WSt txg, )= | %2~ f; a,(v,ps (1, Xy, o0, X)), oo, P (), W())dY, |4

(x,, — fﬂtan(v, D1V, 6, Xy, ey Xy )y oy P (), W () AV,
+f; fFv,py(V,E, %, ey X))y ooy PV, £, X,y o, X ), WV, B, Xy, o, X ) )Y, @)

So, we have obtained that the system of integral equations (6), (7) follows
from problem (3), (4), (5).

By direct differentiation with respect to s of equations (6), (7), we obtain
system (3). Setting s = t in (6), we obtain conditions (4), and setting s = 0 we
obtain conditions (5).

Thus, problem (3), (4), (5) and the system of integral equations (6), (7) are
equivalent.

Now let u (t, X;, ...X,) be a solution to problem (1), (2).Defining
P1(S,t.X1 .., xn), P2(S,tXL..xn), ..., pa(S,tXg, ..., x5)from the system of differential
equations (3), with conditions (4), we obtain that the function
W(S,t, t,Xg, ...,xn)=U(S, P1(S,t,X1, ....xn), P2(S,t. X1, ....xn), oov, Pn(S,tXg, ..00Xn))
will satisfy the last equation of system (3) and condition (5).

By this we proved the following lemma.

Lemma. If each solution u( t)X,...,x,) of problem (1), (2) gives a solution to
problem (3), (4), (5), and therefore a solution to the system of integral equations
(6), (7).

On the contrary, each continuously differentiable and bounded together with
its first derivatives solution of the system of integral equations (6), (7) gives a
solution to the problem (1), (2) at O<t<Ty,<T, where T, iS some constant

determined by the given data.
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MATHEMATICAL MODEL AND METHOD FOR CALCULATING THE
OPTIMIZATION PROBLEM OF LIVESTOCK PRODUCTION

Zhusupbaev A., Asankulova M., Zhusupbaeva G.A., Iskandarova G.S.
Institute of Mathematics NAS KR

In the work, a mathematical model of the problem of choosing the optimal breed of cattle (cattle)
of a farm is developed with an indicative plan for the production of livestock products and an algorithm
for solving it. The performance of the model is shown in a numerical example.

Key words: mathematical model, sown area, production, productivity, consumption, income,
economy.

Byn xymymra Man yap0a MpoIyKIMCBIHBIH WHAWKATHBIWK MJIaHBIH aTKapyyaa yapOanarsl HipH
MYiy31y MajIblH ONTHMAJIYy MOPOJACHIH aHBIKTOO MAaceIeCHHE MaTeMaTHKAIIBIK MOJIEIb jKaHa aHbIH
qyrapyy ajJropuTMachl HIITEIUI YbIKKaH.

VYpyHTYyy ce34ep: MATEMATUKAJIbIK MOJEJb, alJ00 asHTbI, OHIYPYLI, TYLIYMIYJIYK, YbITBIM,
Kkupeiie, yapoa.

B pabote paspaborana MaTemaTHuecKas MOJENb 33Jaydl BBIOOpAa ONTHMAIBHOW  MOPOJIBI
kpymHoporaroro ckotra (KPC) xo3siictBa mpW HWHIMKATHBHOM IUTaHE MPOM3BOJICTBA TPOAYKIIUU
KUBOTHOBOJCTBA M aJrOPUTM €€ penieHus. PaboTocrmocoOHOCT, MOJENd MOKa3aHa Ha YHCIOBOM
HIpUMeEDE.

KirroueBrle ciioBa: MaremMaTrnyeckas MOAEIb, IIOCEBHAS IIOLAb, IPOU3BOACTBO, YPOXKAUHOCTD,
pacxon, 10X0, X03sIMCTBO.

Formulation of the problem. Suppose that a farm that has sown areas of
various categories (irrigated, rainfed, etc.) in the amount of s,, keK and, with

sufficient financial ability, planned to produce livestock products in an amount not
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less than b", he H by optimizing the breeds of animals for keeping, where h is
the type produced on the farm animal products.

It is assumed that for each type of animal breed, productivity and the
corresponding daily diet are known.

Also known is the yield of crops on each category of cultivated area used by
the farm in the animal feed ration.
It is required to determine the optimal composition of animals on the farm,
allowing to ensure the production of livestock products in the planned volume,
with minimal total costs.
The mathematical model of the problem can be represented as.

Find a minimum

L(x,y) = Z Z Cy Xy + Z zqh vy (1)

keK jelg heH leL

under conditions

D %y <5, keK, (2)
iedo
Za‘ijkj = ZZO!EYP, jed;, (3)
keK heH leL
D6y =b", heH, (4)
leL
X 20, kEK, jEJo , (5)
y' >0, lel, integer heH, (6)

where  x={ x>0, keK, jelo}, y={y' =0-integer, heH, leL},
j - index of the type of agricultural products, crop production used in the daily
ration of animal feeding, jeJo={1.2,....n};
Jo- many types of crop production aimed at animal feed, j&Jo;
k - index of the type of crop area category in the farm, keK;
K- many types of crop areas, K={1,2,...,p};
h - index of the type of livestock products produced on the farm, he H;
H - many types of livestock products, H={1,2,..., H};

| - index of the species of animal breed on the farm, |eL;
116



L- many species of animal breeds, L={1,2,..., L };

Known parameters:
S - sown area of k-category on the farm, k eK;
ay — productivity of j-th type of crop on the k category of sown area of the
economy kekK, jelo;
a,? - annual demand for the j-th type of crop production per animal of the I-th breed
in  the production of the h-th type of product, where
a,? =,B-r:7/?,, jed,, lel, heH;

J
ﬂ; - the share of the j-crop production in the daily ration per animal of the I-th

breed in the farm for the production of the h-type of products, j€Jo, | L, he H;

7?. - the number of days in the diet of the crop production of the j-th species for
the I-th breed of animal in the production of the h-th type of product, je&lJ, €L,
he H;
" - the volume of production of the h th type received by the farm from one
animal of the I-th breed, l&L, he H;
b"- the planned output of the h-type livestock produced by the farm, h e H;
Cy - costs per unit size of the k-th category of sown area under the j-th type of
culture, jedo, kekK;
¢ - annual consumption per animal of the I-th breed in the production of the h-th
type of livestock products, he H, | L;

Searched variables:
X4 — size from the k-th category of sown area allocated for the j-th type of culture,
j€do, kekK;
y, - the number of animals of the I-th breed on the farm for the production of the h-

th type of product, he H, l L.

