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We construct a space of normed, max-plus-homogeneous and max-plus-semi-
additive functionals and give its description. Variants of Hahn-Banach lemma and
Banach-Alaoglu theorem for max-plus-semi-additive functionals. Further, it was shown
that every max-plus-semi-additive functional is open and bounded map. And also noted
that for a compact metrizable space X the space IS(X) is a metrizable compact.
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Hopmanpamreipsiiran, — max-plus-6up — texktyy skana — max-plus-sxapeim-
QIIUTUBINK (YHKIIMOHAIIAPABIH MEUKUHIWTH TY3YJITOH JKaHa aHbIH Ma3MyHY
KenTupuireH. XaH-baHax IJleMMachlHBIH BapHaHTTapbl kaHa baHax-Amaoriy
TeopeMachl Japbl Y4YYH TY3YJIreH. AHIAH ThIIKapbl, ap Oup mMmax-plus-xapeiM-
aQIIUTUBIUK  (YHKIMOHABI aublK JKaHa YEKTENreH YarbULABIPYy OKEHAUTH
KOepCOTYJIreH. MeTpuzanusuianyydy X KOMIAKThl YayH, Max-plus-xapbiM-aaiuTHBINK
¢dbyHkumroHamaapbiHbH IS (X) MEHKUHAUTH YEHETYYYy KOMIAKT SKCHUTH OSJITHIICH IH.

VYpyHTTYy ce31ep: KaTeropus, KaJuMKd (QyHKIHOHAN, Max-plus-kapeim-
aJTUTUBIUK (DYHKIIMOHAT.

[TocTpoeHO MPOCTPAHCTBO HOPMHPOBAHHBIX, max-plus-omHopoaHbIX U max-plus-
MOJIyaJTUTUBHBIX (YHKIMOHAJIOB M JIaHO €ro OIMCaHUE. YCTAHOBJIIEHO BapUAHTHI
nemmbl XaHa-Banaxa u Teopembl banaxa-Anaoriy st max-plus-monyaaguTHBHBIX
¢bynknuonanos. Jlamee, moOKa3aHO, YTO KaxIeldi  Max-plus-momya iuTHBHBIX
(GYHKIMOHAN SBISETCS OTKPBITBIM W OTPAaHHYEHHBIM OTOOpakeHHMEeM. A  Takxke
OTMEYEHO, YTO JuIsi MeTpu3yemoro kommakra X mnpoctpaHctBo [S(X) max-plus-
MOJTyaJIMTUBHBIX (DYHKIIMOHAJIOB SIBJIIETCSI METPU3YEMbIM KOMITAKTOM.

KiroueBble  cioBa:  Karteropusi,  HOpMajbHbIi  (QyHkTOp,  Max-plus-
MOJTyaTMTUBHBIN (YHKIIMOHAIL.

Let X be a compact Hausdorff space, C(X) the algebra of all
continuous functions on X with ordinary operations and the sup-norm. We

enter a new multiplication and a new addition on C(X) by the rules:



ORe) =10 ¢ =@+ A, where ¢ € C(X) and Ay is a constant
function on X taking everywhere the value 1 € R;

D (9. ¥) = ¢ @ ¢ = max{g, P}, where ¢,y € C(X).

A functional u: C(X) — R is said to be [10] an idempotent probability
measure on X if it has the following properties:

(i) (normality) u(1y) = Aforall 1 € R;

(ii) (max-plus-homogeneity) u(A@¢@) = AQu(ep) for all 1 € R, and
¢ € C(X);

(iii) (max-plus-additivity) p(e@y) = u(e)®u(p) for all @,y €
C(X).

The set of all idempotent probability measures on X is denoted by
1(X). ldempotent measures were observed in [2], [3], [6], [9], [10] and so
on.

The following definition was offered by A. Zaitov.

Definition 1. A functional u: C(X) —» R is called max-plus-semi-
additive if:

(V) u(p@y) = u(ep)®u(y) for any pair ¢, € C(X).

The set of all max-plus-semi-additive normalized and max-plus-
homogeneous functionals is denoted by IS(X). For brevity, a max-plus-
semi-additive, normalized, and homogeneous functional will be called the
max-plus-semi-additive ~ functionals. = Each  max-plus-semi-additive
functional w:C(X) >R is continuous. Consequently, IS(X) c
C,(C(X)) € RE®. We provide IS(X) with the induction from R¢&)
topology. Sets of the shape

(B 01,0015 &) = {1 € ISX): |1 (@) — (@] <
i =1,..,k}



where ¢4, @,, ..., o, € C(X) and € > 0, form a base of neighborhoods of
the functional u € IS(X) with respect to this induced topology. But, on the
other hand, these sets form the pointwise convergence topology on IS(X).
Note that /S(X) is a compact Hausdorff space with respect to the pointwise
convergence topology.

Consider a continuous map f: X — Y of compact Hausdorff spaces. It
induces the following natural map IS(f):IS(X) — IS(Y) by

ISCHY) (@) = ule © f).
The map IS(f) is continuous. The functor IS is [4] a normal functor in the
category of compact Hausdorff spaces and their continuous maps.
Consequently, for each u € 1S(X) one may define its support (see [5]):
suppu =N {F:FclosedinXandu € IS(F)}.
For a positive integer n we define the following set
IS,(X) = {u € I(X): |supp u| < n}.
Put

15,(X) = U 1S, (X) .

The set IS,(X) is everywhere dense [4] in IS(X). A functional
u € IS,(X) is called a max-plus-semi-additive functional with finite
support.

Note that for every compact Hausdorff space X we have

1(X) c IS(X).

But, in general, the converse is not true.

Let A be a subset of I(X). For each finite system {Bj, ... ,B,} of
subsets B; ¢ A and numbers «; satisfying the conditions

a; =0, i=12,..,n, Ya =1, (1)
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define a functional

an

gy = Ni=1 AiVpi (2)

wherevg; = @ u.
UEBI

For each set A, the system {B,,...,B,} of its closed subsets and
numbers «; satisfying conditions (1), the functional vg" ;™ defined
equality (2) is a max-plus-semi-additive functional, i. e., vz ""5™ € IS(X).

We define the following set

A =

{Vsl von., :By,...,B, closedin 4, a; = 0,

n
i=12, nz P 1}]
I1S(X)

i=1

Theorem 1. For every compact Hausdorff space X, it holds the

equality
(1)), = IS(X).

Note that Theorem 1 actually describes the space of I1S(X) max-plus-
semi-additive functionals in the language of idempotent probability
measures, i. €., the elements u € I1(X).

Below we list main results of the paper. Missing information can be
found from [1], [7], [8].

Proposition 1. For every compact Hausdorff space X we have

d(1S(X)) < d(X),
wd(IS(X)) < wd(X),
Here d(X) and wd(X) mean the density and weak density of a

topological space X, respectively.



Theorem 2. (variant of the Hahn-Banach lemma) For every max-plus
linear subspace L < C(X) and for any max-plus semi-additive functional
u: L — R there exists a any max-plus semi-additive functional fi: C(X) - R
such that i|, = u.

Proposition 2. For every compact Hausdorff space X a max-plus
semi-additive functional u: C(X) — R is bounded.

Theorem 3. For every compact Hausdorff space X a max-plus semi-
additive functional u: C(X) — R is open map.

Theorem 4. Let X be a compact Hausdorff space. If V is a
neighborhood of zero 0, € C(X) (with respect to uniform topology) the
following set is compact in pointwise convergence topology

K = {u: u satisfies (ii) — (iv) and u(¢p) < 1 forall ¢ € V}.

Corollary 1. IS(X) is a compact Hausdorff space.

Theorem 5. Let X be a compact Hausdorff space with second axiom
of countability, and K be a compact set of functionals, satisfying conditions
(ii) — (iv). Then K is metrizable in pointwise convergence topology.

Corollary 2. Let X be a compact Hausdorff space with second axiom

of countability. Then IS(X) is metrizable in pointwise convergence

topology.
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In this paper, we consider 7 -metric spaces and study their properties.
Key words: 7 -metric spaces, 7 —spectrum, quotient space.

byn Makamaga 7 -METpUKalblK MEWKMHAUKTEPH TAJIKYYJIaHBIN, aJapAblH
KaCUETTEPH U3UIIICHET.
YPyHTTYY ce311ep: T — MEUKUHAUKTEPU, (PAKTOpP MEMKUHAUTH, T — CHEKTP.

B st0ii paboTe paccmaTpuBalOTCA 7T -METPHUUECKHUE MPOCTPAHCTBA U M3ydalOTCA
HX CBOICTBA.

KiroueBbie cioBa. 7 —METPUYECKHE NIPOCTPAHCTBA, MPOCTPAHCTBA, (akTop
MPOCTPAHCTBO, 7 — CHEKTP.

The class of multimetric or r -metric spaces is introduced and studied
in [1], [2].

In this article we clarify the concept of ¢ -metric spaces and study its
properties.

The most general metrics on topological semifields were discussed in
[3], [4] and there are a number of papers devoted to generalization of
metrics, in particular metrics on Banach spaces (see, for example, [5]).

Let R, =[0,:0), R=(—0,0) and let z be an infinite cardinal number.
Let R° and R° denote the Tichonoff products r-of copies of the spaces
R, and R endowed by the natural topologies, respectively. In the spaces
R’ and R’ the operations of addition, multiplication and multiplication on
scalar, as well as the partial order are defined. The space R* turns into the
so-called "Tichonoff" topological semifield and R’ is the positive cone of

the topological semifield R* (see [4], [5]). On the other hand, it was proved



that any topological semifield can be embedded into the Tichonoff
topological semifield R* (see [4], [5]).
We will use the following important concept (see, for example, [5]).
Let {f,:X >Y,, acA} be a family of the mappings from X into a
family of the sets {Y,: ac A}. The mapping f:X —>II{Y,: ac A} defined by
the rule fx={f,x: acA}is called the diagonal product of the family of

mappings {f,: ae A} and is denoted by A{f

a-

'aeA}.

Definition 1. Let X be an infinite set,
R? =[1{R%:ac A}, |A=7, R =R,
and g, : R’ —R? the natural projection on a-th factor of R?.
A mapping p,: X xX —R? is called a r-metric or multimetric (if $ ¢

is not fixed) on X if the following axioms hold:

1. p.(xy)=6 if and only if x=y, where ¢ is a point in the
space R:such that coordinates of which consist of zeros;
2. p.(xy)=p,(y,x) forall x,yeX;
3. p.(xy)<p (x2)+p, (z,y) forall x,y,zeX;
4. forany a,be A, thereexists a, e A such that
P, (X y)=max{p, (o, (%.¥)). 0, (£.(x.¥))} for all xyeX,
A pair of (X, p,) is called a = -metric or ultrametric space.
For each acA, put p,(xy)=0,(p,(xYy)). Then p,(xy) will be a

pseudometric on X and definition 1 will be formulated as follows:

The mapping p,: XxX — R’ defined by the family of pseudometric

P, (% y)= {pa (x,y):ae A} satisfies the following conditions:
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M1) For any x,ye X there exists ae A such that p,(x,y)>0.

M2) For any a,a,eA there exists a,eA such that
G, (X, y):max{qal(x, y), 9., (X, y)} forall x,yeX.

Every multimetric o on a set X generates the uniformity U, and
topology T, on X. Let v, , ={(xy):p,(xy)eO(6)} for each neighborhood
O(¢) of point ¢ in the space R .

Then the family v, , where O(¢) runs through the base of the
neighborhood of the point ¢ in the space R’, forms the base of some
uniformity U, on X and the uniformity weight of U, is equal <.
G(x)={yeX:p,(x,y)eO(0)} of the neighborhood of point xe X generates
some topology T, on X and topology generated by the uniformity U

coincides to the topology T, . Hence the topological space (X,Tpf) IS

Tichonoff space [5].

Conversely, let (X,u) be a uniform space and
p.(x.Y)={p.(xy):acA}, |A =7, the family of all pseudometrics on the set
X that are uniform with respect to U. Then the family p, (x,y) has the
properties M1) and M2). Hence the mapping p.: X xX — R’ defined by the
family of pseudometrics p, (x,y)={p,(x.y):acA} isa r -metric.

However the conditions M1) and M2) are not sufficient to define
uniformity in terms of pseudometrics. This requires that ¢ -metric

p.(x.y)={p.(x,y):ae A} satisfies one additional condition:
M3) If d(x,y) is pseudometric on X with the property: for any >0

there are p, e p, and 5>0 such that d(x,y)<e provided p,(x,y)<&, then

11



dep,.
Thus 7 -metrics on X are "wider" than uniformities on X .
We introduce a partial order on the set A. We assume that a<b if and

only if p,(x,y)<p,(xy) forall x,yeX. It follows from the last axiom of

the 7 -metric that this partial order is directed.
We introduce an equivalence relation on X: xiy if and only if

p(xy)=0. Let X, =X I~ be a factorset, ~°:X — X, a factormapping. By

d. we denote the metric on X which is obtained as the result of

a

factorization of the pseudometric p,.
Let [x], :{ye X :x~ay}. Note that if a<b then [x], <[x]..

Remark 1. Let X, ={[x] :xeX}, z2(x)=[x],. If a<b then the
mapping 7> : X, — X, is defined by the rule = ([x],)=[x], for all xeX . If
a<bs<c, then =..-z)=7x;. Since p,(x,y)2p,(x,y) for all xeX that the
mapping . :(X,.d,)—(X,.d,) is continuous. Such we have obtained the
projective spectrum s={(X,,d,), 7o, A} of length r=|A consisting of

metric spaces (X,,d,)and continuous maps =, over a directed set A. The

resulting spectrum S will be called a r-spectrum of r—metric space
(X,pr).

Let X'=lim{X,, 7}, A}. If xe X is an arbitrary element then it will put
under the thread fx=x'={ z,(x):aeA}, and if a<b then 7% (z, (x))=7,(x).
From the definition of the mapping z;:X, —X,, a<b, 72 ([x],)=[x],

for each xe X and it follows from remark 1 that every thread of the limit
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X" has the form x'={z, (x)=[x],:a< A}.

Since the mapping family {;za ‘ae A} distinguishes elements of the set
X the mapping f:X — X' is injective and from the remark 1, f is a
bijection. Let define X' z—metric by the rule p,(x,y")=p. (7, (x),7.(y))=
{p.(x.y):acAl where x'={z,(x):acA},.y'={z,(y):acA}. It is easy
verified that p'(x'y') isa r—metric on X . Then z—metric space (X, p,) is
isometric to r—metric space (X", p.).

Thus, we get the following theorem.

Theorem 1. A r—metric space (X,p,) is the limit of the projective
spectrum s ={(X,.d,), z3, A} of length r, |A|=7z consisting of the metric
spaces (X,,p,) and continuous mappings z,.

Let (X,p,) be a z-metric space and xeX arbitrary point. Let
a,a,,..,a, €A be some elements and ¢,¢,,..,e, SOme positive numbers.
Then every neighborhood of the point x, has the form

Ozt ={ye X : p, (%, Y)€[0,]x[0,5,]x..x[0,&, ]} x
<[1{R: :ae Al{a,a,,...a,}} OF O ={yeX:p (X, Y)<s&, i=12..,n}.
Suppose  that O, c O where a, =max{a,,a,,...a,},

g, =min{s,&,,...5,}. Let y,eO. Then  p,(x.¥)<s, . But
Po (X%, Y0) S 05, (%0, ¥o) <8, <&,,i=12,..,n. Hence, yeO; ", Without
limiting generality, we can assume that each neighborhood of the point

xeX has the form oZ. Note that 0;°=z}(G;°) where

G ={lyl, e X,:d([y], [%],)<e}. If (X.,p) is homeomorphic to
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2
Gao

IM{(X,.d,):acA} then O =X AI1{(X,.d,):acAl{a,}}. Thus z, (0%)
and =, (0 )=X, forall aza,.

We have obtained the following theorem.

Theorem 2. A mapping =, :(X,p,)—(X,.d,) is open continuous map

forall acA.

Let (X,p,) be a r-metric space. Above we have shown how r metric
p. generates the uniformity U, on X . Consider other way to determine
the uniformity of U , .

Let U, be the uniformity on X, generated by the metric p, and ~,'U,

its preimage on X, a<A. Consider the set of all finite intersections of

elements of the family {;zjua:ae A}. It forms a base of some uniformity
which coincides with the uniformity U, .

Let (X,p,) be a complete - metric space. We show that every metric
space (X,.d,) is also complete. Let F, be the Cauchy filter of the metric
space (X,.d,), aeA. Note that ='®, Nz, =0 for all ®,eF, and
®, eF, a=b.

Then all finite intersections of elements of the family {z,'F,:ae A}
forms the base of a certain filter F that the Cauchy filter in uniform space
(x.,).

By properties of the space (X,U,, ), the Cauchy filter F converges to
some element xe X . Let x, =xz,x. Then the Cauchy filter F, converges to
x, € X,. Hence the metric space (X,,d,) is complete for all ac A.

Thus, the following theorem is true.
14



Theorem 3. Every complete r—metric space is a limit of the

projective spectrum of length r consisting of complete metric spaces.
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In this article we study subgroups of strongly paracompact, superparacompact and
compactness index <7 of topological groups, and locally x-compact groups.

Key words: Topological group, uniform group, strong paracompactness,
superparacompactness, compactness index <7.

Wnumuii  Makanmaga Ky4yTyy [apakOMIakTyy, CyIEeplapakoOMIakTyy JKaHa
KOMIIAKTYyJdyK HHJEKCH <7} OOJroH TOMOJOTHSUIBIK TpYMIajapIblH KaMTbUITaH

rpymnmagapsl, )kaHa JIOKAJIAYy A -KOMIIAKTYY IpyIIajgap U3UIACHET.
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VYpyHarTyy ce3nep: Tomonmorusuiblk rpymma, Oup KaJblOTyy Tpymmna, Ky4Tyy
[IapaKOMITIAKTYYJIYK, CYIIEpIIapaKOMIIAKTYyJIYK, KOMIIAKTYYJIyK HHICKCH < 7).

B nmamHOM crarbe  MCCIENYIOTCA  MOArPYIIl  CHUJIBHO  IIaPaKOMIIAKTHBIX,
CyNEepIapakOMIAaKTHBIX W HHAEKCa KOMIIAKTHOCTH <17) TOINOJIOTMYECKUX TPyl U

JIOKAJIbHO M -KOMITIAKTHBIC I'PYIIIIbI.

KiroueBble cnoBa: Tomonorudueckas rpyiima, paBHOMCpHasd TrpyIma, CHJIbHAA
IMapaKOMIIAKTHOCTb, CYIICPIIAPAKOMIIAKTHOCTb, HHACKC KOMIIAKTHOCTb < n.

A covering « is called finitely additive if «o°=«,
a’ ={va,:a, c a—finite}. For a covering « of subsets of a set X , we
put St(x,a)={Aca:xecA}, StM,a)={Aca:MnA=D}, xeX, McX.
Then a(x) =USt(x,a) anda(M) = USt(M, a) .

Let (G,,r) be atopological group and (G, U) be a uniform group.

The following theorems give characteristics of subgroups of the index
compactness <z, superparacompact and strong paracompact topological
groups.

A topological space X is called index compactness <n space, if every
open covering has a finite open covering cardinality < refinement; a

topological space X is called superparacompact if every open covering has

a finite component open refinement; a uniformity U is called n-pre-

Lindelof if any covering « of the set X is such that anF =< for any

Fep(X) belongs to U, and has a base consisting of coverings of
cardinality <#; a uniformity U is called pre-Lindelof if any covering o of
the set X issuch that anF =& for any F e o(X) belongs to U, and has a

base consisting of countable coverings; a uniformity U is called
presuperparacompact if any covering « of the set X issuchthat a nF #J

for any Feg(X) belongs to U, and has a base consisting of finite
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component coverings; a uniformity U is called strongly preparacompact if
any covering « of the set X is such that anF =@ for any F eg(X)
belongs to U , and has a base consisting of star finite coverings.

Theorem 1. A topological group (G,,z) is a subgroup of some index
compactness <n topological group if and only if exist uniformity U on
(G, 7) satisfying the following conditions:

1) 7, =7;
2) U isa 5 -pre-Lindelof uniformity;
3) (G,,U) is uniform group.

Proof. Necessity. Let the triple (G,,z) be a subgroup of some index
compactness <n of a topological group (G,7). Let U be a universal
uniformity of topological space (G,7). Since the closure of subgroups in

topological group is a topological group and a closed subspace of a index

compactness  <n topological group is a index compactness <p
topological group, then subgroup (G,) is an dense subgroup of the
topological group (G,,7z). Let U be the uniformity on (G,,r) induced by the
uniformity U . Then by Theorem 1 [4] the uniformity U is  -pre-Lindelsf
uniformity and z, = 7. Further from the fact that if (G,) is a group, U is an
arbitrary uniformity on (G,,z), (G,U)is completion of (G,uU) and in order
to continue the group operation from (G, z,) to (é,ra) with preservation of
continuity, it is necessary and sufficient that (G,,U) be a uniform group
(see 1, page 138, Theorem 3.3.6.), it follows that (G,,U) is a uniform

group.
Sufficiency. Let the group G exist uniformity U that satisfies the
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conditions of the theorem. Then (G,z;) is a topological group. By
Theorem 1 [4] the compactness index of the topological group (é,-,rg) IS
<7.

Corollary 1. A topological group (G,,r) is a subgroup of some
Lindelof topological group if and only if exist uniformity U on (G,7)
satisfying the following conditions:

1) 7, =7;
2) U is a pre-Lindelof uniformity;
3) (G,,V) is uniform group.

Theorem 2. A topological group (G,,z) is a subgroup of some
superparacompact topological group if and only if exist uniformity U on
(G, 7) satisfying the following conditions:

1) 7, =7;
2) U is presuperparacompact uniformity;
3) (G,,U) is uniform group.

The proof follows from Theorem 3.3.6 [see 1, page 138].

Theorem 3. A topological group (G,,r) is a subgroup of some
strongly paracompact topological group if and only if exist uniformity U
on (G,r) satisfying the following conditions:

1) 7, =7;
2) U is strongly preparacompact uniformity;
3) (G,,U) isuniform group.

The proof follows from Theorem 3.3.6 [see 1, page 138] and 3.1.6 [see

1, page 125].
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A topological space X is called . -compact if every open covering
cardinality <, has a finite open refinement: a topological space X is

called countable compact if every open countable covering has a finite
open refinement.

A uniform space (Xx,U) is said to be uniformly locally . -compact, if

there exists such uniform covering that the closures of all its elements are

4 -compact.
Uniformly locally X,-compact spaces are called uniformly locally
countable compact, i.e. a uniform space (X,U) is said to be uniformly

locally countable compact, if there exists such uniform covering that the
closures of all its elements are countable compact.

A uniform space (X,U) is said to be uniformly locally compact, if

there exists such uniform covering that the closures of all its elements are
compact.

Every uniformly locally compact spaces is uniformly locally -

compact.

Every compact spaces is uniformly locally x-compact.

A topological space X is called x-paracompact if every open covering
cardinality <z has a locally finite open refinement: a topological space X
is called countable paracompact if every open countable covering has a
locally finite open refinement.

A uniform space (x,U) is called uniformly . -paracompact if every
open covering cardinality <z has a uniformly locally finite open
refinement [5]. A covering « of a uniform space (X,U) is said to be

uniformly locally finite, if there exists such uniform covering « €U, that
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St(A, )| <N, for all Aea. A uniform space (X,U) is uniformly -

paracompact iff «“ <uU for all open coverings « cardinality <u of a
space (X,U). A uniform space (x,U) is called uniformly countable

paracompact if every open countable covering has a uniformly locally
finite open refinement [5].

Theorem 4. Any uniformly locally . -compact space is uniformly -

paracompact.

Proof. Let a uniform covering «<U of a uniform space (X,U) be
such, that the closures of all its elements are . -compact. Then for each
open covering g cardinality < of a uniform space (X,U) the covering «
is refined in g“. It means that p“<U. Therefore, the space (X,U) is
uniformly x -paracompact according to item 2. [see 5, page 320].

Corollary 2. Any uniformly locally countable compact space is
uniformly countable paracompact.

The next theorem establishes the x -paracompactness of any locally -
compact topological group.

Theorem 5. A locally x-compact topological group (G,,7z) IS u-
paracompact.

Proof. Let (G,,7) be a locally x-compact topological group. Then for
each point of the space G, including for a neutral element e there exists a

neighborhood O, the closure of which is x-compact. It is easy to see that
the uniform space (G,U,) is uniformly locally x-compact. Then according
to Theorem 4 and Theorem [see 2, page 120 and 121] the group (G,,7) IS

u -paracompact.
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Corollary 3. A locally countable compact topological group (G,,7) is

countable paracompact.
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ABOUT STRONGLY UNIFORMLY PARACOMPACT SPACES

Baigazieva N.A.
Jusup Balasagun Kyrgyz National University

In this article we study the strongly uniformly paracompact spaces. Their
connection with other properties of the compactness type is studied. The characteristics
of these classes of uniform spaces are established using the mappings. The problem is
being solved: what are the uniform spaces that have @-mapping to some strongly
paracompact metrizable uniform space for any open covering .

Key words: Uniform space, uniformly continuous mapping, strongly uniformly
paracompact space, covering, @ -mapping.
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Nnumuii Makanaza KydTyy HapakOMIAKTyy MEMKMHAMKTEP W3WIIEHET. AJapablH
Oalka KOMIAKTYy THITErH KacMeTTep MEHEH OO0JIroH OailyiaHblITapbl H3KUIEHET. bup
KaJIBIITYy MEHKUHIUKTEPAUH Oyl KIACChIHBIH MYHO316MeCY YarblAbIpYyJapablH
XKapJaambl apKeUTyy Typry3ynar. Kaamaranmaih @ adelk xkabnyy YYYH KaHIauWIbIp
KY4YTYY DapakOMIIAKTyy  METpU3alMsIaHyydy  MEHKMHIMKKE  4YarbUIraH @ -
YareUIIBIpyyra 33 O0JIrOH OWp KaJblNTyy MEHKMHAMKTEpIU Talyy jKaHa H3HIIIee
MaceJie 4YeuueT.

VYpyHurryy ce3nep: bup kaneintyy MeEHKMHAMK, OMp KaJbINTYYy Y3TYJITYKCY3
YareUIABIPYy, KY4YTYy OHMp KaJbllTyy NapakOMIAKTyy MEWKMHIMK, >Xabnyy, -
4areuIgbIpyy.

B naHHOW cTaThe HUCCICAYIOTCS CHJIBHO PaBHOMEPHO ITapaKOMIIAKTHBIC
npoctpaHcTBa. M3ydyaercss UX CBS3b C JAPYTMMH CBOMCTBaMH THIIA KOMIIAKTHOCTH.
YcTaHaBiIMBaeTCs XapaKTEPUCTUKHA ATHUX KJIACCOB PABHOMEPHBIX IMPOCTPAHCTB TMPHU
noMoIM orobpaxeHuid. Pemaercst 3amaya: HATH W HCCIENOBATh T€ PAaBHOMEPHBIC
MPOCTPAHCTBA, KOTOPBIE JUIS JIFOOOr0 OTKPBITOIO MOKPBHITUS @ 00JIaal0T paBHOMEPHO
HEMPEPBIBHBIM @ -OTOOpaXEHHEM  Ha  HEKOTOpPOEe  CHJIBHO  MapaKOMITAKTHOE
METPH3YEeMOE ITPOCTPAHCTB.

KiroueBbie cjoBa: PaBHOMEpHOE MPOCTPAHCTBO, PABHOMEPHO HEIPEPHIBHOE
0TOOpakeHHEe, CHIIbHO PAaBHOMEPHO MapaKOMIAKTHOE MPOCTPAHCTBO, MOKPBITHE, @ -
O0TOOpaxXeHHeE.

As we know the paracompactness and strongly uniformly
paracompactness playing an important role in the General Topology. In the
theory of uniform spaces, there are various variants of uniformly and
strongly uniformly paracompact spaces [1 - 9].

Everywhere in this article uniform spaces to be Hausdorff, topological
spaces are to be Tychonoff and mappings to be uniformly continuous.

A uniform space (X,U) is said to be strongly uniformly paracompact if
it is uniformly paracompact [8] and its topological space (X,z,) is a
strongly paracompact.

Proposition 1. Every separable metrizable uniform space (X,U) is

strongly uniformly paracompact.
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Proof. Let (X,U) be a separable merizable uniform space. Then the
uniform space (X,U) has a countable base B consisting of countable
coverings. It is easy to see that for any open covering g of the space (X,U)
the sequence {«,:neN}cU of countable coverings satisfies the condition
ycinouio (BP) [2]. It is clear that the space (X,z,) is a strongly
paracompact. Consequently, the uniform space (X,U) is strongly uniformly
paracompact.

As you know [2], any strongly uniformly R -paracompact space is
complete, but non complete separable metrizable uniform spaces are not
strongly uniformly R -paracompact. For example, the space of all rational
points with natural uniformity is not complete, i.e. is not strongly uniformly
R -paracompact, but it is strongly uniformly paracompact.

Proposition 2. Any uniformly Lindel6f space is a strongly uniformly
paracompact.

Proof. Any uniformly Lindelof space is uniformly paracompact and it

IS space (X,z,) is a Lindelof. Thus, the uniform space (X,U) is a strongly
uniformly paracompact.

Proposition 3. If (X,U) is a strongly uniformly paracompact then the
topological space (X,z,) is strongly paracompact. Conversely, if (X,7) is
strongly paracompact then the uniform space (X,U,) is strongly uniformly
paracompact, where U, - universal uniformity of the space X .

Proof. It is clear that the space (X,z,) is a strongly paracompact.
Conversely, let (X,7)- be a strongly paracompact topological space. Then

the set of all open coverings forms a base the universal uniformity u, of

23



the strongly paracompact space (X,z). Itis easy to see that a uniform space
(X,U,) is astrongly uniformly paracompact space.

Theorem 1. A uniform space (X,U) is a strongly uniformly
paracompact if and only if it is for any open covering «» of the space (X,U)
there exists a uniformly continuous «-mapping f of the uniform space
(X,U) onto a strongly paracompact metrizable uniform space (y,.V,).

Proof. Necessity. Let (X,U) be a strongly uniformly paracompact
space and » be any open covering of the space (X,U). Then for » there
exists a normal sequence {«, } uniformly covering realizing the condition

(BP) [2]. For the normal sequence {«,} of uniformly coverings exists such
pseudometric o on X that the inclusions «, ,(x) ={y: p(x, y)<%}can(x)

are realized for all xex and for all neN. Introduce the relation of

equivalence: for all x,ye X x~yifandonly ifitis p(x,y)=0. Let Y, be a
factor set of the set X and f:X —Y,_ is the natural mapping of the set X
into set Y,. On the set Y we define the metric as follows: for any points
v, Y, €Y We put o(y,y,)=p(f y,f'y,). It is clear that the metric o
generates uniformity v, on Y, . Obviously, the map f:(X,U)—(Y,,V,) is
uniformly continuous. Let y <Y be an arbitrary point and x be an arbitrary

point in f*y. Then there exist such number neN and Lew, that

a,(X)c L. Denote O, ={yeY:o(y,y)< 23;2}. Then

anﬂ}c a,(x) = L. Hence, f isa «-mapping.

f70, c{xe X :o(x,x) <

Sufficiency. Let for every open cover » of (X,U) there exist a

uniformly continuous «-mapping f of the uniform space (X,U) onto
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some strongly paracompact metrizable uniform space (vy,,v,). We show
that the uniform space (Xx,U) is strongly uniformly paracompact. Let » be
an arbitrary open covering of a uniform space (X,U) and f be a uniformly
continuous mapping of the uniform space (X,U) onto strongly paracompact

metrizable uniform space (Y,,V,). Then there exists a sequence of uniform

coverings {s.} of (Y,,V ). We put {« }, where «, = f'p, . Itis clear that
{a,} is a sequence of uniform coverings of (X,U). We show that for each
point x e X there exists number ne N and O e w, such that «, (x) cO. Let
x e X be an arbitrary point. Then there exist O e w, such that o, > x. By
virtue of openness of the set o, exist number ne N, such that «,(x) 0, .
Now we prove that (X,z,) is a strongly paracompact. For this it suffices to
show that a open covering « can refined a star finite open covering. Since
f is a » - mapping, every point yeY has a neighborhood o,, whose
preimage f O, is contained in at least one element of the covering .
Denote 2={0, :y eY}. Itis clear that it is an open covering of (v,z,). In it
we will refined a star finitely covering g. It is easy to see that a star finitely
open covering f g is refined in the covering o i.e. the space (X,z,) is a
strongly paracompact. Consequently, (x,U) is strongly uniformly
paracompact.

Corollary 1. The uniform space (X,U) is strongly uniformly
paracompact if and only if, then every open cover » of the space (X,U) is
uniformly »-mapping f of (X,Uu) onto some strongly uniformly

paracompact space (Y,V) .
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Proof. Necessity. Let a uniform space (X,U) is strongly uniformly
paracompact and « - arbitrary open cover of (X,U). Then identity
mapping i, : (X,U) — (X,U) satisfies the condition of the corollary, i.e. it is
the required uniformly continuous mapping.