117



The objective function (1) determines the minimum total expenditure of the
economy for the cultivation of feed crops and for the maintenance of animals for
the production of products in the planned volume;

Limitations (2) determines that the total size of the sown area of a farm
allocated for fodder crops in each category should not exceed the size of the sown
area of this category;

The restriction (3) shows that the volume of agricultural production
the production of each type of feed should be equal to the volume of farm needs
for domestic needs (feed);

Restriction (4) requires that the volume of livestock products for each
species should be no less than the planned volume of production of these products;

Constraint (5) requires non-negative variables;

Constraint (6) requires that the value of the variables must be an integer. The

mathematical model (1) - (6) can be presented in the form of table 1.

Table 1

Presentation of the conditions of problem (1) - (6) in the form of a table

X11 X12 ... Xi1n Xo1 X22 . Xon .. Xp1 Xp2 . Xpn
1 1 ... 1
1 1 1
1 1 1
a1 ao1 ap1
ap a ap2

din don Apn

C11 Ci2 ... C1n Co1 Coo . Con . Cp1 Cp2 . Cpn
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Continuation of table 1

1 1 1 2 2 2 h h h
Y; Y, Y| Y1 Y, Y| Y1 Y, Y,
< S
< S,
1 1 1 2 2 2 h h h = |0
0 | O Oy | TO | O —ay @ | O —ay
1 1 1 2 2 2 h h h = |0
Uy | Oy Q| Ty | TOyp —Qy Oy | Oy —Qy
1 1 1 2 2 2 h h h = |0
—Qy —Qp; Oy —Qy —Qpy; Oy —Qy &y, —ay
1 1 1 NI
& 0, g = | %
2 2 2 NI
0, o 0, > 2
1 2 |
h h h
o) |6y |-|o | |be
1 1 1 2 2 2 h h | = | min
C, C; C C G, C C, C, G

The algorithm for solving the problem. Calculations begin by determining

the value of the parameters a,?, jedo, l€L, he H by equality (7). Using known

parameters ay, Cy, Sk, keK, jedo u 9", ¢, b", heH, leL, the numerical model

of the problem is formulated according to (1)-(6).

From the solution of the problem, the quantitative composition of animals is

determined y={y/, heH, leL} farms for the production of livestock products of

each type and the size of the cultivated area for each type of crop x={ x, kekK,
j €Jo} at the lowest total cost. The decision algorithm ends.

Let us verify the operability of the mathematical model and the algorithm for
solving the problem using a numerical example.

Example. Let the farm have acreage in the amount of S = 366 ha, of which
irrigated S1 = 280 ha, and rainfed S2 = 86 ha.

The main activity of the farm is the production of livestock products: milk
and beef. The farm has the opportunity to choose two breeds of animals (cows) of

the dairy direction and two breeds of cows of the meat direction.
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Known: - daily ration of feeding dairy cows of the first breed with milk yield of
3600 kg (Table 2), i.e. (65'= 3600 kg);
- daily ration of feeding dairy cows of the second breed with a milk yield
of 4,500 kg (Table 3), i.e. (65 = 4500 kg);
- daily ration of feeding cows with a live weight of 300 kg - the first type
of breed for meat (Table 4), i.e. (65" = 300 kg);
- daily ration of feeding cows with a live weight of 450 kg - the second

type of breed for meat (table 5), i.e. (65 = 450 kg):

Table 2
Daily ration of feeding milk cows of the first breed
with milk yield 3600 kg of milk
Name stern Daily ration kg (1 | Fodder Total Total Days
head) units units For 1 head Qty
qty
1 | Lucerne (hay) 4 0,5 2,0 720,0 180
wheat 1 0,2 0,6 180.0 180
2 straw barley 3 2 360.0
3 haylage 6 0,3 1,8 1080,0 180
wheat 0,3 109,5
4 | The conc. barley 2,4 15 1 2,4 5475 365
feed corn 0,6 219,0
5 | Silo (corn) 10 0,3 3,0 1800,0 180
6 | Mineral feed 0,010 - - - 365
7 | salt 0,030 - - - 365
Grazing feed 40 - - 7200,0 180
8 | Green feed
Total - - 9,8 -
Table 3
Daily ration of feeding milk cows of the second breed
with milk yield 4500 kg of milk
Daily ration Per year
Name of feed Days Qty
(1 animal) (1 animal)
1. | Lucerne (hay) 10 kg 180 1800 kg
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Wheat 1 kg 180 kg
2. | Straw 3 kg 180
Barley 2 kg 360 kg
3 Hay 8 kg 180 1440 kg
Barley 2 kg 730 kg
Wheat 0,5 kg 182,5 kg
4. | Conc. feed : 3 kg 365
Grain
0,5 kg 182,5 kg
(corn)
5. | Silo (corn) 12 kg 180 2160 kg
6. | Mineral feed 365 3,6 kg
7. | Comb 365 10,8 kg
Grain (corn)
8. 50 kg 180 9000 kg
Green feed
Table 4
Daily ration for feeding cattle (bulls, heifers) with live weight 300 kg
Daily ration | Feed General Days
Name of feed ] _ unit | Ttlper1
(1 animal), kg | unit _ qty
animal
Lucerne (hay) 3 0,5 15 540,0 180
Wheat 0,5 0,4 90,0 180
Straw 2 0,2
Barley 15 270,0
Hay 6 0,3 1,8 1080,0 180
Barkey 0,5 182,5
Conc.
Wheat 15 0,5 1 15 182,5 365
feed
Grain 0,5 182,5
Silo (corn) 50 0,3 15 900,0 180
Mineral feed 0,010 - 365
Salt 0,030 - 365
Grazing feed 5400,0
30 180
Green feed
Total 6,7 -
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Daily ration for feeding cattle (bulls, heifers) for meat
with a live weight of 450 kg