Sufficiency. Let » be an arbitrary open covering of the uniform space
(X,U) and f:(X,U)—(X,U) IS » -mapping. Then for every point yevY
exist neighborhood O,>y, such that f'yco, where Oew. Put
B={0, :yeY}. System g is open covering of the space (v,v). Since a
uniform space (Y,V) is strongly uniformly paracompact, than for a covering
£ there exists a pg-mapping g:(Y,v) — (z,w) of a uniform space (v,v)
onto a strongly uniformly paracompact metrizable uniform space (z,w). It
IS easy to see that the mapping h=go f : (X,U) - (Z,w) of a uniform space
(X,U) onto a strongly paracompact metrizable uniform space (z,w) is
uniformly continuous. Since the g:(v,v) —(z,w) isa g-mapping, than for
each point zez there exists a neighborhood 0, >z such that g*z<B,
where Be g. Put y={0,:zez}. From f*g>w, g*i> g it follows that
h?y=frogly>f's>w. Consequently, the uniform space (X,U) is
strongly uniformly paracompact.

Proposition 4. Each closed subspace (M,u,,) of a strongly uniformly
paracompact space (X,U) is strongly uniformly paracompact.

Proof. Let 4,, be an arbitrary open covering of the subspace (Mm,u,,).
Then there exist such open family y of (X,u), that 4, =y A{M}. Denote
u={y, X \M}. It‘s clear that x is open covering of (X,U). Since the space
(X,U) is strongly uniformly paracompact, then for x exists a sequence

countable uniform covering {«,}, with properties (BP) [2]. Denote {«},
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aV =a, A{M}. Obviously, {3} is a sequence uniform coverings of the

space (M,U,,). It is easy to see that, for each point xeM exists number
ieN andL, e4,, such that o(x)=a,(x)"M cL~M=L,,. Hence,
(M,U,,) is a strongly uniformly paracompact.

Corollary 2. Any compact uniform space is strongly uniformly
paracompact.

Proof. Let » be an arbitrary open covering of the compact uniform
space (X,U) and {«,} be a sequence uniform coverings of the space
(X,U). We show that for each point x e X exists such number ne N and
Oecw, that «,(x)cO. Let xe X Dbe an arbitrary point. Than exist such
O, ew that O_>x. Since the set 0, is open, there is a number ne N such
that «,(x) c0,. It is clear that the space (X,z,) is strongly paracompact.

Consequently, (x,U) is strongly uniformly paracompact.

Theorem 2. The image of a strongly uniformly paracompact space
under uniformly open perfect mappings is strongly uniformly paracompact.

Proof. Let a uniform space (X,U) be strongly uniformly paracompact.
Let 2 be any open covering of the (v,v). For an open covering a=f 1
there is a sequence {«,}cU that satisfies the condition: for any point
xe X there ieN and Aea such that «;(x)c A. Since the mapping
f :(X,U)—(Y,V) is uniformly open, for each open cover «, U there is
such a uniform cover 4, eV, that satisfies the condition: f (¢, (x)) = 4 (f (X))
for any point xe X . Hence it follows that for any point yeY exist ieN
and Lea, such that A(x)cL. Hence, the uniform space (X,U) is

uniformly paracompact. As is known, under open perfect mappings strong

paracompactness is preserved in the image, therefore, the topological space
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(Y,z,) Is strongly paracompact, so a uniform space (vy,v) is strongly

uniformly paracompact.
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CONSTRUCTIONS TO PROVE RECOGNIZABILITY OF
TOPOLOGICAL SPACES

A.H. Zhoraev
Kyrgyz-Uzbek University

A space together with an everywhere dense set is said to be marked. Two locally
homogeneous points of the space are said to be locally distinguishable by marking set if
germs of this set in neighborhoods of these points are different. If there exists such a
marking that each two points in the space are distinguishable by it then the space is said
recognizable. A survey of constructing marking sets in various topological spaces are
presented in the paper.

Key words: topological space, everywhere dense set, marking, recognizability,
kinematical space, metrical space.

KenTyry ap xepne kowy OOJroH MEWKMHAMK OENTMJIEHTEH JIell aranar. Jrepiae
9KM OMp KaJpllTarbl YEKUTTUH aillaHajlapblHIA al KeNTYKTYH ecMesepy ap Oarika
00JIcO, aHIa all YEKUTTEP AKBIPAThUIYydy el aTajar. Jrepae MEHKHHIWKTHH ap
KaajaraH 3KM YEKUTTEPUH aXblpaTyydy MbIHAAaH KenTyk Oap 0oJico, aHIa MbIHJal
MEHKMHJUK TaaHbUIyyuy Jien arajar. Makanana OenrusiereH KenTYKTepAyH KypyyHY
KaJIIbl KOPYHYII OepHIeT.

YPYyHTTYy ce3/1ep: TONMOJOTUSIIBIK MEHKUHINK, ap >Kep/ie KOy O0JIroH KenTyK,
Oenrunee, TaaHbUTYyy4ylyK, KHHEMaTHKAJIBIK MEHKUHANK, METPUKAJIBIK MEUKHHTUK.

[IpocTpancTBO BMecTe C BCIOAY IUIOTHBIM MHOXECTBOM  Ha3bIBaeTCS
pa3MeueHHBIM. J[Be JIOKaTbHO OJHOPOAHBIX TOYKH TIPOCTPAHCTBA HA3BIBAIOTCS
Pa3NUYMMBIMKM T10 pa3MEyarolleMy MHOXXECTBY, €CIIM POCTKM 3TOrO0 MHOXECTBa B
OKPECTHOCTSIX JTHUX TOYEK pa3nu4Hbl. Eciu cymecTByeT pa3MeTka, pasIryarorias
mo0ble  JB€  TOYKM MNPOCTPAHCTBA, TO Takoe TIPOCTPAHCTBO  HA3bIBAETCS
pacrio3HaBaeMbIM. B craThe mpeacTaBiseTcss 0030p TOCTPOSHHH pa3Medaroniux
MHOYECTB B PA3JIMYHBIX TOMOJIOTMYECKUX MPOCTPAHCTBAX.

KirodeBble coBa: TOMONIOTHYECKOE MPOCTPAHCTBO, BCIOY TIOTHOE MHOKECTBO,
pa3MeTKa, pacro3HaBaeMOCTb, KHMHEMAaTHMYECKOE IPOCTPAHCTBO, METPUYECKOE
MIPOCTPAHCTBO.

Introduction
The first proposal to use active work on computer to present a virtual
(four-dimensional Euclidean) space was made [1], but he did not propose
any concrete methods of implementation. Controlled motion in various

topological spaces was im- plemented and definition of a kinematical space
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(the metric pk in such space is the minimal time of passing between points)
was introduced in [2]. “Painting” of a space constructed by means of
coalescence was proposed [3] for its evident presentation. Splitting the set
into two everywhere dense sets (white and black points) for this purpose
was proposed in [4].

A general definition of marking a space for motion in it was proposed
in [5].

Section 1 contains necessary definitions.

Section 2 presents a survey of constructions based on unique distances
between points of a marked set.

Section 3 contains results using stretched components of a marked set.

1. Necessary definitions

Definition 1. If two points of X have homeomorphic neighborhoods
then they are said to be locally homogeneous.

(For subclasses of the class of topological spaces, corresponding
morphisms must be involved instead of homeomorphisms).

Definition 2 [5]. A space X together with an every-where dense set W
(and its complement is every-where dense too) is said to be marked. Two
locally homogeneous points of a space X are said to be locally
distinguishable by marking W if germs of W in neighborhoods of these
points are different.

Definition 3 [5]. A space X is said to be locally distinguishable by a
marking W if all its locally homogeneous points are locally distinguishable.
If there exists such a marking W that space X is distinguishable by it then
the space X is said recognizable.

Definition 4 [2]. A pair: a set X of points and a set K of routes is said

to be a kinematic space (each route M, in its turn, consists of the positive
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real number Ty (time of route) and the function my : [0, Ty] — X
(trajectory of route)) if the following conditions are fulfilled:

(K1) For each different xq , X; €X there exists such M €K, that my(0) =
Xo and my(Ty) =Xy, and the set of values of Ty, for all such M is bounded
with a positive number from below (infinitely fast motion is impossible);
the exact lower boundary is the kinematical distance p.

(K2) If M={Ty, muy()} e K then the pair {Ty,, my(Tw —1t)} isalsoa
route of K (the reverse motion is possible).

(K3) If M={Ty, my(t)} e Kand T*e (0, Ty) then the pair: T* and
function m*(t)=my(t) (0 <t <T*) is also a route of K (one can stop at any
desired moment).

(K4) If {T1, my(t)} e Kand {T,, my(t)} € K and my(T{)=m,(0), then
the pair: number T* =T, + T, and function

m*(t)= /my(t) (0 <t<Ty)
(My(t-Ty) (Ty StSTi+TY)
Is also a route of K (transitivity).

Definition 5. If the shortest routes between each two points of any set
Y of a kinematic space X exist and pass along this set Y only then the set Y
Is said to be flat in the space X; if any point has a flat neighbor then the
kinematic space X is said to be locally flat [7]. Such trajectories are said to
be straight (geodesic) lines.

Definition 6. [6] If any set L < X can be presented as a trajectory of a
route M with time Ty, and Ty < 2 px (m(0) ,m( Ty )) then L is said to be a
weakly twisted line.
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2. Survey of constructions based on unique distances between

points of a marked set

2.1. [5] X = [0;1] as a metrical space. The set W is constructed as
follows: let {py, po, ...} ={2,3,...} be prime numbers.

Divide the segment [0;1] into p; equal segments by means of (p;—1)
points of W;

Divide the first of these segments into p, equal segments by means of
(p2—1) points of W and do the second one into p; equal segments by means
of (ps—1) points of W ... etc.

2.2. X is a separable kinematical space. It is proven that

(V21,22 eX) (Ve>0)(Fz3 eX)
((ox (22, 23) <E)A(x (21, 23)Z px (21, 22)) A (lox (22, 2Z5) — px (21, 22)| < €)).

Let {zx : k € N} X be a countable everywhere dense sequence.
Construct an everywhere dense set S as follows. Denote v,=z; ,v, = Z,.

Let all following points are constructed already:

Sh={v1, V2,..., Vo1, Vpn}, and let them meet the following conditions:
1) o« (zn, V) <1/n; 1) in the list D, of distances between these points all are
distinct.

If z,.1 &S, then let w,+1 = z,4+1 else find such w,; that

Ok (Whs1, Zne1)<U(n+1)/2.

Form the list T, of such points of S, that the distances from them to the
point w,.; coincide with the distances in D,. Shift the point w,.; to small
distances such that at each step one of the distances in T, changes slightly
and because of smallness none new points appear in T,. By such a way we
obtain such point v,.; that the distances from it to the points of S, differ
from all the distances in T, and px (Wn+1, Vn+1)<1/(n+1)/2, hence o (Zn+1,
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V1)< ok (Zne1, Woe)+ 0k (Wnet, Voer) <1/(n+1), the properties | and Il
remain true.
3. Survey of constructions based on stretched objects

3.1. [5] X = [0;1]", n>1 as a metrical space. Let {x,:ke N} be an
every-where dense set with distinct first coordinates in X. To construct the
set W draw segments of length 1/k along the first coordinate from each x,
ke N.

3.2. [6] X is a separable kinematical space with additional condition:
for any &0, weakly twisted line L and welL: S, (w)\L= & where S,
(W)={xeX | px(x,w)<&} is a ball.

The set W is defined as a union of weakly twisted lines Ly with
diminishing lengths ~47*.

3.3. [7]. X'is a separable locally flat kinematical space.

Definition 7. If a set B&X is not connected and there exists such
countable set AcX that the set ACB is connected then the set B is said to be
almost connected.

The set W is constructed as a union of almost connected subsets of
straight lines L, with diminishing lengths and excluding countable sets
similar to the set in 2.1.

3.4 [8]. X is a regular topological set with additional conditions. Let an
arc be a continuous 1-1-image of the segment [0;1].

Definition 8. A set obtained by means of excluding of finite number
of points (of n points) from a connected closed set is said to be a finitely-
(n-)almost-connected- closed.

Let X meet the following property of “more than one dimensionality”:

there exists a set L of arcs:
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L1) (v eX)(M el)(x eM);

L2) (V"M eLl)( ¥k eM)( 7'V being neighbor of X)(V\M =&).

The set W is constructed as union of n-almost-connected-closed
subsets of “sufficiently small” segments of arcs as n tends to infinity.

A computer program was demonstrated [9].

Conclusion

The paper demonstrates that there is sufficient difference between
“one-dimensional” and "more than one-dimensional” topological spaces
from the standpoint of recogni- zability. And the problem remains: is the
segment [0;1] as a topological space recogni- zable? It seems like the

Continuum problem.
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ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF
BOUNDARY-VALUE PROBLEM FOR A SYSTEM OF LINEAR
DIFFERENTIAL EQUATIONS WITH A SMALL PARAMETER

M.K. Dauylbayev, A.M. Mirambek
Al-Farabi Kazakh National University

The article considers a two-point boundary value problem for a system of linear
differential equations with a small parameter at two higher derivatives under the
condition that the roots of the "additional characteristic equation” are negative. In this
work, using the boundary functions and the Cauchy function, an analytical formula for
the solutions of the boundary value problem is obtained. A theorem on the asymptotic
estimate of the solution of the considered boundary value problem is proved. The
asymptotics of the solution with respect to a small parameter and the order of growth of
its derivatives are established. It is shown that the solution of the considered boundary
value problem at the left end of the segment has the initial jump phenomenon of zero
order of the second degree.

Keywords: singularly perturbation, differential equations, small parameter, initial
jump, asymptotics

“Komymua MyHe31ee4y TEHIEMEHUH TaMbIpiapbl Tepc OOJroH IIapTTa, SKU
KOTOPKY TYyHAyZarbl KHYMHE TMapaMeTpiyy ChI3BIKTYY  Jaud@epeHnuanipix
TEHJEMeTep CUCTeMAchl YIYH IKM YEeKHTTYY YEKTHUK Macenecu kapanaT. byn makanaga
yekTUK kaHa Komm QyHKUMsIapblH KOJIJJOHYH, YEKTHK MAcCeJIeCHH 4YbIrapyyHYH
aHAIMTUKANBIK (opMynackl anbiHraH. Kapanran 4YeKTHK MacelecuH 4YeuyYHYH
aCUMITOTUKAJBIK 0aanoocy JKeHYHI® TeopeMa JallIIeHTeH. YbIrapbUlbIIITHIH
ACUMIMTOTUKATBIK JKYPYIIy JKaHa aHbIH TYYHAYJIApbIHBIH ©CYY TapTHOM KUYUHE
rapaMeTp HeJre YMTYJraH/Ja MYHO3[eJreH. YIIyJl CErMEHTTHH COJl YEeTHHJETH
Kapanblll KaTKkaH YEeKTUK MaceJeCHMH 4YedyyAe OKHUHYU Japaxaaarbl HOIYHUY
TapTUNTETH OAIITANKbl CEKUPYY KyOyyIry 0ap 3K€HU KOpCOTYIIIeH.

VYpPyHTTYY cO3/16p: CUHTYISIPABIK TOJKYHIAHYY, AuddepeHnnanasik TeHaemenep,
KMUYMHEKeN mapaMeTp, alradkbl CEKUPYY, aCUMIITOTHKA.

PaccmarpuBaeTcs nByxXToueyHas KpaeBas 3ajada g CUCTEMbl JIMHEHHBIX
midepeHIMaNbHbIX ypaBHEHUH C MalbIM [apaMeTpoM TMpH JIBYX CTapIIuxX
IMPOU3BOJHBIX IIpHU YCIIOBHUHU, YTO KOPHHU <JIOIMOJIHUTCIIBHOTO XapaKTCPUCTUUYCCKOI'O
ypaBHEHMSD» OTpULIATENIbHBI. B 1aHHON CTaThe C HCMOMb30BaHUEM IPAHUYHBIX (YHKIUH
n ¢Qynkumii Komm nomydeHa ananuthyeckas Qopmysia pelleHuss KpaeBoW 3aJayu.
JlokazaHna TeopemMa 00 aCHMOTOTHYECKOW OLIEHKE peIleHHs] pacCMaTpUBAaeMOM KpaeBon
3aJa4d. YCTaHOBJIEHO aCHUMIITOTUYECKOE IOBEJEHHME PELICHHsS MU MOPSAJOK pocTa €ro
IIPOU3BOJHBIX MPHU CTPEMJIEHMM MaJIOro napamerpa K Hyiro. [lokazaHo, 4to pemieHue
paccMaTpuBaeMOM KpaeBOW 3ajaud Ha JIEBOM KOHIIE J@HHOIO OTpe3ka o00JjaaaeT
SABJICHUCM HAYAJIbHOT'O CKavKa HYJICBOTO IMOPsAKa BTOpOfI CTCIICHHU.
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KitoueBble cioBa: CHHTYNIApHOE BO3MYyILeHHe, AuddepeHnnanbubie ypaBHEHNS,
MaJlblil TapaMeTp, Ha4aJIbHBIM CKaYOK, ACUMIITOTHKA.