Daily ration Days Per year (1
Name of feed
(1 head) gty head)
1. | Lucerne (hay) 5 kg 365 1825 kg
2. | Straw (Barley) 1 kg 365 365 kg
3. | Hay 10 kg 180 1800 kg
Barley 1 kg 365 kg
Conc. Grain
4. 3kg | 1kg 365 365 kg
feed (corn)
Wheat 1 kg 365 kg
5. | Silo (corn) 10 kg 180 1800 kg
6. | Mineral feed - 365 -
7. | Salt - 365 -
Grazing feed
8. 30 kg 180 5400 kg
Green feed

- crop yields on irrigated fields (1) and rainfed (1), included in the diet, ay;,

k=1,2, j=1,2,...,7, table 6

wheat | barley | alfalfa hay haylage | Green feed | Silo (corn) | Grain (corn)
1 2 3 4 5 6 7

I | 2070.0 | 1962.2 | 2380.0 6281.0 5730.0 12340.0 20280.0

Il | 1500.0 | O 1700.0 0 0 0 0

- the costs of growing crops per unit size (1) and (I1) fields, |cyl.7, table.7.

1 2 3 4 5 6 7
I 2279.0 1096.0 2618.0 5071.0 9225.0 13574.0 7743.0
I 2000.0 1000.0 2000.0 5000.0 9000.0 13000.0 7000.0

The farm plans to produce 125 tons of milk and 25 tons of beef meat.
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In addition, the known consumption for the content of one cattle of each

breed in the production of milk and meat, respectively ¢35 =50040.0 som,

¢ =55080.0 som, c/;*=18030.0 som, c/5 =25020.0 som.

It is required to determine the optimal composition of animals of the dairy
and meat direction in the economy, which allows to ensure the planned volume of
milk and meat production at the minimum total cost.

For the mathematical formalization of the problem, we determine the annual
feed requirement for one animal of each breed in production a,?, j€Jo, €L, he H.

Using the daily diet, we determine the annual demand of each type of
agricultural product included in the feed for one dairy cow with a milk yield of
3600 kg of milk and one dairy cow with a milk yield of 4500 kg. We also
determine the annual demand of each type of agricultural product for feed for one

cow of the first and second type of breed for meat (see table 8).

Table 8
Annual feed requirement per animal, depending
from breed and productivity
Feed requirement per dairy cow Feed requirement per cow for meat
Name stern 1 breed with 2 breed with 1 breed with a live | 2 species of live
3600 kg milk 3600 kg milk weight of 300 kg weight breed 450
yield yield kg
1.wheat 289,5 362,5 272,5 365,0
2.barley 907,5 1090,0 452,5 730,0
3. perennial grass
3.1. hay (alfalfa) 720,0 1800,0 540,0 1825,0
3.2. haylage 1080,0 1440,0 1080,0 1800,0
3.3. Green feed 7200,0 9000,0 5400,0 5400,0
4. Corn
4.1. silage 1800,0 2160,0 900,0 1800,0
4.2.grain 219,0 182,5 182,5 365,0

We formulate a numerical model of the problem.
Find a minimum

L (X,y)=2279.0X11+1096.0X1,+2618.0X13+5071.0X14+9225.0X15+13574.0X 16+
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We write the numerical model of problem (7) - (12) in the form of a table 9.

+7743.0X17+2000.0X,,+1000.0x,,+2000.0X»3+ 5000.0X5,+9000.0X,5+

+13000.0x26+7000.0x27++50040.0 y; +55080.0 y; +18030.0 y; +

+25020.0 y?

with conditions of

7

D %, =X, <86,

j=L

2070,0x,,+1500,0x%,,=289,5y, +362,5 y, +272,5y/ +365,0 y?,

1962,0:,+0X,,=907,5 y: +1090,0 y: +452,5 y2 +730,0 yZ,
2380,0%,15+1700,0%3=720,0 y: +1800,0 y: +540,0 y2 +1825,0 yZ,

6281,0x,4+0x2,=1080,0 y; +1440,0 y; +1080,0 y/ +1800,0 y; ,

5730,0%,5+0x,5=7200,0 y; +9000,0 y; +5400,0 y? +5400,0 y; ,

12340,0%,6+0x,6=1800,0 y; +2160,0 y; +900,0 y/ +1800,0 y; ,

20280,0%17+0X,=219,0 y +182,5 y: +182,5 y2 +265,0 y?,

3600 y!+4500 y:>125000,

300y} +450 y2>25000,
X0, k=12, j=1.2,..7,
y, —inteeger, 1=1,2, h=1,2.

Table 9

Presentation of the conditions of problem (7) - (12) in the form of a table

X13

Xia

Xi15

X16

X17

X22

X23

X2a

1

1

1

1

1

1962.0

2380.0

1700.0

6281.0

5730.0

12340.0

20280.0

2279.0

1096.0

2618.0

5071.0

9225.0

13574.0

7743.0

2000.0

1000.0

2000.0

5000.0
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Continuation of table 9

X25 X26 X7 yl1 y; yl2 yz2 0
< 280
1 1 1 < 86
-289,5 -362,5 -272,5 -3650 | = 0
-907,5 -1090,0 | -452,5 -730,0 | = 0
-720,0 -1800,0 | -540,0 -1825,0 | = 0
-1080,0 -1440,0 | -1080,0 -1800,0 | = 0
0 -7200,0 -9000,0 -5400,0 -5400,0 | = 0
0 -1800,0 -2160,0 -900,0 -1800,0 | = 0
0 -219,0 -182,5 -182,5 -265,0 = 0
3600,0 4500,0 > 125000
300,0 450,0 > 25000
9000,0 | 13000,0 | 7000,0 | 50040,0 55080,0 | 18030,0 25020,0 | — min

Having solved the problem (7) - (12), using the MS EXCEL spreadsheet [1],
we determine the optimal plan for the distribution of sown areas for fodder crops
(see Appendix) x={ x;1=14,7; X1»,=36,2; X33= 63,1; X34=22,3; Xi5= 96,4;
X16=13,0; x;7=1,0}
and the composition of cattle in the dairy and meat sector

y={yi =L y;=27, y;=1 y.=55},
L(x,y) =4356053.0 som.