Consider a system of singularly perturbed linear differential equations
of the form

{ e2z" + A, (t)z" + By(t)z' + C,z+ D(t)y = F,(t)
y' + A1)z + B,(t)z + C(t)y = F5(t)

with the following boundary conditions:
h,z(t,e) = z(0,&) = ay, hyz(t,e) = 2'(0,¢) = a4, (2)
haz(t,€) = z(1,€) = B, hyy(t,€) = y(0,€) =,
where € > 0 - small parameter, and a,, a;, 8,y - known constants.

1)

Assume that the following conditions are satisfied:

I. The functions A;(t), B;(t), C;(t),D(t), F;(t),i = 1,2 on the segment
0 <t <1 are sufficiently smooth;

ILA,(t) #0, 0<t<1;
I1I. The roots of the equation u?(t) + A,(t)u(t) + B, (t) = 0 satisfy the
inequalities pq (t) # u,(t), u,(t) < 0,u,(t) <O.

From the second equation of the system (1) using the condition
y(0, e) = y we take the formula

y(t,€) =
ye o0 1 (YR, (s) = Ay(5)7' (5, €) — By(s)2(s, €))e™Js 2098 (3)
Substituting (3) into the first equation of the system (1), we get the Volterra
integrodifferential equation [2]:

L.z(t,e) = €2z +eA,()z" + B(t)z' + C,(t)z =
(4)
= F(t) + [][ho(t,5)z(s,€) + hy (¢, 5)Z(s, €)]ds
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where
F(t) = F(t) — D(t)ye_fotcl(x)dx —D(t) fot F, (s)e‘fst C1()dx g ¢

hi(t,s) = D(E)Ay(s)e ™ 29 (1, 5) = D(£)B,(s)e ™k C2(dx
We seek the solution of the problem (4) in the form [1]:
1
z(t, &) = Y3, C;P;(t, &) + S—Zfot K;(t,s, e)u(s, e)ds (5)
where K;(t,s, &) - Cauchy function, and @;(¢t,¢),i = 1,3 - boundary
functions [1], C;,i = 1,3- unknown constants, u(t, £)- unknown function.

For the function u(t, &) we obtain the Volterra integral equation of

the second kind:

u(t,e) = F(te) + fOtH(t, p, €)u(p, €)dp, (6)

where
3 t
F(t,€) = F(t) + z » j [hy (£, )P (s, €) + ho (£, 5)P; (s, £)]ds

H(t,p,e) = fptgiz [hy(t,s)K3(s,p, &) + hy(t,s)K3(s,p, €)]ds.
We solve equation (6) using a resolvent of the kernel H(t,p, ) [3]. Then,
for the solution of the problem (1), (2) from (5), (3) we obtain the
following formula:
z(t,e) = C;0,(t, &) + C,0Q,(t, &) + C3Q5(t, &) + P(t,¢),
(7)

t

y(t &) = Ve_fotCZ(x)dx + j [F2(s) — 6161(5» &) — Czéz(s» ) —
0

_ _ t
~C3Q5(s,€) — P(s,£)]e ™ Js C2(¥)ax
where

Qi(t, &) = @i(t, &) + gizfotlg(t, s,8) [, ®; (s, €)ds,
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P(t,e) = 5 [, Ks(t,5,€)(F(s) + [ R.(s,p, 1)F (p)dp)ds,
®;(t,) = [, [ho(s,p, &)®;(p, €) + by (s, p, €)@} (p, ) dp,
hi(t,s, &) = hi(t,s) + fst R.(s,p, Dh;(p,s)dp = h;(t,s) + 0(¢),i = 0,1,
Qi(s, &) = A2(5)Qi(s, &) + By(s)Qi(s,8), i =123,
P(t, &) = A,(S)P'(s,€) + B,(s)P(s, &)
To determine the unknown constants C;,i = 1,2,3 taking into account (2)

and condition

V. o=1+ fl El(S'O)+fos(ﬁl(5'0)zéo(p)"'ﬁo(sxp)zw(P))dp

d
0 2301 () iz () S

we obtain the following asymptotic representations as € — 0:

Ci=ay C=a; C3=w+0(9), (8)
where
1 L230(1)(aohy (5,0) = F () = J Ro(s, p, DF ()dp)
w=—=|p+ j ds
o 0 Z30 ()1 ()2 (s)
9)
Theorem. Under conditions | - IV, for sufficiently small & the

problem (1), (2) has a unique solution, which has the following asymptotic

estimations as € — 0:

20, ©)] < € (laol + elay| + 81 + Iyl + max|F, (©)] + max |, (0)]) +

C .
S L
+3 (Iaol +elay| + 181+ Iyl + max|F ()] + grsltngFz(t)l) |13 () p2(0)

. t

(& ol < € (lagl + elay] + B] + Iyl + max |F ()] + max [F,(0)]) +

t
C( F, (¢t F, (¢ ) e,
+ Iao|+€|all+|ﬂ|+lyl+(§2&>§l 1()|+(§2§"£§| ,(t)])e e
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where C > 0, y > 0 are some constants independent of «.
The proof of the theorem follows from (7) taking into account (8), (9).
It follows from theorem that the solution of the boundary-value

problem (1), (2) at the point t = o have the following orders of growth

z(0,e) =0(1), Zz'(0,e) =0(1), z""(0,e) =0 (;), g - 0.

2

It means that the solution of problem (1), (2) at the left end of the segment

has the initial jump phenomenon of zero order of the second degree.
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ON EIGENVALUES AND EIGENFUNCTIONS OF VOLTERRA
INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS WITH
A SINGULARITY

Baizakov A.B., Aitbaev K.A., Sharshenbekov M.M.
Institute of Mathematics of the National Academy of Sciences

It was found that integral and integro-differential equations of Volterra with a
singularity have eigenvalues and eigenfunctions.
Key words: Volterra integral equation of the second kind, Volterra integral
equation of the third kind, eigenfunctions, eigenvalues, singular point.
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OsreueneHreH BoabTeppa UWHTETpaNIbIK JKaHA UHTErpo-auddepeHITHaIIBIK
TEHJEMENIEpH ©3JyK MaaHWIepre aHa o31yK (QyHKIHsIIapblHA 33 SKCHIUTU
AHBIKTAJIIBL.

Ypyurryy ce3nep: |l Typaery Bonbsreppa unrerpanasik teHaemecu, |l Typaery
Bonbreppa MHTErpaNbik TEHIEMECH, ©3AYK (YHKIHUIAp, ©3AYK MaaHUJEp, ©3roue
YCKHT.

OOHapyXeHO, YTO WHTErpajbHbIE W HHTErpO-TuddepeHIaTbHbIC YpaBHEHHUS
BounbTeppa ¢ 0c00€HHOCTHIO HIMEIOT COOCTBEHHBIE 3HAUEHUS U COOCTBEHHBIE (DYHKIIHU.

KiroueBbie ciioBa: mHTerpainbHoe ypaBHeHue Bombreppa Il poma, mHTErpamsHoe
ypaBHenue Bombreppa Il poma, coOcTBeHHBIE (QyHKIIMM, COOCTBEHHBIC 3HAUCHUS,
ocobast TouKa.

The eigenvector of a linear operator A in a linear vector space R is
such avector xeR, such that
Ax=Ax  (x=0), (1)
where 1 - is some scalar, called the eigenvalue of the operator A,
corresponding to the eigenvector x.
It is known that if x is an eigenvector of the operator A corresponding

to the eigenvalue 2, then the same is true for any vector x=0.
If X,%,...% - are the eigenvectors of the operator A corresponding to

the eigenvalue 4, then the same is true for each vector
aX +a % +..+ax =0, these vectors generate a manifold invariant with
respect to A.

It is known that a homogeneous Volterra integral equation of the

second kind with a continuous kernel does not have eigenfunctions

u(t):}th(t,s)u(s)ds, K(t,s)eC(a<s<t<h) (2)

that is, for equation (2) a continuous solution other than zero does not exist.
In contrast to them, the Volterra integral equation of the third kind can

have nontrivial (both continuous and discontinuous) solutions.
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This is a new fact that does not take place in the theory of Volterra
integral equations of both the second and the first kind.
For example, consider a simple equation with a singularity in the

kernel

ut)=1 j U(s) s 3)

Any value of the parameter Ae(0,4+) 1is an eigenvalue, and the
corresponding eigenfunction will be the function t*.

It should be noted that this operator (3) has a continuous spectrum.
We also note that the eigenfunctions corresponding to different eigenvalues
of operator (3) are linearly independent.

Let's look at another example.

Example 1. Consider the integral VVolterra equation of the third kind

t2u(t) = —zj (2t - 6s)u(s)ds. (4)

Let 2=-1. Then the functions u,(t)=6t, u,(r)=2 are solutions (4),
that is, the eigenvalue 1 =-1 has a two-dimensional geometric multiplicity.
Obviously, u(t)=6tc,+2c, will also be a solution to (4), where ¢, ¢, are
arbitrary constants.

Example 2. Consider the Volterra integral equation with a singularity
in the kernel

u(t)=lj(t —:33 )u(s)ds. (5)
0 S
Denoting “(% =v(t), we have

tov(t) = Aj(tz —~65”)v(s)ds. (6)
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Let 2A=-1. Then the functions u,(t)=t, u,(rf)=1 are solutions (6), that
IS, the eigenvalue 4 =-1 has a two-dimensional geometric multiplicity.

It is clear that equation (6) has a two-parameter family of solutions
v(t)=ct+c,. And equation (5) has solutions in the form of
u (t) =t*, u,(r)=7%, as well as a two-parameter family of solutions

u(t) =ct* +c,t°,
where c¢,,c, are arbitrary constants.

Example 3. Consider the Volterra integro-differential equation with a
singularity in the kernel

(du
dt

+ 2@@@ = Au(t). (7)
If 2=3, then equation (7) has two eigenfunctions: u,(t)=t, u,(f)=¢ and
thus also has a two-parameter family of solutions
u(t) =ct+c,t?,
where c,,c, are arbitrary constants.
Example 4. Consider the Volterra integro-differential equation with
the singularity

t?j—l:+2%j;u(s)ds:/1u(t). (8)

If we denote v(t) = j u(s)ds, v(0) =0, then we obtain the Cauchy problem

for the ordinary differential Euler equation

t2v"(t) — AtV'(t) + 2v(t) =0, v(0) =0. 9)
We will seek a solution to (9) in the form v(t)=t*. We will take into
account that Rea>0. From this we obtain a characteristic equation of the

form
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+ﬂ/ 2_
ala-1)-Aa+2=0, a*—(A+Da+2=0, amz(’ﬂl)‘ é’“l) 8

For those 4 for which Ree, >0,i=12 the initial problem (9) always has a
solution. In particular, for A=2, equation (9) has a solution
v, (t) =t , v,(t)=t>. Then equation (8) also has a two-parameter solution of
the form u(t) =ct+c,t?,, where cq,c, are arbitrary constants.

For 4=1, equation (9) has a solution v, (t) =t*", v,(t) =t*". Then equation (8)
has a two-parameter solution of the form u(t) =c @+i)t' +c,(1-i)t". Indeed,

we take one of these components of the linear combination of solutions

u(t) = (L+it'. Substitute into equation (8):

t(1+i)it‘—1+%tl+i =1-(+i)t',
@A+)i+2=1+1), i-1+2=1+1.
Which is what was required to be proved.
The second component of the linear combination of solutions

u(t)=(@-it" is checked similarly:

t(l—i)(—i)t”+%t“ =1-(1-it™,
—1-i)i+2=@1-i), —i-1+2=1-1i.
Which is what was required to be proved.
The set of all eigenvalues of Volterra integral and integro-differential
equations with a singularity will be called its spectrum.
It turns out that the Volterra integral equation with singularity (8) also
has a continuous spectrum.
Note that integro-differential equations with constant limits of
integration with a fixed singular point also have a number of features.

Example 5. An integro-differential equation
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t[(;—:'+8t:[ su(s)dsJ =u (10)

IS given.
If 2=4, then equation (10) has a corresponding eigenfunction u(r)=¢* and
thus also has a one-parameter family of solutions
u(t) =ct?,
where c is an arbitrary constant.

Example 6. Let's solve the integro-differential equation
du ¢
a - u. 11
t[dt +at!su(s)ds] Au (11)

If a=-8, 1=-2, then equation (11) has the corresponding eigenfunction
u(?) =¢ and thus also has a one-parameter family of solutions

u(t) =ct,
where c¢ is an arbitrary constant. In addition, for a=-8, 1=-2, equation

(11) has a solution with a singularity at t=0 in the form

u(t) =c[t‘2 —itj, (12)

8+a
where ¢ is an arbitrary constant.

Thus, in the case when there is an integro-differential equation with
constant limits of integration in some cases, for example, equation (11) has
a continuous solution u(t)=ct, and in another case it has a solution of the
form (12).
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ON THE BOUNDEDNESS OF SOLUTIONS AND THEIR FIRST
DERIVATIVES OF A SINGLE NONLINEAR VOLTERRA
INTEGRO-DIFFERENTIAL SECOND-ORDER EQUATION ON
THE SEMI-AXIS

Iskandarov S., Bokobaeva Z.B.
Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic

Sufficient conditions are established for boundedness on the semiaxis of all
solutions and their first derivatives one class of nonlinear integro-differential equations
of the second order of Volterra type. For this, the method of partial cutting is being
developed.

Keywords: nonlinear integro-differential equation of the second order,
boundedness of solutions, boundedness of the first derivatives of solutions, method of
partial cutting.

Bonbreppa THOMHIErM SKMHYM TapTUITETH OHMp KIaccTarbl CHI3BIKTYY 3MeC
uHTErpo-audepeHINaNAbIK  TEHJIEMEHUH YbITapbUIBIITAPBIHBIH JKaHA  aJlap/bIH
OMPUHYM TYYHAYJNAPBIHBIH KAapbIM OKTO YEKTEIT€HIWTMHUH >KETUINTYY IIapTTapsbl
TabbIaT. by yuyH jkekede Kecyy MeToly OHYKTYpYJIeT.

YpyHTTYy ce34ep. CBI3BIKTYy OJMEC OJKHHYM TapTUITETU UHTETPO-
g depeHIHaIAbIK TEHJIEME, YBITapbUIBIIITAPABIH YEeKTEeJITeHNTH,
YBITapbUIBILITAPABIH  OUPUHYM TYYHAYJNApPBIHBIH  YEKTEITEHJUTH, XKeKeue Kecyy
METO.Y.

VYcTaHaBnUBalOTCSl JIOCTaTOYHBIE YCJOBHSI OrPaHUYEHHOCTH Ha TIOJyOCH
pCH_IeHI/Iﬁ U HUX TMCPBBIX TMMPOU3BOAHBLIX OAHOI'0 KJlacCca HEJIMHENHBIX HHTCT'pO-
mudepeHIMaNbHBIX  ypaBHEHUN BTOpOTo mopsaka Ttuma BomsTeppa. s storo
Pa3sBUBACTCA MCTO] HaCTUIHOT'O CPC3bIBAHUS.
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KitoueBbie croBa: HenWHEWHOe UHTErpo-muddepeHranTsHoe  ypaBHEHUE,
BTOPOTr0 MOPSAJKA, OTPAHUYEHHOCTh PEIICHHI, OIPaHUYEHHOCTh NEPBBIX MPOU3BOIHBIX
pELIEHHH, METOJ YaCTUYHOIO CPE3bIBAHUA.

All featured functions from t,(t,7).(t. x.¥) are continuous and the

relations take place at {2t t=72t; [X|,[y|<;d =[t,,«);  IDE - integro-
differential equation.

Problem. Establish sufficient conditions for boundedness on the half-
interval J of all solutions and their first derivatives of a second-order
nonlinear IDE of Volterra type of the form

X"(t) +h(t, x(t), X'(t)) + a(t) g (x(t)) +j K(t, o)x'(z)dz = f(t), t>t,. (1)

By the solution of IDE (1) we mean the solution x(t)eC?(J,R) with

any initial data x“(t,) (k=0,1). The existence of such a solution is

assumed, although it can be established (under additional conditions) by the
method of monotone operators [1].

Note that a similar problem was studied earlier in [2] by the method of
weightin and cutoff functions [3]. The results of this paper are a
supplement to the paper [2], since we consider another class of IDE of the
form (1) as a development of the partial cutting method [4].

Let's get down to getting the main result.

Let [4]:
K(t,7) = Z K, (7). (K)
f0=3 0, )

w,(t) (i=1...,n)— some cutting functions,
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P(t,2) =K, &) ()", T.(t7)=K,(t,7)(w(z))" - partially cut kernels
(i=1..n;E@®)=fOW®)"
RO=A®+B()({=1..n), (P)

¢ (t) (i=1...,n)— some functions.