Conclusion. From the optimal solution, it follows that for the production of the

planned production volume of 125 tons of milk and beef meat in the amount of 25
tons, the farm should have 27 cows of the 2nd breed and one cow of the 1st breed
for milk production. For meat production, the farm must have cows of the 2nd
breed type in the amount of 55 and one cow of the 1st breed. At the same time, out
of the available 280 ha of irrigated and 86 ha of rainfed sowing areas, the economy
uses only 246.7 ha of irrigated sown areas for crops for forage, i.e. 14.7 ha for
wheat; 36.2 hectares under barley; under perennial grass, only 181.8 ha., of which

63.1 ha under hay (alfalfa); 22.3 ha for hay; 96.4 ha is used as green feed; 14.0
125



hectares are used for corn, of which 13.0 hectares are used for silage and 1 hectare
for corn grain. The total cost of growing crops for feed and animal care to obtain
the planned volume of production, i.e. 125 tons of milk and 25 tons of meat
amounted to 4356053.0 soms.
REFERENCES
1. Kalugina O.B., Lutsarev V.S. Work with spreadsheets. Microsft Office
Excel 2003. - INTUIT. - 2006. - 222s.
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DATA STREAM OPTIMIZATION IN HIGHLY LOADED
ENVIRONMENT USING PYTHON

Mambetova A., Sidorenko S.
Kyrgyz National State University

The paper describes the method that helps to build a client-server communication using modern
services by means of the most popular programming language Python. Messages are stored in MySQL
and NoSQL database REDIS works as a caching server. The main goal is to keep software setup as
simple as possible without running expensive solutions.

Key words: MySQL, Python, Redis, Performance optimization, Trading solutions architecture.

Byn xyMyiTa Oenruinyyiaepay CakTOOHYH Kiaccukaibik DBMS crcTeMachiHbIH KO3 Kapalllbl
MeHeH, mucanra MySQL, omonoii ate a3bipksl yaypra gan kenrer NoSQL, mucanra REDIS cepsepu
MEHEH CaKTOO bIKMaJIapbl kepcoTyireH.  CakToo OoroHua b/l MeHeH o3 apa OailylaHbIIIbBI ©3re4e
MUCaJ/Ia KOPCOTYITOH. DKH OKIION MUCAIAP/bI aTKapyyCyHa aHallu3 KYPTy3Y/IreH.

VYpyntyy ce3nep: MySQL, Python, Redis, ernypyMayTykTy ONTHMHU3aIHUSIOO0, COOIa YEUUMHIH
APXUTEKTYPAacHl.

Knrouessie ciioBa: MySQL, Python, Redis, onTuMu3zaiys mpou3BOUTEIBHOCTH, APXUTEKTYpa
TOPTOBBIX PELICHUI.

B nannoit paboTte 1eMOHCTpUPYETCs TIOJXO01 K XPaHEHHIO TaHHBIX KaK C TOUKH 3PEHUs
kiaccuueckux DBMS cucrem, Ha npumepe MySQL, tak u 6osiee coBpemeHHbIXx NoSQL Ha nmpumepe
cepsepa REDIS. IlponeMoHCTprpOBaH TUITHYHBIN IpUMep B3auMoielcTBUs ¢ b/l o XpaHeHHIO TaHHBIX.
[IpoBenen ananu3 MPOUBOAUTEIHHOCTH TIPH BHIMOIHEHNH IBYX WACHTUYHBIX 3a7ad.

KimroueBnie ciioBa: MySQL, Python, redis, ontumusanus mpou3BOANTETFHOCTH, apPXUTEKTYpa
TOPTOBBIX PELICHUH.

Formulation of the problem. Consider a simple example when there is a

need to make a single purchase of some goods. For example the command could be
“buy goods with id 0012345, the amount is 2 pieces and the price is USD $10”.
Such a command is transmitted to the server using the “dictionary” data type in

Python:
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{‘Itemld’: 1234, ‘quantity’: 2, ‘price’: 10, ‘currency’: "USD’, 'userld': ‘John
Smith’}
Example HTTP GET request in python with parameters sent in the header:
1. # import module
2. import requests
3. # api-endpoint
4. URL = “https://myapi.myserver.com/v3/”.
5. # form a request
6. my order = {‘itemld’: 1234, ‘quantity’: 2, ‘price’: 10, ‘currency’: "USD’,
‘userld': "John Smith’}
7. # add the order field to the request parameters equal to the previously described
8. # order according to AP1 documentation
9. PARAMS = {‘order’: my order}
10. # send a request and get an object with a response to the variable r
11. r = requests.get (url = URL, params = PARAMS)
12. # convert the response to json format
13. data = r.json ()
Description of the architecture.
On the client side, the following software will be used:
1) MySQL server as a data warehouse.
2) Python application. Main purpose — order control system. It is responsible for
creating, sending, storing, performing state requests and processing them. It also
provides connectivity with the database as a storage system not directly but
through REDIS.
3) REDIS server will be a high-speed buffer between the python application and
the database.
A step-by-step algorithm when it necessary to perform an operation using
external server will look like this:
a) The order comes from upper algorithm or user and goes to the Python control

module.
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b) The control module stores the corresponding data in the database, but not
directly. Order comes to REDIS server and then another part of the application
picks it and stores it in the database.

¢) Having completed all the necessary save and checks, the control module makes
a request to the server, as already described above.

d) The remote server processes the call, gives a response. The response comes with
server ID of the order. This ID is later used to track the state of the order.

e) The control module saves the result of the server response in REDIS and
continues to work, waiting for further commands.

f) Module that synchronizes the data between MySQL and REDIS saves the data in
DB taken from buffer.

Let us count how many times the control program must access the database in
order to process a single purchase request?

1) Check for active order routines.

2) Create a journal entry with the status “created” (which means a new order
exists)

3) Update status from ““created” to “sent” (when the order was sent)

4) Update status from “sent” to “processing” (when remote server accepted the
order, e.g. no error returned)

5) Update the status from “processing” to “completed” (when the remote server
confirmed that the execution succeeded)

6) Save the fields from the server response to the database.

The algorithm has to make queries to database six times. If database has to
do a lot of work with hard drives and the server are congested overall speed of the
algorithm will be low.