For an arbitrarily fixed solution x(t) IDE (1) is multiplied by x'@t) [5,
p. 194-217], we integrate within the range of t, before t, including in
parts, while introducing the conditions (K),(f),(P), function
w.(t), P(t), T.(t,7), c.(t), we apply lemma [4]. Then we get the following

identity:

(x'(t))* + Zj X'(s)h(s, x(s), x'(s)ds +a(t)G(x(t)) —ja'(s)G(x(s))ds +
f f

n t

Z{A(t)(xia,to»z ~ [ AG)(X(s.8,)7ds + B (O)(X, (t.t,))* -

i=1 to

~2E, (t)xi(t,to)+ci(t)—}[B{(s)(xi(s,to»z —2E[(5)X,(s,t,) + (2)

)

+¢,(s)]ds — 2.I[JS'Ti', (s,7) X, (z,t,)x'(s)d rds} =c,,

tlo

where
G()=[g)du, X(t.7)=[wx'()dn (i=1..n),
c. = (K(6)) +a)G () + X6 )

By passing from identity (2) to an integral inequality and applying
Lemma 1 [6], we prove the following
Theorem. Let 1) the conditions (K),(f),(R); 2) x'h(t,x,x")>0;

3) G(t)>x at |x—>w; 4) a(t)>a, >0, there is a function a’(t)eL'(J,R,)
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such that a'(t)<a“(t)a(t); 5) A(t)>0,B(t)>0,B(t)<0, exist a functions
AM)el'(J,R), () such that AM<AMAWL, (EXE) <B 1))
(1=1..n;k =0,2);

6) |

T.t7)|(A() ?drel’(J,R).

Then any solution x(t) eC?*(J,R) and its first derivative x'(t) bounded on

J.

In this case, we obtain the integral inequality

u(t) = (x'(t))* + Zj x'(s)h(s, x(s), x'(s)ds +a(t)G(x(t)) +

f

Y ADXEL) <.+ [a G+ [ A (G +

+(u()? [T (5,9 (A (@) (u(2)?d |
t
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ON THE STABILIZATION OF SOLUTIONS OF A LINEAR
VOLTERRA INTEGRO-DIFFERENTIAL EQUATION OF THE
THIRD ORDER ON THE SEMI-AXIS

!Iskandarov S., “Baigesekov A.M.
YInstitute of Mathematics of the NAS of the Kyrgyz Republic,
2Suluktu Regional Institute of BatSU

Sufficient conditions are established for all solutions to tend to a finite limit and
the first derivatives of all solutions tend to zero, i.e. stabilization of solutions with
unbounded growth of the argument of a third-order linear integro-differential equation
of Volterra type. For this, a non-standard method of reducing to a system is being
developed with the introduction of some three weighting functions. An illustrative
example is given.

Keywords: linear integro-differential equation of the third order,
stabilization of solutions, non-standard method of reduction to the system, weighting
functions.

Bonbreppa  TuOMHAErMm  y4yHYy — TapTUNTErH  CBI3BIKTYY  MHTErpo-
i depeHIMaNIBIK TEHIEMEHUH Oap/AbIK YbITapbUIBIIITAPBIHBIH apTyMEHT YEKCHU3
OCKOHJI® TOPHU3OHTAIJBIK acUMIOTOTara 33 OONYHIYHYH >KaHa ajapJblH OUpUHYU
TYYHIyJapbIHBIH HOJI'® YMTYJIYHIYHYH, 0.a. CTaOMIM3aAIMsUIAHBIIIBIHBIH SKETHIITYY
mIapTTapsl TabbulaT. byl ydyH KaHAAWIblp Y4 CaIMAKTHIK (YHKLUSIAPAbI KAMThITaH
CTaHIApPTTHIK AMEC OpAyHa KOIY apKbUIyy OepuireH TEHIEMEHHU CUCTeMara KelTHPYY
METOAY OHYKTYpyneT. MnmocTpaTUBANK MUCAT Typry3yJar.
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YpyHTTYY ce31ep: YUYHUY TApTUIITETH CHI3BIKTYY HHTErpo-AuQQepeHIIHaIIbIK
TEHJIEME, YbIrapbUIBIIITAPABIH CTa0MIN3alUUIaHbIIIbI, CUCTEMara CTaHJapTTBIK 3MeEC
KEITHPYY METOJy, CaJIMaKTHIK (QDyHKIHSATIAP.

VYcraHaBIUMBaKOTCS JIOCTATOYHBIE YCIOBUS CTPEMJICHHUS K KOHEUHOMY TMpeleny
BCEX pELICHUN U CTpPEeMJICHHS K HYNIIO HEPBBIX MPOU3BOAHBIX BCEX PpEIICHMI, T.€.
cTaOWIM3aluy pelICHU MPH HEOTPAaHUYCHHOM POCTE apryMEHTa JIMHEWHOTO MHTETPO-
muddepeHIIMaTbHOTO ypaBHEHUSI TpeThero mnopsaka Ttuna Bombreppa. s 3toro
pa3BUBAETCSA HECTAHIAPTHBIM METO]I CBEJICHUS K CUCTEME C BBEJICHUEM TPEX HEKOTOPHIX
BecoBBIX GyHKIUH. [[puBOANUTCS MILTIOCTPATUBHBIN PUMED.

KitoueBbie ciioBa: nuHelHOE WHTETpo-auddepeHIaTLHOe ypaBHEHUE TPETHETO
MopsAaKa, cTabunu3anusi pelieHuil, HeCTaHIAApTHBIM METOJ CBEIEHUS K CHUCTEME,
BECOBbIC (DYHKIIHH.

All appearing functions and their derivatives and relations and take
placeat t > t,, t =1 = ty; [ty, ); IDE-integro-differential equation.

Definition. The stabilization of solutions to a third-order linear
Volterra IDE is understood as the tendency to the horizontal asymptote of
any of its solutions and the tendency to zero of the first derivatives of these
solutions as t — co.

Note that our definition of stabilization of solutions is practically
foreseeable and is given in accordance with the studies of V.V.
Rumyantsev [1] on the part of the variables of solutions of the system of
differential equations.

In our work, we solve the following

Problem. Establish sufficient conditions for the stabilization of any

solution to a third-order linear IDE of Volterra type of the form:
t

x"'(t) + a(Ox" (1) + a; ()x" (1) + ag()x(t) + f [Qo (¢, T)x(7) +

to
+Q.(6, D)x' (1) + Q. (6, D)x" (D] dr = f(b), t=tp. (1)
We are talking about solutions x(t) € C3(J,R) to IDE (1) with any

initial data x®)(¢t,) (k = 0,1,2). Each such solution exists and is unique.
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To solve this problem, a non-standard method of reduction to the
system from [2, 3] is developed, the method of transformation of the
equations of V. Volterra [4, pp. 194 - 217.], The method of weight and
cutoff functions [5], the method of integral inequalities [6] .

We pass to the presentation of the main result.

In the IDE (1), we will make the following non-standard replacement
[2,3]:

x"(t) + p(Ox"(©) + q(O)x(t) = W(O)y(D), (2)
where p(t),q(t), W(t) - are some weighting functions, and W(t) > 0,
y(t) - is a new unknown function.
Then, similarly to [2], IDE (1) is reduced to the following equivalent

system:

x"(t) +p©)x'(t) + q(®)x(t) = W(©)y(t),
y'(t) + by ()y(t) + by (t)x"(t) + bo(t)x(t) + (3)
+ ftto[Po(t; T)x(t) + P,(t,T)x' (1) + K(t,©)y(r)] dTt = F(t), t = t,,

where b, (t) = a,(t) —p(t) + W' (&)W ()L,
b, (t) = [a,(t) — a,(O)p(t) + p*(t) —p' (&) — q(®IW ()T,
by(t) = [ap(t) — a(®)q(t) + p(Dq(t) — q'OIW ()™,

Po(t,7) = (W(©) [Qo(t,T) — Q,(t,Dq(D)],
P(t,7) = (W) [0t 102 (6 Dp()],

-1 -1
Kt=(W®) toww@, FO=W®) fO.
We apply the method of weighting functions [6] and the method of
weighting and cutting functions [5] to system (3).

Let [5]: 0 < ¢(t) - be some weighting function,

K(t,1) = Z K, (t,7), (K)

52



FO = ) R, (F)
i=0

Y;(t) (i =1..n) - some cutting functions,

Ri(t,7) = p(OK(6, 1) (W (YD), Ei() = p(OF () (:(0)
Ri(t,ty) =A;(t) +B;(t) (i=1..n), (R)
¢;(t) (i = 1...n) - some functions

For an arbitrarily fixed solution (x(t),y(t)) of system (3), we
multiply its first equation by ¢@(t)x'(t) [6], the second equation
by y(t) [4,p.194 — 217], then we add the obtained relations and integrate
within the range from t, to t, including by parts, then, similarly to [5], we
introduce conditions (K), (F), functions vy;(t),R;(t,t), E;(t), condition
(R), functions ¢;(t) (i = 1...n), we apply Lemmas 1.4, 1.5 [7]. As a result,

we get the following identity:

t

o((x'(1)" + j AG)(x' () ds + (D) q(®) (x(D)” + (y(©)" +

to

+2 [ L) ds + ) (4O 0) +BO D) -

—2E;()Y;(¢, ty) + c;(t) — f [B{(s) (Yi(s, t0))” — 2E{ ($)Yi(s, o) +
+c!(s)]ds + f R.(t,7) (Yi(t, 1) dr} =

1 2
= 42 f £ @©a) (x()" +

to
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+()W(s)y(s)x'(s) +

N =

Y LA (%G t0) +

+ fR{;T(S, T) (Yi(s, T))ZdT]dS} +

to

+2 [ YOS = by ¥ (5) ~ bo(5)x(5) -

N

— j Py(s,t) x(7) + Pi(s,7)x'(7) + Ky (s, T)y(7)]dt}ds, 4)

to

where A(t) = 2¢(t)p(t) — ¢'(t),

Yi(t,7) = fwi(n)y(n) dy (i=1.m), c =p)(x )" +

0 () () (x(t))" + (¥(8))” + D cilto).

Theorem. Let conditions 1) ¢(t) > 0, W(t) > 0, (K), (F), (R) are
satisfied; 2) A(t) = 0; 3) p(t)q(t) = g, > 0, there is a function
0< q*(t) € L'(J, R,) such that (¢(£)q(t))" < q*(D)e(t)q(t);
4) b,(t) = 0; 5) A;(t) =0,B;(t) =0,B/(t) <0,R,.(t,T) =0, there is a
function A;(t)el*(J,R,), c;(t), R;(t)el*(J,R,) such that Aj(t) <

4,040, (EP®) < BP0, Ri(6,7) < Ri (DR} (6,)
(i=1..n; k=0,1);

6)(0(0) TW(®) + 1Fo (O] + B (OI(@(D) 7 + bo(D)] +
+ [ LR D1+ IR EDI(0) + 1K 0] dr €L, RAOD.

to
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Then, for any solution (x(t),y(t)) of system (3), the following

statements are true:

(O] <YM (p(0) %, G
[ AGS)(x'(s))ds < M(c), ®)
x| < q, ), (7)
()] <M(c), (8)
Ji ba()((s))?ds < M(c), ©)
A4t )" < M(c), (10)

Where  M(c.) = [V& + ;e VU B () ds]2exp(2 I {% q°(s) +
+(9())?W($) +2 T, [4; (s) + R ()] + [b1()I((s)) 2 +

+Hbo() 4y > + 7 [1Po(5, D) 4 * + 1Py (s, DI(@(D)) 2 +
+|Ko (s, Dl]dr}ds) < oo,

1 1
V) =5q' 0+ (p(©)2W(r) +

1% -3
+5 Z[A:fu) +Ri (O] + 1. (OI(@(®) 2+

t
1 1

+|bo(D)lgq, 2 + f [1Po(t, D) q, 2+ [P, DI(0(1) 2 + |Ko(t, D] dx.

to
By virtue of conditions 1) — 5) of the theorem, we pass from identity

(4) to the following integral inequality:
0 <u(®) < @) (x'(t)" + f AGs)(x'(s)) ds +
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+ao(x©)” + () +2 [ L) ds + Y (4O 1) +

t t

+ f R (t,7) (Yi(t, D)) dr] < c, +2 J {%q*(s) + ((p(s))%W(s) +

to to

1 n
Ez A;(s) + R/ (s)}u(s)ds + 2 j(u(s))z{ |[Fo(s)| +

N
_1

1
b I (0()) ()2 + (5Dl 2(u(s))? + j IPo(s, D) qq 2 +
to

HP, D I(0(D) 7 + [Kos, DI (@) *delds. (1)

We apply Lemma 1[6] to integral inequality (11) and, based on
conditions 3), 5), 6), theorem, we have

u(t) < M(c,). (12)
Inequality (12) implies statements (5) — (10) of the theorem.

Corollary 1. If all conditions of the theorem are satisfied and

1) (@(£)"z € L1(J, R,\{0}), 2) lim,_.., (t) = oo, then any solution
X (t) to IDE (1) is stabilizable.

This follows from assertion 5) of the theorem, namely, based on
condition 1) of Corollary 1, we have x'(t) € L*(J,R), whence it follows
that there is a finite limit: |lim;_ . x(t)| < o0, and condition 2) of this
corollary gives: lim;_,,, x'(t) = 0.

Corollary 2. If all conditions of the theorem are satisfied and
A(t) >0, (A(t))™t € L1(J,R,\{0}), then any solution x (t) to IDE (1)
tends to a finite limit as t — oo.

The statement of this corollary is obtained from:
56



Ix'(®)] = (A@) 2 (A(t)) 2 Ix' (O] <5 (A(t)) + A (x'(1)?]
integration within the limits from ¢, to ¢, taklng into account statement (6)
of the theorem, similarly to [8].

Corollary 3. If all conditions of corollary 2 are satisfied and condition

2) of corollary 1 is satisfied, then any solution x(t) to IDE (1) is

stabilizable.
Example. For IDE (1) with a,(t) = 3et, a,(t) = 2e%* + e* — E +
-y _ 2" 1 —3t Q2(t,7) -2t-t,
+sine™*, ay(t) = 2 @iy 10 , Qo(t,T) = — — 15e

Q.(t,7) = Q,(t,1)e” +23e >tsin(tr + 1), Q,(t, 1) = e t*" [ :

t—7+2

F(t) = e3 t(sint)% _ 31e”t

t+7+3 } ; 1
+exp (—)] ettt (sint sint)7 — v s

t+7+4 (t+r+1)5 !

all conditions of the theorem, conditions 2) of corollary 1, all conditions of
corollary 2 are satisfied for p(t) = et, q(t) = Hiz W) =e™, o(t) =
t+1, here to =0, by(t) =2et—1, b(t) =elsine 2, by(t) =
—10e7?t,

Py(t,7) = —15e~t~7, P,(t,7) = 23e *sin(tt + 1), K(t, 1) = [—

t—T+2
1
E+HT+3\1  4t44T /. N _ e*(sint)7 31
eXp(t+r+4)]e (sint sinT)? (t+7+1)5 "’ )= t+5 t2+8’
1
- - _ — L4t (cint)T
KO(t,T) = —m,Fo(t) = _tZ I8 = 1,1,01(1:) =e (Slnt)7,
Ri(t,7) = 4 t+7+3 4,0 <+3)
1(60) = gt e A = ey

1
Ai(t) = T2 Ri(t) = T D2 ,B1(t) = =Y
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1
F(t)_e‘“(sintﬁ E, () = 1 ) = 1
W=y MW e al =

Therefore, any solution x(t) of such an IDE (1) is stabilizable.
Thus, we managed to find a class of third-order IDEs of the form (1),

for which the problem posed above can be solved.
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ESTIMATES OF SOLUTIONS AND THEIR FIRST DERIVATIVES
OF AWEAKLY NONLINEAR SECOND-ORDER VOLTERRA
INTEGRO-DIFFERENTIAL EQUATION WITH DELAYS

'pakhyrov Z., 2Khalilov A.T.
'|. Razzakov KSTU,
?Institute of mathematics of the national Academy of Sciences of the Kyrgyz Republic

Sufficient conditions are established for estimating the boundedness, power-law
absolute integrability on the semi-axis, and the tendency to zero for unlimited growth of
the argument of a weakly nonlinear second-order integro-differential equation of the
Volterra type with delays. An illustrative example is provided.

Keywords: second-order integro-differential equation, argument delays,
asymptotic properties of solutions, asymptotic properties of first derivative solutions.