REDIS and MySQL performance tests.
import timeit
SETUP_CODE = "'import redis

conn = redis.Redis ('localhost’)
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TEST _CODE = """user = {"status": "New", "quantity": 22, "item_name": "shoes",
"Price": 0.3}
rset = conn.hmset ("pythonDict", user)
rget = conn.hmget ("pythonDict", user)
rdel = conn.hdel (“pythonDict", 1) """
times = timeit.repeat (setup = SETUP_CODE, stmt = TEST_CODE, repeat = 3,
number = 100)
print (times)
The code above produces:
[0.05709504522383213, 0.026847911067306995, 0.021604058798402548]
At doing the same thing with MySQL database:
SETUP_CODE = """import mysgl.connector
cnx = mysql.connector.connect (user = ‘user’, password = 'pass’, host =
'127.0.0.1", database = 'db")
cursor = cnx.cursor (dictionary = True, buffered = True)
c2 = cnx.cursor ()"
TEST_CODE = ""'stmt =" insert into user.orders (itemID, quantity, price, status,
order_hash) values (1,2,33, 'new’, 'abcdefg") "
a = cursor.execute (stmt)
cnx.commit ()
query = "SELECT * from greed.orders;"
cursor.execute (query)
if cursor.rowcount> 0:
for rec in cursor:
stmt = "delete from user.orders where id = {};". format (rec ['id"])
c2.execute (stmt)
cnx.commit () """
times = timeit.repeat (setup = SETUP_CODE, stmt = TEST_CODE, repeat = 3,
number = 100)

print (times)
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And the result is:
[0.7270211200229824, 0.7100321920588613, 0.7069365601055324]
The traditional DB loses 28 times to NoSQL in terms of performance.
Server side example of message publication:
import redis
server_r = redis.Redis (host = 'localhost’, port = 6379, db = 0)
server_r.publish ('messages’, 'here is the message")
Client side example:
import redis
client = redis.Redis (host = 'localhost’, port = 6379, db = 0)
client_m = client.pubsub ()
# subscribe to messages channel
client_m.subscribe ('messages’)
msg = client_m.get_message ()
As soon as the messages appear, insert them into a remote database, for
example, in MySQL.:
while true:
msg = client_m.get_message ()
if msg:
order dict = msg [ ‘data’]
stmt = ""insert into user.orders
(id, orderld) "". format (order_dict ['id"], order dict [‘orderld’])
c2.execute (stmt)

cnx.commit ()
Interaction steps to complete the service call:

Pros and Cons

Pros
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A) The transparency of the state of the remote call. It is very easy to build a web
interface that helps to track the exchange process and identify if there are problems
in the messages exchange.

B) The speed. Introductions of REDIS as an intermediate link between a relational
DBMS and the application greatly increases the speed, as the database is not a
bottleneck anymore.

C) Robustness. The detailed information about the state of a particular order allows
the program to handle the control and keep on running depending on the required
behavior even if some orders have failed.

D) Detailed logging. Simplifies the search for errors and improves development
speed.

D) Ease of development. Python is one of the most popular with huge community
and simple languages with mature structure and environment, which greatly
simplifies the development.

E) The cost of software components. MySQL, REDIS and Python are free tools
and they do not require commercial licensing.

Cons

A) The introduction of the REDIS system, in addition to the ordinary DBMS,
increases the number of system failure points.

B) Additional software requires higher staff qualification, despite the simpler
syntax of all NoSQL databases.

B) Security requirements. If REDIS and Python are running on independent
servers, secure network infrastructure is required. For example, a physically
isolated network segment would be a good idea if it is necessary to prevent traffic
interception.

Conclusion

The architecture described above is a balanced solution, a compromise between the
off-the-shelf products and development efforts, which allows building highly
loaded systems with a considerable degree of reliability and fault tolerance on

131



relatively inexpensive (should be interpreted as simple) servers without extra
processing power.
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MODELING THE FUNCTIONING OF ECONOMIC SYSTEMS
USING PRODUCTION VES FUNCTIONS

Choroev K., Suynalieva N.K., Zhusupbaeva N.A.
Institute of Mathematics of NAS of KR

This article examines the problem of constructing a production function of variable elasticity of
substitution (VES-functions). The results of modeling the functioning of economic systems using
production functions with variable elasticity of labor replacement by capital (VES-functions) are
presented. A comparative analysis of the simulation results obtained using the already known analytical
dependencies for VES functions and the proposed algorithm for constructing production functions of this
type showed the feasibility of this algorithm for solving similar problems. To test this algorithm for
constructing production functions of the VES type, statistical data published in the open press were used.

Keywords: production function; VES-function; elasticity of replacement of labor with capital;
variable elasticity.

Byn cratesiia e3repyiMe HIKEMIYY alMamTelpyy Hermsunaerd eHmaypyum ¢ynkuumsicein (VES-
GyHKIUS) Kypyy mpoOiieMachl W3WJIICHEHT. JMIeK MEHEH KalUTalibl aJMAIITHIPYYHYH ©3repMeIyy
UKEMJIUTYYK KOPCOTKYUYTYY OHAYPYIl (GYHKIUACHIH KOJJOHYY MEHEH OSKOHOMHKAIBIK CHCTEMaHbBIH
WIITEIINHAH MOJENASIITUPYYHYH JKBIMBIHTBITHI OepuireH. byn (QyHKOMSHBIH Kapaambl MEHEH
MOJENIITUPYYHYH JKBIABIHTHITH jkaHa Oenrmnyy VES-QyHKIuS y4yH aHATUTHKAJIBIK KO3 KapaHIbIIKTHI
CANIBIIITHIPMAITYy aHANW3, OW3IIUH CYHYyIITaraH eHAYPYIl (YHKIMACHIH Kypyy alTOpPHUTM KOIOJITaH
MaKcaTka bUIAMbIK 3KeHIUTUH Kopre3ny. VES-GyHKnus TypyHzery eHIypym QyHKIHMSACHIH Kypyynarst
OepyMreH anropuT™M adblk OACBUIBIN YBIKKAH CTATHCTHKAJBIK OCPWIIMINTEPAMH HETM3HMHAE arpoOarus
KBUIBIH/IBI.

YpyHTTYyy ce3nep: eHAYpYIl GyHKIUACH, VES-QyHKIMS, SMreKTH KanuTan MEHEeH alMaIllThIpyy
UHKEMIYYIYTY, ©3repYIMe HHKEMIYYIYK.

B nmaHHO# cTaTthe mcciaemayeTcs mpodiieMa MOCTPOSHHUS MPON3BOACTBEHHON (DYHKIMH ITepeMEHHOM
anmactuunoctr  3amenieHus  (VES-¢ynkumit).  IlpencraBieHbl  pe3yiabTaThl  MOJCIHPOBAHHUS
(YHKIIMOHUPOBAHUS 3KOHOMHYECKHX CHCTEM C HCIIOJIb30BAHUEM TIPOU3BOJICTBEHHBIX (YHKIHHA C

132



MEPEMEHHOM 3JIACTUYHOCTBIO 3aMertieHus Tpyaa kamutaioMm (VES-pyukuun). CpaBHUTEIbHBIA aHAIU3
pe3ybTaTOB MOJCIMPOBAHUS, TIIOJYYCHHBIX C TPUMCHCHHEM YK€ W3BECTHBIX aHAIUTHYECKUX
3apucuMocteit s VES-pyHkuui, u npennoxkeHHOro HaMu ajiropuTMa MmoCTPOSHUS MTPOU3BOJICTBEHHBIX
(YHKIIHIA 3TOTO BUA ITOKa3al 1eJIeco00pa3HOCTh JaHHOTO aITOPUTMa JUTS PEIICHNS aHAJOTHYHBIX 3a/1a4.
Hns anpoOanuy JaHHOTO alropuTMa MOCTPOEHHS MPOU3BOACTBEHHBIX (PyHKIni Buma VES-GyHkumi
UCTIOJIb30BATUCH CTATUCTHYECKHE TaHHbBIC, OITyOIIMKOBAHHBIC B OTKPBITON IEYaTH.

KiroueBsle cioBa: mpousBojicTBeHHass (yHKiws, VES-QyHKIMs, 37acTMYHOCTH 3aMElICHUs TpyJa
KaIUTAaJIoM, IEPEMEHHAs 3aCTHYHOCTb.

Determining the main indicators of the functioning of economic systems is
often carried out using production functions (PF). The latter are one of the tools of
economic and mathematical modeling of the production process, if it is considered
as an open system, the inputs of which are the costs of resources (material and
human), and the outputs are the products produced. Production functions are also
used to analyze the impact of a number of key factors (inputs) on the results of the
production process (outputs). This is due to the fact that PF generally reflect fairly
stable quantitative ratios between the inputs and outputs of economic and
production systems.

The complexity of economic systems that use neoclassical production
functions of the form CES-functions to describe their functioning does not always
allow us to say that the values of elasticity of labor replacement by capital o in the
systems under consideration are constant, since this situation is not so common in
the real conditions of economic systems functioning.

VES - production functions (variable elasticity substitution production
function) are a type of neoclassical production functions that takes into account
changes in the values of elasticity of labor replacement by capital ¢ in economic
systems. Currently, there are various variants of analytical representation of a
production function of the form VES-function.

A number of authors have accepted that the marginal rate of replacement of
labor with capital y is characterized by the following dependence on the Fund

capacity k of the considered economic system:
y =a+ Bk, where f > 0,and %<k

Then o — is defined by the dependency
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o(k) = 1+ (%) =

da(k)

where a(k) < 1 and <1,ifa<O;

dO'(k)

o(k) >1and >1,ifa>0.

and the VES-function is defined as:

Y = ae™[(1+ B)KLF + aL1+ﬁ]1/1+ﬁ (1)

the value of y is estimated by the expression

il
a+ Pk where0 <a < 1,0 < a+ Bk < 1.

Based on this, the dependencies for ¢ and VES- functions were obtained:
Bk

(a+ Bk)? —«a

d.o-(k)

olk)=1-

ifo(k) <1and

<1,if B <0;

a(k) > 1 and d"("‘)

> 1,i1f 5 > 0.

Y = aeM K[~k (2)
If we assume that the elasticity of replacement of labor with capital o is
represented as o (k) = a + Bk, we get a General view of the VES-function for this

case of the relationship between o and k:

a 1+c
v = a1+ ()]
1+c¢

All parameters of the dependencies that define the VES-function presented

above were evaluated based on statistical analysis of the initial retrospective data
that characterize the functioning of the economic system.

The assumptions made by the authors concerning the nature of the
relationships between y, o and k ensure changes in the values of o depending on the
value of k, as well as the fulfillment of the requirements for neoclassical
production functions [4. P.91]. The possibility of using the above-mentioned
variants of VES-functions also implies the need for additional justification for the

134



possibility of describing changes in the values of y and o by the accepted
dependencies.
The structure of the production function is identified by solving the

following system of differential equations [4]:

gm _ 8

g~y +k

v |1 3)
y(k) ~ ka(k)

Here ¢ is the index of homogeneity of the production function; k is the stock

ratio: k = K/L; g(k) — modified production function:

Y
V=KL =LfL,K) > +=y=f(Lk=gk) (4
y(K) — the marginal rate of replacement of labor with capital:

_8g(k) —kg' (k)
y(k) = 70 (5)

o(K) — elasticity of replacement of labor with capital for 6-homogeneous production

function:

The value o (k) is given by some function, and y(k) and g(k) are
determined from the solution of the system (3). Directly f(K,L) is determined by
the function g(k) according to (4). For example, you can choose a continuous
function, including a piecewise linear function, as o(k).

The initial data for constructing a neoclassical 6-homogeneous production
function of type VES-function are the sets of output volume values
Y=fK,L)-Y={},(i=1n) and the corresponding values
K ={K;}, L={L;} in value or index terms, in kind. They characterize the
functioning of the economic system under consideration at each moment of time T;

for a certain time interval [T;, T,,]. The values of the uniformity index are also set
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d;:8; € [0,1]. These data are used to determine the values of the capital strength

of the considered economic system k; = Ki/L, and the values of the function
l

g(k).

The algorithm described above was tested when constructing o-
homogeneous production functions of the VES-function type based on data
describing the functioning of the KR economy in the period 2001-2018. This data
is a time series of the following values for the specified time period: Y — gross
domestic product in million som. (in comparable prices for 2001); L — average
annual number of workers, thousand people.; K — gross accumulation of fixed
assets (buildings and equipment) less intangible assets in million som. (in
comparable prices for 2001). The algorithm was implemented using MS EXCEL
data Analysis applications. The table shows the main characteristics of production
functions.