OkuH4YM TapTtuntern BombTreppa THOMHAETM CBHI3BIKTYY ChIMall KEUUTYYdY
apryMeHTTEpPHU 6ap UHTETpo-Au(depeHLInaTbabIK TEHJIEMEHUH OapabIK
YBITapbUIBIIITAPBIHBIH JKaHA alapJblH OWPUHYM TYYHIYJIAapbIHBIH JKapbIM OKTOTY
ACHUMITOTHUKAJBIK  KacueTTepuH  (0aalooIOpyH,  YEKTEITSHIUTHH,  Japaxkanyy
aOCONIOTTYK WHTETPaJIaHbIIIbIH, aPTyMEHT YEKCH3 OCKOH/IO HOJIre YMTYIYYCYH)
KaMCBhI3 KbUTYY4Y JK€TUIITYY IIapTrap Tadbuiat. MmocTpaTUBIMK MUCAN Typry3yar.

YPYHTTTYy ce3/1ep: 3KMHYM TapTUOTETH HUHTErpo-auddepeHraniblk TeHIeMe,
KEUUIyYydy apryMEHTTEp, UbIFapbUIBIITAPABIH  ACHUMIITOTHKAJIBIK  KaCUETTEPH,
YBIFaPbUIBIILITAPIbIH OUPUHYN TYYHYJIaPbIHBIH ACUMITTOTHKAJIBIK KACUETTEPH.

VYcTaHaBnUBalOTCSl JTOCTAaTOYHBIE YCJIOBUS Ui OIIEHKH, OrPaHUYEHHOCTH,
CTENEeHHON abCOJIIOTHOW WHTETPUPYEMOCTH Ha TOJYOCH, CTPEMIICHHsS K HYJIIO IpU
HEOTrpaHMUYEHHOM POCTE apryMeHTa cj1abo HeIMHEWHOTo HHTerpo-nuddepeHaibHoOro
YpaBHEHHUs BTOpOro nmnopsaka tuna Bonbreppa ¢ 3amasabiBaHusMu. IIpuBogurcs
WJUTIOCTPaTUBHBINA IPUMED.
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KitoueBble cioBa: MHTErpo-audepeHaIbHoe YpaBHEHHE BTOPOTO IMOPSIKA,
3ala3ibIBaHusl APryMEHTOB, ACUMIITOTUYECKHE CBOMCTBA PELICHWM, aCUMIITOTHYECKHE
CBOMCTBA IIEPBBIX IPOM3BOHBIX PELICHUM.

All functions that appear in the work are continuous when
t>t  t>7>t,, | x|,|yl|,|z|<o; J =[t,,©); IDE - integro-differential
equation.

Problem. Establish sufficient conditions for estimating power-law
absolute integrability on a half-interval J, tending to zero when t —o0 all
solutions and their first derivatives of a weakly nonlinear second order IDE
of the Volterra type with a delay of the form:

X"(t) +a, (t)x'(t) +a, (t)x(t) =

=F(t x(7, (). X' (7, (t)),I; H(tz, X(7,(2)), X' (7, (7))d7), t=t, (1)
where are the functions F(t,x,y,z), H(t,z, X, Yy) satisfies the conditions of
weak nonlinearity

{I Ft.xy, 2)I<F @)+ 9, x]+9,®) | y[+9,(®)]z], (F.H)
|H{t,z.x y)I<g,(t ) [ x|+9,t.7) | y|
with non-negative functions Fy(t), g«(t) (k=0,1,2), gs(t,7), 94(t,7);
delays 7 (t) (k=1,2,3,4) meet the conditions:
to <y ()<t (k=1,2,3,4),
the initial set E;, consists of a single point {to}.

To solve this problem, the following methods are used: the method of
weight functions [1], the squaring method [2, p. 28], the method of integral
inequalities with delays [3], and the Lyusternik — Sobolev Lemma [4, 393-

394; 5].
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The solution of IDE (1) is understood as the solution x(t) eC?(J,R)
with any initial data x¥(t;) (k=0,1). Due to conditions (F,H), ( ) such

solutions exist.

For an arbitrarily fixed solution x (t), both parts of the IDE (1) are
multiplied by a certain weight function 0 < ¢ (t) [1], then both parts of
the resulting expression are squared [2, ¢.28], and integrated in the range

from t, to t, including in parts. Then we get the following identity:

u(t) = f [(@(s))* (X"(s))" + D, (s)(X'(5))” + Dy (s)(x(s))" Ids + A)(x(t))" +
+2(p(1))" a8, (X)X (1) + (p(1)) & (DX (V)" =
=u(t) + [ (p(5)F (5;0)°d

where D, (t) = (¢(t)a, (t))* — 2(o(1))*a, (t) —[((t))" a, (O],

D, (1) = (p(t)a, ()" — A1), A(t) =(p(1)) &, (t)a, (t) — [(»(1)) a, (]

(2)

Let
AD=AMO+AQD, AMD>0, A()=0, (A)
B(t)=(p(1)’a, () =B,(t)+ B, (), B,(t)>0, B,(t)=0. (B)

We pass from identity (2) to integral inequality and apply lemmas
about integral inequality with delays [3], we prove

Theorem. Let 1) ¢ (t) > 0, the conditions (F,H), (), (A), (B);
2) D,(1)=0; 3) (p1)*(a, (1))’ <A, MB,(1); 4) (1)) (R 1)) +
+ () {9, OA O) ™ + 9, OB, (7, (1)) ™ + gz(t)I; [9,(t, D)(A (. (@)™ +
+9,7)((B,(7,(2) " 1d7} e L'(J,R.).

Then for any solution x (t) the statements are true:
I;[(co(S))Z(X”(S))Z + D,(8)(X'(5))” + Dy (s)(x(s))*1ds = O(1), (3)
X(t) = (A (1)) " 0(), (4)
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x'(t) = (B, (1)) "*O(), ()

From estimates (4), (5), we can deduce consequences about the
asymptotic properties of x®(t) (k=0,1) of IDE (1), similar to consequences
3.1-3.3[2, p.117].

From statement (3), it immediately turns out

Corollary 1. If all the conditions of the theorem are met and
@ () > @o>0, D¢ (t) > Dy > 0 (k-0,1), then any solution of x(t) and its first
derivative x'(t) tends to zero att — .

In this case, we have x¥ (t) e L 2(J,R) (k=0,1,2) and, based on the
Lyusternik — Sobolev Lemma [4, p.393-394:5], we obtain that xX¥(t) — 0
(k=0,1) by t— 0.

From the theorem g, (t) =g, (t) = g, (t) =0when we have

Corollary 2. If the conditions | F(t,x,y,2)| < Fo(t); (A), (B), conditions
2), 3) of the theorem and (¢(t))*(F, (1))’ e L'(J,R,), ¢ (t) > ¢ >0, Dy (t) >
Dy o > 0 (k-0,1), are satisfied, then for any solution x(t) the statements of

corollary 1 are true.

Example. To IDE:

\x(z-/6)\
t+r+2

X'(€) + (E+ 5)X'(D) + (t+ 4)x(t) = i6sm[{ ) .

S | 1> 0
t-r+4
all conditions of corollary 2 are satisfied for ¢ (t )= 1, here t, = 0,

1
F{t)=——.
o(®) t+6
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In the present article the theorem about uniqueness and stability of the linear
integral equations of the third kind two independent variables, with method of
nonnegative quadratic forms and functional analysis methods.

Key words: linear integral equations, third kind, two variables, uniqueness,
stability.

Byn makamaga Tepc sMec KBaApaTThIK (opmanap YCyIyHYH, (yHKIHOHAJIBIK
AQHAIM3IUH YCYJNAPbIHBIH JKapJaMbl MEHEH YYYHYY TYPAOry OKH ©3repyiIMeiyy
CBIBBIKTYY  HMHTCIPAJIABIK TCHACMCIICPANH YCUUMACPHUHUH KaAJT'BI3ABITBI JKaHa

TYPYKTYYIYTY JadUIACHIH.
YPyHTTYy ce3liep: YUyHUY TYPAOrY KM €3repyJIMeiyY ChI3bIKTYY HUHTETPaJIbIK
TEH/IEMeJIEp, KAITBI3AbIK, TYPYKTYYIIYK.

B nanHoOil paboTe, ¢ MOMOIIBI0O METOAOM HEOTPUIATENIBHBIX KBaJApPaTUUYHBIX
dbopM, Meromam (YHKIHMOHAILHOTO aHAM3a JIOKA3bIBACTCS CIWHCTBEHHOCTh U
YCTONYMBOCTh PEIICHUM JTMHEWHBIX MHTETPAIbHBIX YPaBHEHHUI TPEThEro poja ¢ ABYMs
HE3aBUCHUMBIMU TIEPEMEHHBIMH.

KitoueBsie cnoBa: JIuHeliHbIe HUHTETpabHbIE YPABHEHUS, TPETHETO POJIA, C ABYMS
HE3aBUCHUMBIMHU NIEPEMEHHBIMH, €IMHCTBEHHOCTbh, YCTOUYHUBOCTD.

The relevance of the problem is due to the needs in development of
new approaches for the regularization and uniqueness of the solution of
linear integral equations of the third kind with two independent variables.
Integral and operator equations of the first kind with two independent
variables arise in theoretical and applied problems.Works of A.N.
Tikhonov, M.M. Lavrentyev and B.K. Ivanov, in which a new concept of
correctness of setting such targets is given, different from the classical,
shown tool for research of ill-posed problems, which stimulated the interest
to the integral equations that are of great practical importance. At the
present time has been rapidly developing theory and applications of ill-
posed problems. One of the classes of such ill-posed problems are integral
equations of the third kind with two independent variables.As of
approximate solutions of such problems, stable to small variations of the

initial data, we use the solutions derived by the method of regularization. In
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this article we prove uniqueness theorem and obtain estimates of stability
for such equations in families of sets of correctness’s.For the decision of
tasks of the used methods of functional analysis and method of nonnegative
quadratic forms. The results of the work are new.
1. Introduction
The integral equations of the first and thrid kind were studied in [1-8].
More specifically, fundanental results for Fredholm integral equations of
the first kind were obtained in [6], where regularizing operators in the sense
of M.M.Lavrentyev were constructed for solutions of linear Fredholm
integral equations of the first kind. For linear VVolterra integral equations of
the first kind and third kinds with smooth kernels, the existence of a
multiparameter family of solution was proved in [7]. The regularization and
uniqueness of solutions to systems of nonlinear Volterra integral equations
of the first kind were investigated in [4].In this work we shall study the
problems of unigueness and stability of solution of the integral equation
Ku= f(t,x), ([t x)eG={(t,x)eR?*:t, <t<T,a<x<b}, (1)

where

Ku=m(t,x)u(t, x)+.TK (t.x, y)u(t, y)dy+j'H (t.x,s)u(s,x)dx +T|‘le(t,x,s, y)u(s,y)dy, (2)

a t tpa

P(t,x,y) and Q(t,X,s) are given functions, respectively on the domains
G, ={(t,x,y):t,<t<T,a<y<x<b},
G, ={(t,x,5):t, <s<t<T,a<x<b},
C (t, XS, Y), m(t, X), f (t, X) are given functions is a unknown function.
2. Uniqueness and Stability of solutions of integral equations

Assume that the following conditions are satisfied:
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(i).P(t,b,a)>0 tet, T],P(t,b,a)eC[t, T],
m(t,x) >0 for all (t,x)eG
P/(t,y,a)<0 for all(t,y)eG, P/(t,y,a)eC(G),
P/(s,b,z)>0 for all (s,z)eG, P/(s,b,z)eC(G),
Py (s,y,z)<0 for all (s,y,z) G, P;(s,y,2)C(G,).

(ii).Q(T,y,t,)=0 for all ye[a,b], Q(T,y.t,)C[a,b],
Q.(s,y.t,)<0 for all (s,y)eG,Q.(s,y.t,)eC(G),
Q!(T,y,z)=0 for all (y,7) eG, Q;(T)(T,y,r)eC(G),
Q" (s,y,7)<0 for all (s,y,7)eG,,Q"(s,y,7)eC(G,).

(i), At least one of the following conditions holds:

(a)Py'(s, y,a)<0 for almost all (s,y) €G;

(b)P/(s,b,z)>0 for almost all (s,z)eG;

(€)Q.(s,y.t,)<0 for almost all (s,y)eG;

(d)Q',(T,y,z)>0 for almost all (y,7)eG;

(e) Py(s.y,z)<0 for almostall (s,y,z)eG;

(f)Q"(s,y,z)<0 for almost all (s,y,7)€G,;

(h) m(t, x) >0 for almost all (t,x) € G.

(IV) C(t, X, S, y)E Lz(Gz) and

—[Ctxsy)+Csytx]:i A4, (6,X) e (s,Y),

i=1

C(t, x,s, y)=i/1i¢i(t,x)¢i(s, y), m<ow, 0< A, i=12,.,m
= 3)
m<oo, 0<A, 1=12,...m

where {@,(t,X)} is an orthonormal sequence of eigen functions from L, (G)
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and {ﬂf,}is the sequence of corresponding nonzero eigenvalues of the

Fredholm integral operator C generated by the kernel

%[C(t,x,s,y)+C(s,y,t,x)] with the elements {4} arranged in decreasing

order of their absolute values. If C(t,x,s,y)=0for all (t,X,s,y)eG*, we

assume that 4, =4, =...= 4, =0.

Theorem 1. Let conditions (i)-(iv) be satisfied. Then the solution of
the equation (1) is unique in L,(G).

Proof. Taking the multiplication of both sides of the equation (1)

with u(t, x), integrating the results on G, we obtain

[ [ m(s, y)u* (s, y)dyds +

aty

ST e—
D ey T
D ey <

P(s.y,z)u(s,z)u(s,y)dzdyds +

bTs

+[[]Q(s,y.7)u(z,y)u(s,y)drdsdy +

atyt
bTTh

JTTfe (s yman(ez)u(s,y)dadedsdy = | 1 (s,y)u(s.y)dsdy. (5)

atytya at

Integrating by parts and using the Dirichlet formula

P(s,y,z)u(s,z)u(s,y)dzdyds =

y

':fIP (s, y,z)%(!u(s,v)dvjdz u(s,y)dyds =

Afresoz{rens] o
EP;(S, Y, Z)%UU(S,V)dV]ZgDydzds _
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_%t];P(s,b,a)@u(s,v)dvT ds -
_%ﬂpy'(s, y. a)@u(s v)dvjzdyds+

Pz’(s.b,Z)Uu(s,v)vazdzds_

Thy y 2 (5)
—%I [P1(s y,z)[_[u(s,v)dv] dzdyds.

Similarly integrating by parts and using the Dirichlet formula
analogically we have

bTs

[I]Q(s.y.7) )u(s,y)dvdsdy =

atyty

:%TQ(T,y,tO)UU(ﬁ, y)dfj dy —

ty

_%T]‘Qg(s,yt )(I (&, y)ng dsdy +

u(¢, y)dfj drdy -

M 5 2 (6)
[[Q (s Jule y)dg] drdsty.

Using the Dirichlet formula we have
bTbhT
[T]]c(txsyu(s y)u(t,x)dsdydtdx =
atyat,
bTbht

:””C(t, X,s,y (s, y)u(t,x)dsdydtdx =

atyat

68



& )

C(t,x,s,y (s, y)u(t, x)dsdydtdx =

D C— T D —T
S ey —|

[C(t,x,5,y)+C(s,y,t,x) u(s,y)u(t,x)dsdydtdx. ~ (7)

D m— T QD — T
St e e

Taking into account (5), (6), (7) and (4) from (5) we obtain

:[j: m(s, y)u®(s, y)dyds +%jo P(s.b, a)@'u (s, v)dv] ds —

_%]ZPJ(S, y,a)[:{u(s,v)ddede+

fy

b

P/(s.b, Z)[Iu (s,v)dvjzdzds-

z

"
PZ

(s, y,z)@u(s,v)vaz dzdyds +

+% Q(T,y,to)UU(é,y)déJ dy -

f

S

_% ]Qs'(s, y,to)(J.u(f, y)ng dsdy +

ty

+%ﬁqg (T,y,r)[zu(g, y)dgj drdy-

J'Q;'S(S,y,r) ju(f,y)déj dzdsdy +.