Table 1 shows:

- production functions of the form CES-function (PF1 - hereafter the authors '
designations) and VES-function (PF2 (1), PF3 (2)), identified by regression
analysis of data table 1;

- 0 values for the CES function and regression dependences for estimating the
values of this value for the VES functions PF2 (1) and PF3 (2).

Dependencies for CES and VES Table 1.
PF | Interval Type of production function Values o
PE — 0,02 -1,12 -1,18)-0,27
b001-2018 Y = 3,32¢%9%(0,92K +0,24L ) 0.474
CES
PF1
Ves 20012018 ¥ = 3,12¢0°1(2,91K317 - 0,32L721)%%¢ | 10,23k
1+ ak
PF 2 [b — ak]? — 4
2001-2018 Yy =7 2560,19K0,47L0,65€—2,51k
VES ’ a=2,53
b = 0,56
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Table 2.

PF CES PF1VES PF 2 VES
The average value of € 0,0332 0,0248 0,0283
Standard deviation S, 00184 0,0172 0,0163

Comparison of mean and standard deviation values (see table. 2) shows that
the constructed production function of the VES-function type allows us to get a
more accurate approximation of the values of the final product of the economic
system Y. The values of the average error of approximation of the source data and
its standard deviation for the VES-2-function constructed by the authors are less
than for the CES-function. Therefore, the proposed algorithm for constructing
production functions of the VES-function type gives a more “stable"
approximation of the calculated values of the value Y to its original values.

Thus, it can be noted that the proposed and implemented algorithm for
constructing ¢ - homogeneous production function of the VES-type, which meets
the requirements for neoclassical production functions, is able to provide the
construction of this function with a sufficiently high accuracy of approximation of

data that characterize the functioning of the economic system.
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OPTIMIZATION MODEL OF URBAN PASSENGER TRANSPORT
MANAGEMENT

'Kydyrmaeva S., 2Nurlanbekov A., *Maatov K.
'KNU named after J.Balasagyn, >*Institute of Mathematics of NAS of KR

This article is devoted to the analysis of a complex of economic and mathematical models that
take into account various aspects of the functioning of passenger transport. There are considered such
concepts as predictive, simulation, dynamic and optimization transport models. The necessity of
developing an optimization model for the formation of the route network and its elements, the optimal
interaction of the participants in the passenger transport system, the model of technical and economic
indicators of the urban passenger transport (UPT) system is presented.

Key words: urban passenger transport, the efficiency of UPT of the city, tasks of the passenger
transport system, simulation, optimization models, transport network.

Byn crathsi maccaXupAMK TPAHCIOPTTYH HINTCIIMHWHAD TapanTyy acHeKTepHH 3CKE alraH
JKOHOMMKO-MaTEMAaTUKAJIbIK MOJEIAECPAN aHaNu3geere apHaiarad. IIporHoznoono, MMHUTALMANIoOOn0
’KaHa ONTHMHU3ALMANI00/Ia KOJJOHYYyYy TPaHCHOPTTYK MOJENJep TYLIYHYTYy Kapajirad. MapiypyTTyk
TYWYHIOPAY ’KaHa aHbIH 3JIEMEHTTEPHH, ACCAKUPANK TPAHCIIOPTTYK CUCTEMaHbIH KaTbIITYy4YyIapbIHbIH
Oup OupHHE TaacHpUH ONTUMAJIAYY MOJENAee 3apbUIYBbLIBITHI KeNTHpWITeH. JKaHa Ja maapiablK
naccaxxupauk TpaHenoptTyk cucteMadHblH (IIIITC) TeXHHMKO-3KOHOMHUKAJIBIK KOPCOTKYYTOPYHYH
MOJENUH TY3YY Aa Kapajiras.

YpyHTTYy ce3aep: maapiaslk maccaxupauk TpaHcnoprryk cucremacel (LUIITC), HITITCabH
umremHuH  3pdexktupryynyry, LINTCHeiH  Mungetd,  WMHTAlHANBIK  MOACIACHITUDYY,
ONTHMHU3ALUAIBIK MOJIEIIEIITUDPYY, TPAHCIOPTTYK TYHYH.

Hacrosdmas crtaTted mocBsiieHa aHalM3y KOMIUIEKCA SKOHOMHKO-MAaTEMaTHUYECKHUX MOJeleH,
VUUTHIBAIOIIMX  pa3JIMdHble  acleKThl  (YHKIMOHWUPOBAHMS  MACCAKUPCKOTO  TPaAHCIOPTA.
PaccmatpuBaroTcs  Takme MOHATHS  Kak  NIPOTHO3HBIE, HMHTAlMOHHBIE, JWHAMHUYECKHE U
ONTUMM3ALMOHHBIE  TpaHCNOpPTHble  Mogaenu.  IlpeacraBneHa  HEOOXOAMMOCTH  pa3pabOTKU
ONTUMH3ALMOHHOW MoJiend (opMUpOBaHMST MapUIPYTHOH CETH M €€ DJEMEHTOB, ONTHMAaJIbHOTO
B3aMMOJACHCTBUS YYaCTHUKOB CHUCTEMBI MMACCAKUPCKOTO TPAHCIOPTA, MOJENINA TEXHHUKO-IKOHOMUYECKHX
MOKa3aTeNiell CHCTEMBI TOPOJICKOTO maccaxkupckoro Tpancmopta (I'TIT).

Kniouesvie cnosa: TOpOJICKOW MAacCaKUPCKHN TPAHCIOPT, 3PPEKTUBHOCTH pabOThl TOPOACKOTO
MAacCAXUPCKOrO0 TpaHcmopra ropojaa, 3aaad cucrembl [TIT, WMHUTALIMOHHOE MOJEIUPOBAHUE,
ONTHMHU3ALMOHHBIE MOJEIH, TPAHCIIOPTHASI CETh.

The urban passenger transport system of a large city is a complex system that
includes a large number of interconnected and interacting components. The
management of such a large system is becoming more complicated every year due
to the growing population of cities, the level of motorization, and therefore there
are problems with Parking and transport infrastructure. In the city of Bishkek, the
issue of optimizing the route network is currently acute.