+
I
!—.U
O
—~
—
<
of—i‘
~—
77\
—

u(é, y)dl//(é)J do(y)-
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+ii.[ﬁ¢.(s y)u(s, y)dsdyj =Hf(s, y(s, y)dsdy. (g

aty
Example 1. We consider the equation (1) for
m(t, x) = (t—t,)(T —t)’(x—a)*(b—x)*, (t,x) €G,

Paccmotpum ypaBuenue (1) pu

P(t.xy)=ao(t) B (X) 75 (¥), (tx.y) €Gy,
Q(tx5)=a, (1) A(X)[,(s)+7,(s)], (t.x.5) € G,

C(t,x,s,y)= Zm:[ci (t, )¢ (s, y)+d;(t,x)—d,(s,y)] (t.x,5,y)eG”

where (1), (t), o (1), o, (1), (t),7,(t),7,(t)eC[t,, T],

By ()15 (%), 7 (X), 74 ()7, (). 72 () < C D],

¢ (t,x), d,(t,x) eC(G) (i=12,...m), &/ (t)<0 and y,(t)+a,(t)=0

for all te[t,, T], B;(x)<0 for almost all xe[a,b], »;(x)+7;(x)=0,
for all xe[a,b],75(a)+7(a)>0, «,(t)>0 for almost all te|t,T],

B, (x)>0 for almost all xe[a,b],y,(t)+a,(t,)=0.
In this case the conditions (i)-(iv) be satisfied. The following condition is

assumed to hold in what follows.
v). The Fredholm operator C generated by the Kkernel

%[C(t,x,s,y)JrC(s,y,t,x)] defined by (3) is positive, i.e. all the

eigenvalues {/Ii} of %[C(t,x,s, y)+C(s,y.t,x)]are positive (i =1, 2, ..., m

m = o0) and (p(x)eCl[a,b], (//(t)eCl[to,T].
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The family of well-posedness depending on the parameter o is defined

as

M, = {u(t, x)e L,(G): iﬂ,,“ utf < c},
v=l

were €>0, O<a<om,

ﬁutx )o, (t,x)dxdt, v=1,2,..
ty a

Theorem 2. Let conditions (i)-(ii) and (v) be satisfied. Then the
solution U(t, X) of the equation (1) is unuqgue inL,(G). Moreover, on the set

K(M, )< L,(G) is the image of M, under the action of the operator K

defined by formula (2)), the inverse K'of operator K is uniformly

continuous with the Holder exponent
2+a .l.e.

1

Hu(t,x]\L2 gcﬂuf(t,xX\iT“, O<a <o 9)

were

Ju(

Proof. a) In this case, the orthonormal sequence of eigenfunctions

Th
”Hu tx ‘dxdt
t, a

0

U(t,X)e M, is complete in L,(G).There fore (8) implies the uniqueness of

the solution to equation (1) in L,(G). Let f(t,x)eK(M,) Then the

equation (1) has a solution u(t,x)e M, and it follows from (8) that

> 2, <t ), e ),

= (10)

v)
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= 1

- 2 * ‘U(V)Z 2+ - 57"
Z‘U(V) < > .|:Z/1Va 4 :l |
v=l =) ﬂ; -
(11)
On the other hand,
o o
SuC <[ f & )ut, o e
. (12)

Combining the last two inequalities gives estimate (9). The theorem

2 is proved.
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ASYMPTOTICAL QUOTIENT SPACES IN THEORY
OF DELAY-DIFFERENTIAL EQUATIONS

Zheentaeva Zh. K.
Kyrgyz-Uzbek University

Supra, the author introduced the following equivalence relation is in the space of
solutions of initial value problems for dynamical systems: distance between two
solutions tends to zero while time increases. The phenomenon "the dimension of the
quotient space is less than one of the initial space"” was called "asymptotical reduction of
dimension of space of solutions”. In this paper the Hausdorff asymptotical equivalence
relation is introduced: distance between two solutions with invertible transformation of
argument tends to zero. The corresponding quotient spaces generate new mathematical
objects.

Keywords: equivalence relation, asymptotical equivalence, delay-differential
equation, initial value problem, Hausdorff metric.

Mypna  aBTOp ~ AMHAMUKAJIBIK  CHCTEMAaNapAblH  YbITapbUIBIITAPBIHBIH
MEHKUHJIUTHH]IE TOMOHKYJOM aCUMNTOTUKAJIBIK ASKBUBAJIEHTTYYJIYKTYH TYLIYHYTY
KUPTU3WIIM:  YOAKTBIT ©CKOH/I©® HKU UBbIFapbUIBIIITHIH apachblHIa apaliblk HeJre
ymTynar. DakTop-MEUKMHIAUKTHH YEHEMH OallTankbl MEMKUHAUKTUH YEeHEeMHUHEH
KHU4yy  OONroH  KyOylyIll,  «4bITapbUIbILITap  MEHKUHIUTMHUH  YEHEMHUH
aCUMINTOTUKAJIBIK TOMOHAOTYY» Jen ailTeuirad. byn Makamaga xaycaopdTyk
ACHMIITOTUKAJIBIK SKBUBAJCHTTYYJIYKTYH TYIIYHYTY KUPTU3WIIM: YOAKTBIT ©CKOHJIO
apryMEHTUH Kalipa KalblOblHA KENTHPYYYY ©3repTYy MEHEH O5KH YbIrapbUIBIIITHIH
apachlHAa apajblk Henre ymrynar. Jlam kenreH (QakTOp-MEHKHMHAMK — KaHbI
MaTeMaTHKaJIbIK OOBEKTTEPIN TYYHT.

YpyHTTYY ce3aep: KEUHMIryydyy aprymMeHTTyy JudQepeHIHanablK TeHIeME,
OalTankel Macesne, MOHOTOHAYK, HHTETPaJbIK HOpMA.

Panee ABTOp BBCJIa CIICAYIOIICC OTHOLICHUC aCHMIITOTHYECKOHN SKBHBAJICHTHOCTH
B IPOCTPAHCTBC peH_IeHI/Iﬁ HAaYaJIbHBIX 3a4a4 OJId JUHAMHUYCCKHUX CHUCTCM: PACCTOSAHUC
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MEXIY ABYMsSI PEUICHHSIMH CTPEMHUTCS K HYIIO NPH YBEIMYECHUU BpEeMEHH. SIBIeHHe
«pa3MepHOCTh  (HaKTOP-TIPOCTPAHCTBA  MEHBIIE, YeM Pa3MEPHOCTh HCXOJHOTO
MPOCTPAHCTBa» OBUIO HA3BAHO «ACHMIITOTHYECKOE YMEHBIICHHE pPa3MEPHOCTH
MPOCTPAHCTBA  pemieHui». B crarbe  BBeIeHO  MOHATHE  xaycaopdoBoit
ACUMITOTUYECKOW HDKBUBAJICHTHOCTU: HEOTPAHUYCHHOE CONMIKCHHE pEIICHUN ¢
o0paTUMbBIM npeoOpa3oBaHueM aprymeHra c YBEIIMYCHUEM BPEMCHH.
CootBercTBytomiee  (pakTOP-MPOCTPAHCTBO  TMOPOKIAET HOBBIE MaTEMaTHYCCKHE
O0OBEKTHI.

KaroueBrle  cioBa: OTHOIIIEHHE  DJKBUBAJIEHTHOCTH,  aACHMIITOTHYECKAS
SKBHBAJICHTHOCTh, MU(PEpEeHIINATILHOEC YpaBHEHHE C 3aIa3/bIBAIOIIMM apryMEHTOM,
HavalbHas 3a7a4a, XxaycaoppoBa METpHKa.

Introduction

The problem of behavior of solutions of initial value problems as time
tends to infinity is one of the main in the theory of dynamical systems.
Many mathematical methods were developed for this purpose including the
theory of stability [1]-[2], method of characteristic equations for
autonomous and periodical dynamical systems, method of special solutions
for delay-differential equations [3]-[4]. Various sufficient conditions were
obtained to provide some kinds of behavior of solutions. Various
definitions and denotations were introduced for each kind.

Supra, the author [5] introduced the following equivalence relation is
in the space of solutions of initial value problems for dynamical systems:
distance between two solutions tends to zero while time increases. The
phenomenon "the dimension of the quotient space is less than one of the
initial space" was called "asymptotical reduction of dimension of space of
solutions™. In this paper the Hausdorff asymptotical equivalence relation is
introduced: distance between two solutions with invertible transformation
of argument tends to zero. The corresponding quotient spaces generate new
mathematical objects.
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Section 1 contains definitions of asymptotical equivalence and A-
exponential asymptotical equivalence and the phenomenon of asymptotical
reduction of dimension.

Section 2 proposes definitions of Hausdorff asymptotical equivalence
and Hausdorff asymptotical quotient space.

Section 3 contains examples of Hausdorff asymptotical quotient space
for various types of differential equations.

1. Review of preceding results

We suppose dynamical systems as equations for functions of time
fitting the property "the present depends on the past only" (differential
equations, delay-differential eg-uations, Volterra integral equations of the
second kind, difference equations etc.).

"Ordinary" equations and systems of equations in more general form
can be presented as follows (we are restricted with existence and
uniqueness of solution of an initial value problem).

Denote R,:=[0,2); Ry+:= (0,0).

Definition 1. A dynamical system is a tuple of a number h>0 [delay],
a totally ordered set A of real numbers with the least element but without
the greatest one [domain of functions]: A=Rj:= [-h,c0) or A=Ny:=
{0,1,2,3,...}, atopological space Z [range of functions]; a set @ of functions
[h,0] —Z [initial conditions]; if h=0 then @ = Z; a function W(t,p): Ax @
— Z such that its restriction on [— h,0] equals ¢ [solutions of initial value
problems]. If A=R;, then W(t,¢) is supposed to be continuous with respect
to t.

We will consider the following classes of spaces with their

dimensions:
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1-spaces: Z = R; dimension =1;

d-spaces: Z =R’  d eN:={1,2,...}; dimension = d;

N-spaces: Z is a normed linear space with norm |||z dimension
(finite or infinite) is the number of elements in the basis;

M-spaces: Z is a metric space with metric p; the inductive Ind-
dimension is used;

U-spaces: Z is a uniform space with set of entourages Y, Ind-
dimension is used.

Definition 1. (The most general are U-Spaces).

The following equivalence is said to be asymptotical equivalence (A-
exponential asymptotical equivalence):

For N-spaces

(o1~ @) < (I [|W(t, 1) - W(t, @) |22 t—>o0}= 0);
((pr~2 @2) = (sup{ ||W(t, 1) - W(t, @) ||z exp(At): teA}< ));
For M-spaces
(o1~ @2) < (lim{ p(W(t, 1), W(t, @) t—>00}= 0).

((p1~2 @2) < (sup{ p(W(t, 1), W(t, ¢2)) exp(At): teA}< o0)).

For U-spaces:

(pr~2 @) = (W eY7)(Tten) (Tt >t)(W(E 1), Wt ¢2)) €V).

(Exponential asymptotical equivalence cannot be defined in such
general spaces).

Definition 2. The factor-space @*:=@ /[~ of the space @ by the
asymptotical equivalence is said to be an asymptotical quotient space;
respectively, the quotient space @*;:=@® /~, of the space @ by the A-
exponential asymptotical equivalence is said to be A-exponential

asymptotical quotient space.
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Example 1. (The Floquet-Lyapunov theory).

Some types of linear autonomous delay-differential equations have
countable sets of characteristic values {s4, i&,...} which can be semi-
ordered: Re(tu)>Re(wp) 2> ...;
lim{Re (w): k —o0} = —oco such that functions exp(4 t) (and for multiple
values also exp(u t+v Int), v € N), are (components of) particular
solutions.

If W(t, ) can be presented as 2{cx (@p)exp(u t+ v In t): ke N} where
ck (@) are linear operators then the phenomenon "asymptotical reduction of
dimension of space of solutions” takes place, the infinite-dimensional space
@ reduces to the space with basis { exp(u t+ vy In t): Re 14 >0},

2. Definitions of Hausdorff asymptotical equivalence and asymptotical
quotient space

A=R,, in this section.

Definition 2. Let seR.,%[s,«0)— R. be of the class @ of strictly
increasing continuous functions, lim{X(t):t—>w}=co.

The following equivalence is said to be Hausdorff asymptotical
equivalence:

For N-spaces

(1= @) & (Vee Ris ) (3, 9)(Vtels, ) (I[W(t ) —W(t g2)llz <é);

For M-spaces
(pr= o) < (Vee Ri (35, 9) (Vels, ) (o (WL g1), WIKD), p2))<é);

For U-spaces
(o= o) & (Veelz) (Vtels, ) (Wt ey), W(I(1),92)) €). 1)

Lemma 1. The introduced relation is a correct relation of equivalence.

Proof. Reflexivity of the relation = is obvious (let Xt) =t).
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Prove the symmetricity. Let ¢ = ¢,. There exists the inverse function
{(t) e@to the function K(t).
Substituting £(t) instead of t into (1), we obtain:
(VE() els,99) ( (WD), 1), W(HLD), ¢2)) €).
The condition ¢£(t)> s is equivalent to the condition H(<(t))> X(s).
Hence

(Ve[ Hs), ) (W(L), @), (W(L(L), p1) €6); 02 = .
Prove the transitivity. For given ee 17 find such g € I that &, °&, c &

There exist such Sy, Sp3, H1a(t), Hs(t), that

(Vtel812,29))( (W(t, 1), W( (1), 92)) €61), (2)

(VtelS23,29))((W(t,@2), W(Sos(t), 3)) €61). 3)
Substituting $,(t) instead of t into (3), we obtain

(¥ 2(t) €[523,20)) ((W(S12(t), 2), W(F23(S1a(1)), 3)) €1). (4)

The condition $,(t)> sp3 is equivalent to the condition t > £12(S23).
Hence (4) can be written as
(te[gia(S23), ) W(Sha(t), @2), (W((F25 H2)(1), 93)) €€1). ()
If we choose s;z=max{si», £12(S23)} then (2) and (5) imply
(Vtelsis,29))(( (W(t, @), W( (1), ) ee)n (W(Sha(t), ),
(W((s %)), ) €41)).

Hence (7t [s13,29))(W(t, 1), W(( s I12)(1), 3)) €61 &1).
The transitivity is proven. Lemma is proven.

A Hausdorff asymptotical quotient space will be denoted as @&*~.
3. Examples of new objects

Solutions of scalar differential equations (A=Z=R).

78



Example 2. All continuous and increasing to infinity functions are
Hausdorff asymptotically equivalent. All continuous, increasing and
tending to any number fun-ctions are Hausdorff asymptotically equivalent.

Example 3. All solutions of the equation z’(¢)=az(t), a>0 form three
classes of Hausdorff quotient space @*~.

Solutions of vector differential equations.

Example 4. (@ =Z=R?). The system x’(t)=y(1), v '(t)=x(t), x(0)=o,
y(0)=¢..

(x(1).y(®)=W(t, 01, 2)=
= ((put@2)/2-exp t+(py— 02)I2- exp(1), (g1t @2)/2- exp t+(po— 1)/2-
exp(—t)).

The Hausdorff quotient space @*~ contains three elements represented
by:

W(t,0,0)=(0,0) (saddle point); W(t,1,0); W(t,-1,0).

We propose to call the last two elements “trajectories without
beginning”

{(x, y)=(@t1):t eR.i}; {(x, y)=(-t,-1):t R}

Example 5. (#=Z=R®). A strange attractor with attracting set of two
touching cycles. The Hausdorff quotient space @*~ contains three
elements:
permanent alternation of cycles until infinity;
final winding on the first cycle;
final winding on the second cycle.

Conclusion
We hope that consecutive revealing of functions being Hausdorff

asymptotically eg-uivalent for various types of differential equations would
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yield new mathematical objects and it would be interesting for

Investigation of equations.
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Category of differential equations with functional relations is considered in the
paper. Objects of this category are ranges of solutions as domains of multiplace
predicates; morphisms are transformations of such sets preserving truth of predicates.
The main condition: a set can be replenished by one element in such a way that the
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predicate becomes truth. A classification of them is proposed: ordinary differential
equations; partial differential equations. Examples are given. An application of such
relations to investigate some equations is demonstrated.

Keywords: category, functional relation, differential equation, set, object,
morphism, multiplace predicate, classification, function.

byn wmakamama o3 apa  (yHKOMOHanIBIK  OaliaHBILTaphl  OOJNTOH
muddepeHIHanIblK TEHAEMENepIuH KaTeropuscel Kapanar. byn kareropusaarsi
OOBEKTHJICp — YBITAPBUIBIILITAPABIH MAaHWICPUHUH MEUKMHIUKTEPUH/IE AHBIKTAJITaH
Kol OpYyHAYYy MpeIuKaTTapAblH KeNTyry, Mopdusmuep — MbIHIAH KeNTYyKTepay
IIpEeIMKATTap/AblH UbIHJBITBIH CaKTaraH e3repryyiep. Herusru maprel: KeNnTyKTepay,
IpeauKaT 4blH OONyn Typranjail, OMp 3J€MEHT MEHEH TOJYKTOO MYMKYHUYJIYTY.
TeMeHnky kinaccudukanus CyHyIITanar: KaaUMKU AUQQPEepeHLuaniblk TeHAEMENEp;
Keke TYyHIynyy auddepeHumaniplk TeHaemenep. Mucangap keaTupuwireH. MplHaai
03 apa (pyHKUMOHAIIBIK OalIaHbIITAPABl K33 Oup nuddepeHIHanablK TeHAeMelepan
U3UIJ166 YUYH KOJIJIOHYY KOPCOTYIIIeH.

YpyHTTYYy ce3nep: Kareropus, GyHKIHOHAIABIK OaiyanbIil, AuddepeHnaiibk
TEHJIeMe, KONTYK, 00BeKT, Mopdu3M, Kem OpyHAYy IpeIuKaT, KJIaCCH(PHUKALMIIOO,

byHKIHSA.