Management of urban passenger transport for many years has not been

subjected to a serious scientific study of the search for scientifically based
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solutions. The city is overloaded with duplicate routes and private buses (14-18
local) of small class. To study and objectively assess these problems, it is
necessary to build a set of economic and mathematical models that take into
account various aspects of the functioning of passenger transport. When building
models, three principles must be taken into account: abstraction, multi-modeling,
and hierarchical construction. Due to the complexity of the urban transport system,
no single model can adequately describe the various aspects of this system.

To solve the problems of the UPT system, various mathematical tools can be
used, such as mathematical programming, econometrics, game theory, Queuing
systems theory, simulation modeling, etc. In recent years, predictive and
simulation transport models have been widely used in research. Classical four-
stage predictive models are most common for solving transport planning problems
and evaluating the effectiveness of modernization projects for various transport
systems [1]. Dynamic models are used to solve problems in the field of traffic
management. This class of models is intended for the most accurate simulation of
the movement of individual vehicles in a stream. As a result of computational
experiments, parameters of traffic flows are obtained: speed, density, delays,
transit time for selected sections of the network, and the length of the queue when
congestion occurs.

Optimization transport models are used to search for options (scenarios) for
the development of the urban agglomeration transport system that are optimal by a
certain criterion under specified restrictions. In the formulation of mathematical
programming criteria and constraints represent the functional characteristics of the
transport system and the parameters of human needs, environmental and other
indicators of quality of life. One of the options for building optimization transport
models is to analyze costs and effects in order to effectively distribute transport
demand across the territory of an urban agglomeration.

Consistent use of optimization, forecast and simulation models is suitable for
solving all typical tasks of transport planning, traffic management, and improving

the system of public passenger transport.
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Optimization models are widely used in research of the urban passenger
transport management system. Optimization models for the formation of the route
network and its elements, optimal interaction of participants in the passenger
transport system, and models of technical and economic indicators of the UPT
system are being developed.

In the work of the UPT, the problem of choosing a route scheme for
passenger transport is one of the most important and complex among the tasks
solved in the process of organizing passenger transportation. The optimal route
scheme along the city streets and the extent to which the routes meet the needs of
passengers depend on the time spent by the population on movement, as well as on
the efficiency of the use of rolling stock. Requirements for the rational use of
rolling stock can be expressed by setting the value of the minimum allowable
coefficient of use of the capacity of rolling stock on all routes of the city. To solve
this problem, we use data that can only be obtained from special surveys, as well as
data available in municipalities and transport organizations. The city's transport
network is known, consisting of nodes (centers of neighborhoods) and edges
(streets where passenger transport is organized or possible) that connect the nodes
to each other.

Each node of the transport network corresponds to the value t,,,, which is
numerically equal to the time spent on transferring at point M. Each edge of the
network corresponds to the value t.;; numerically equal to the time spent on
moving the bus between points i and j. We know the distance between points i and
J - the length of the edge L;;. In the general case t.;; # t.;; u L;; # L;;. The matrix
is set for the number of population movements between all city districts for a
certain (calculated) period of the day - ||K||, where the element K;; - corresponds
to the number of movements made from point i to point j. Each combination of
routes connecting transport network nodes corresponds to a value E, which is

numerically equal to the total time spent by all passengers to travel along all routes,
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including the time spent waiting for the start of the trip, following in rolling stock
and transferring from route to route,

As a criterion for the optimal route scheme, the minimum total time spent by
the population on movement using transport is taken, including the time-estimated
inconveniences experienced by passengers when making transfers and the
monetary cost of buying a ticket for travel.

In the process of solving tasks required to minimize the functional E:

W

E= ZZ(tcij + tm’j)K!'j + Z Lonck ~ P +Ztmﬁ.u ) Pv' (1]
k=1

i=1 j=1 r=1
where i =1, 2,..., m — points (neighborhoods) of the beginning of movement;
j=1,2,..., m—points (neighborhoods) of the end of movement;
k=1,2,..., n—bus routes;
v=1,2,.., w — combined sections of the transport network;
teij» tnij — the time spent by one passenger when traveling between points i and j,
respectively, for following and transferring;
K;; — the number of movements between points i and j.
toxx — the time spent by one passenger waiting for the start of the trip on route k;
P,, — is the number of passengers using route k only;
to,-V — time spent by one passenger waiting for the start of the trip when traveling
on a combined section of the transport network V;
P, — the number of passengers passing through the combined section V.

One of the goals pursued when choosing a route scheme is to provide people
with the opportunity to make their movements around the city in a minimum time.
This is achieved, first, by choosing the routes between the end points along the
shortest path, and, second, by creating a combination of routes that would
minimize the total time spent by all passengers on movement.

The goal of solving the problem is to choose the route scheme that best meets
the specified optimality criteria. The main task of planning the functioning of the
UPT system is to forecast and form a given level of passenger service with
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minimal costs for their implementation. This allows you to get the maximum profit
from the operation of transport at economically reasonable rates. Taking into
account its special social significance for the city's population, you can set actual
rates lower than the estimated ones, and minimize the amount of subsidies to
maintain a given level of service.

It is necessary to determine the strategies for the functioning of the UPT
system that ensure the achievement of the optimal value of the level of passenger
service, and, consequently, the maximum amount of profit at economically
reasonable calculated rates or the minimum amount of loss at low actual rates.

Thus, the UPT system, without having an optimal level of passenger service,
must constantly choose strategies related to optimizing the rolling stock by type of
transport in accordance with the emerging passenger flows in the city.

Modeling of the process under consideration has shown that the efficiency of
passenger transport operation implies achieving the best financial results of the
UPT (maximum profit at economically justified calculated rates or minimum loss-
subsidies at actual rates less than the calculated ones) while providing a given level
of service.

Thus, the main constraints of the optimization problem are selected indicators
of service passenger services: the reliability of travel by public transport on
schedule, accessibility, safety, comfort, and value indicator of the level of
passenger service and rate information service trip. Their level is set in accordance
with the proposed method and then adjusted based on the model of choosing a
strategy for achieving the optimal level of passenger service.
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