B craree BBOAMTCS ompezneneHue KaTeropuu AuddepeHnnanbHbIX YpaBHEHHHA C
(GYHKIMOHATBHBIMU  COOTHOWIEHUSIMU. OOBEKTaMM B 3TOH KaTEropuu SBISIIOTCA
MHOXKECTBa 3HAYCHHWH pEHNICHWH C ONpEeNeJeHHBIMA Ha HHX MHOTOMECTHBIMHU
npeauKaTaMd, Mopu3MaMu - Takue NpeoOpa3oBaHMs ATUX MHOXKECTB, KOTOpbIE
COXPAHSIIOT HCTUHHOCTb IpenukaroB. OCHOBHOE YCJIOBHE: BO3MOXXHOCTh TaKOTO
MIOTIOJIHEHUSI MHOXECTB OJHHUM 3JIEMEHTOM, YTO MpPEJUKAT CTAHOBUTCS HCTHUHHBIM.
[Ipennaraercs xknaccudukanusi: OOBIKHOBEHHbIE Ju(pdepeHInalbHble YpaBHEHUS,
muddepeHnranbHble YpaBHEHUs B YacTHBIX MPOU3BOAHBIX. [IpuBeneHBl MpHUMEpHI.
[loka3aHo WHCIONIB30BAHUE TAaKUX COOTHOILIEHWM Ui MCCIIEOBAHUS HEKOTOPBIX
middepeHnaIbHbIX YpaBHEHUH.

KitoueBble CJIOBa: Kareropus, (yHKLIMOHATBHOE COOTHOIILIEHUE,
middepeHanbHOe ypaBHEHHE MHOXKECTBO, OOBEKT, MOpP(HU3M, MHOIOMECTHBIN

MpenrKar, Kiaccupukanus, QyHKIHS.

Introduction
The notion of “categories” being more general than sets and families
of sets was introduced in [1]. In Kyrgyzstan the first works on the category
theory were [2] and [3]. We introduced the principle of preservation of
solution while transformations (supra it was meant implicitly). We

proposed to introduce the category of equations and its subcategories
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including the category of correct equations ([4], [5], [6], [7]). The aim of
this paper is to connect this notion with other categories.

To investigate differential equations of various types we propose to
use the following fact. Solutions of some types of differential equations
have functional relations connecting their values in different points. By
given values of solutions in several points one can find their values in other
points.

For examples in the first section, even, odd and periodical solutions,
Vallée-Poussin’s assertion, Lagrange interpolation polynomial, Hermite
interpolation polynomial, spline-functions are considered for ordinary
differential equations are considered. Their approximations are in the
second section. Asgeirsson’s identity and its generalizations for partial
differential equations of hyperbolic type are described in the third section.
In this paper we will use functional denotations of type x[n] instead of x,.

1. Definitions

A category is defined by its objects and morphisms.

The main well-known categories are the following:

The category of sets Set. Ob(Set) are non-empty sets, Mor(Set) are
functions.

We proposed to consider the category of functions Func (it used in
mathematics implicitly). Ob(Func) = Mor(Set), Mor(Func) are
transformations of functions.

The category of topological spaces Top. Ob(Top) are topological
spaces, Mor(Top) are continuous functions.

We proposed the category Equa of equations:

Definition 1 [4], [5]. Ob(Equa) contains tuples

{Non-empty sets X, Y, predicate P(x) on X, transformation B :X—>Y}.
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If (7 xeX)(P(X)A(y=B(x)) then yeY is said to be a solution of the
equation {X,Y, P, B}.

Particularly, if B is the identity operator I, then we obtain the equation
“P(x) only.

Mor(Equa) are such transformations of tuples {X, Y, P, B} that
solutions (or their absence) preserve.

Among subcategories for the category Equa, we also proposed the
category of equations for functions Equa-Func.

Definition 2. Ob(Equa-Func) contains tuples
{X eOb(Func), Y eOb(Func), predicate P(x) on X, transformation B:X—>Y}.

Mor(Equa-Func) contains invertible transformations of functions
inherited from Mor(Equa) and specific transformations.

We considered functional relations in [8]. We propose the category
Func-Diff-Equa.

Definition 3. Ob(Func-Diff-Equa) contains tuples
{F being a space of functions-solutions of differential equations f:X—>Y; P
being a multiplace predicate defined on values of functions of F}.

The predicate has the form P(Xy, Y1, X2, Yo, ..., Xn, Yn) Where all x4, X, ...,
X, are distinct. It meets the condition: for any Xy, Y1, X2, Yo, ..., Xn_1, Yn-1, Xn
such that Q(Xy, Y1, X2, Y2, ..., Xn_1, Yn1, Xn) there exists such y, that P(xy, Y1, X2,
Yo,..., Xn, Yn)=true, where Q is an additional predicate. Mor(Func-Diff-
Equa) are bijections preserving values of the predicates P and Q.

2. Subcategory of ordinary differential equations (ODE)
Q=true in this section.
Let £ be the minimal number of connected points for a differential

equation as (if it exists). Some examples of elements of Func-Diff-Equa:
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2.1. The ODE of the first order with initial condition y (x)=a,
y(0)=u>0, a>0: F={u+ax: xeR.}; {=3:
P(X1, Y1, X2, Y2, X3, ¥3)= " (1= Y3 )( X1 —X2) = (Y1~ Y2 ) ( X1 —X3) =07
A morphism: substitute y(x)=z°(x). The transformed ODE
z(x)=a/(2z(x)), with initial condition z(0)=W;
P1(Xe, 21, Xa, Z2, Xa, 23)="(21°— 23°)( X1 — Xo) — (21"~ 22) ( X1 —Xa) =0
2.2. The linear ODE of the k-th order y®¥(x)=0. F is the space of
polynomials of (k—1)-th order: F={a, +aux+...+ a1 X X eR.}; (=k+1.
Let L(Xs, Vi, X2o Y2, ..., Xk, Yk X) be the Lagrange interpolation
polynomial of the (k—1)-th order. Then
P(X1, Y1, X2, Yo, o) Xk Yio Xirts Yir) =" L(X1, Y1, X21 Yo, oo Xy Yior Xkr1)= Yier1
2.3. The general linear ODE of the k-th order
YO0 +p1(x) YU ).+ p(X) y(X) = 0, a< x< b, pi(x)eC[a,b], i=1,... )k,
(1)
with the multipoint value problem
y(xi) =vi i=1,..., k. (2)
C. J. de la Vallée Poussin (for instance see [1]) proved that this
problem has a unique solution if
I Pallzasi(b— @)+ || Palliay (b—2)°/2! +... + || pullfary (b—2)"/n! < 1. 3)
Here F is the space of solutions of (1); =k+1. Denote G(Xy, Y1, X2, Y2,
..., Xk Yk X) as the solution of (1)-(2) with the additional condition (3).
Then
P(Xt, Y1r X21 Y2, e Xks Yo Xkats Yirt) =" G (X1, Y1, X25 Y2, os Xkr Yioo Xbr1) = Yirn ™
3. Subcategory of partial differential equations (PDE)
Let x=(&,77) eR?. Consider the hyperbolic equation Ve, (&,m)=0. Let F

be the space of solutions of it. They meet the Asgeirsson’s identity:
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YW1, V1)+Y(Wa, V2)—Y(Wi, V2)—y(Wa, V1)=0. (4)
Hence, {=4;
the predicate Q= "three points are in vertices of a coordinate rectangle”;
the predicate P="sums of values of y(&,n)=0 in end-points of diagonals of
rectangle are equal”. y ¢, (£,1)=0.
Morphism: by means of linear substituting of variables (&, 7) the
equation y, ”(&,17)=0 transforms into the wave equation
Ve " (Em)= Yoy "(871),
the predicate Q ="three points are in vertices of a rectangle with angle
45%0 coordi-nate axes”; the predicate P in this form remains.
4. Conclusion
The paper demonstrates that the notion of category yields possibility
to present facts of theory of ordinary and partial differential equations
uniformly.
REFERENCES
1. Eilenberg S., MacLane S. A general theory of natural equivalences //
Transactions of American Mathematical Society, 1945, 58: pp. 231-294.
2. Mensene M.A. ITlomycomnpspkeHHbIE (YHKTOPBI W KaTETOPHH ayreop
HaJ n-Tpoiikamu: ABtopedepar mucc. ... K. p.-m.H. (01.01.04). -
HoBocubupck, 1973. - 17 c.
3. bopybaeB A.A. O kKaTeropHbIX XapaKTEPUCTUKAX KOMIAKTHBIX, TTOJHBIX
PaBHOMEPHBIX MNPOCTPAHCTB M MOJIHBIX MO PallkOBYy TOMOJIOTHYECKHX
rpynn // U3Bectust Akanemuu Hayk, Boi. 4, 2007. - C. 1-6.
4. Kenenbaca I'M., Ackap xbi3bl JI., beitmebaeBa XK.K., Mamarxkan

yyay O. DneMeHTbl Kareropuu ypaBHenuit // Bectuk WHcTuTyTa

matematuku HAH KP, 2018, Ne 1. - C. 88-95.

85



5. Kenenbaeva G.M., Askar kyzy L. Foundations of category of equations
// Tesucwl noxnanoB MexayHapoaHoW HayuHoil koHgpepenuun «llI
Bbopy0aeBckue uTeHus», MOCBSIIEHHON 35-JI€TUIO CO JTHA 0Opa30BaHUS
Nuctutyra maremarnkn HAH KP. - bumkek: MHCTUTYT MaTeMaTuky,
2019. - C. 46.

6. Kenenbaena I'.M., Ackap kbI13bl JI. DiieMEHTBI KaTErOpUU KOPPEKTHBIX
ypaBHeHu# // Bectouk Mactutyra Mmatematnkn HAH KP, 2019, Ne 1. -
C. 69-74.

7. KenenOaeBa I'.M., Ackap kwi3el JI., Kenenbaer 3., Aopamme T.C.
@YHKTOpPHI B KaTeropuM ypaBHEHUN U ee mojkareropusax // BecTHuk
HNucturyra matematnku HAH KP, 2019, Ne 2. - C. 40-46.

8. Kenenbaev E. Functional relations for ordinary and partial differential
equations // Herald of Institute of Mathematics of NAS of KR, 2020, No.
1.-Pp.71-75.

9. Vallée-Poussin Ch.J. Sur l'equation différentielle linéaire du second
ordre. Détermination d'une intégrale par deux valeurs assignées.
Extension aux équations d'ordre // Journal Math. Pures Appl., 8, 1929,
pp. 125-144.

MSC 37 K20
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Some phenomena were discovered by physical, chemical and technical
experiments and further were explained and substituted by mathematical models,
especially by means of differential equations, or by computational experiments. Also,
some phenomena were discovered by computer experi-ments and further substituted by
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other methods. Meanwhile, the computer is a self-standing real object and phenomena
on it are specific ones. This paper contains a survey on this matter.

Keywords: phenomenon, computer, attractor, smooth surface, differential
equation, difference equation, system of equations, implementation

K93 6up xyOymym Qu3uKamblK, XUMUSUIBIK KaHa TEXHHUKAIBIK SKCIIEPUMEHTTEP
apKbUTYy aubUIbl, aHJaH KHWUH MaTeMAaTHUKAIbIK MoJeiaep (amapAblH WYHHIC
nuddepeHImanapik TeHIeMenep) apKbUlyy K€ 3CerTeeuy SKCIEPUMEHTTEP apKbUIyy
TYIIYHAYPYJIIy *KaHa Herusaenaud. OMmoHIoM 37e, K33 Oup KyOyayll KOMIBIOTEPAETH
SKCIIEPUMEHTTEp apKbUlyy TaObUIAbl, aHJaH KUWWH Oamika BbIKMalap apKbUIyy
Herm3Aenau. AHbI MCHEH OMpre, KOMITBIOTEp ©3 alJbIHYa YBIHBITBI OOBEKT, aHIArbl
KyOynym aiipeikva. Byn Makanaga an npeamer kapanar.

YpyHTTYy ce3mep: KyOyiyll, KOMIIBIOTEP, TapThIN KAKbIHAATKbIY, >KbUIMaKau
oer, kyOynym, auddepeHunanablk TeHAeMe, aWbIpMajblK TEHIEeMe, TeHAeMesep
CUCTEMACHI, JKY36r'e allbIpyy.

Hexotopsbie siBneHHs OBUIM OTKPBITHI C MOMOIIBIO (DPU3NYECKUX, XUMHUYECKUX U
TEXHUYECKHUX HKCIIEPHUMEHTOB, @ IOTOM OBUIM OOBSICHEHBI U 0OOCHOBAHBI C TTOMOIIIBIO
MaTeMaTHYECKUX MojIieNiel (B 0COOCHHOCTH - U epeHIInanbHbIX ypaBHeHUH). Takke,
HEKOTOpBIE SIBICHUS ObLTH OOHAPYKEHBI C TOMOIIBI0 KOMIBIOTEPHBIX HKCIIEPUMEHTOB,
a 1oroM OOOCHOBaHbl JpyrUMH MeTojamMu. Bwmecre ¢ TeM, KOMIbIOTEp -
CaMOCTOSITENIbHBIN peabHbI OOBEKT, SBJICHHS Ha HeM - creuupuyeckue. B 3Toit
CTaThe MPOU3BOJIUTCS 0030p MO JTaHHOMY BOIIPOCY.

KiroueBble cioBa: sBIEHHE, KOMIBIOTEP, aTTPAKTOpP, TIJIaAKas IOBEPXHOCTD,
sBiieHue, JuddepeHInaIbHOoe YypaBHEHHE, Pa3HOCTHOE YypaBHEHHE, CHCTEMa
YPaBHEHUH, peanu3anus.

1. Introduction

Searching effects and phenomena, their investigation and
substantiation are one of main sources of development of science.

Framework definitions and systematical investigation of effects and
pheno-mena in mathematics were initiated in [1], [2].

Some phenomena were discovered by physical, chemical and
technical experi-ments and further were explained and substituted by
mathematical models, espe-cially by means of differential equations, or by
computational experiments. Also, some phenomena were discovered by

computer experiments and further substi-tuted by other methods.
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Meanwhile, the computer is a self-standing real object and phenomena
on it are to be considered especially. Formally they may be considered as
electronic ones. But there was the hypothesis [3] that the computer presents
a new form of motion (separately from traditional mechanical, physical,
chemical, biological, social ones). Hence, phenomena on computer are
specific ones.

Remark. Approximate solving of differential equations on computer
Is considered traditionally as substantiation of some phenomena of them.
But actually some systems of difference, not differential equations are used
to be solved. From the standpoint of this paper, all three phenomena: for
differential equations; for systems of difference equations and
implementation of the last on computer are distinct. We call such
phenomena “analogous”.

This paper contains a survey on this matter.

2. Examples of phenomena

2.1. The idea of creating order (cosmos) out of chaos is well-known
from ancient times. The Kyrgyz word irgdé means: discrete optimization
by means of synergetic, or (I11)"random vibration of balls of different sizes
of same material in a wide symmetrical vessel yields migration of the
biggest one to the center of their surface." (Mechanical form of motion).
Until XIX century Kyrgyz language was unwritten, so it is impossible to
conclude how many centuries ago this phenomenon was discovered and
this term appeared.

A system of stochastic difference equations (12) was built in [4]. Their
computer implementation (I3) demonstrated that (12) is an analog of (I1)
and substituted the hypothesis: for a large number of balls in a vessel, in a

certain class of processes described by random difference equations, the
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probability of the event "the biggest ball is close to the center of surface of
heap of balls" is 1 as time tends to infinity.

2.2. The second example of synergetic was ‘“Rayleigh-Benard
convection cells” (1900). (B1) A plane horizontal layer of fluid heated
from below fluid develops a regular pattern of convection (hexagon) cells.
(B2) There was built a system of nonlinear differential Oberbeck-
Boussinesq equations [5]. (B3) “The system is solved using the finite
element method”. From the standpoint of this paper, another system of
equations using the finite element method was built and (B4) was
implemented on a computer.

2.3. We consider “strange attractors”. One of definitions: An attractor
is called strange if it is locally unstable yet globally stable: once some
objects have entered the attractor, nearby points diverge from one another
but never depart from the attractor. If a strange attractor is chaotic,
exhibiting sensitive dependence on initial conditions, then any two
arbitrarily close alternative initial points on the attractor, after any of
various numbers of iterations, will lead to points that are arbitrarily far
apart (subject to the confines of the attractor), and after any of various other
numbers of iterations will lead to points that are arbitrarily close together.”

The first example was Lorenz attractor:

(L1) x'(©)=10(y(t) - x(1)); y'(®)=x(t)(28-z(1)) - y(1); Z'())=x(t)y(t) - 8/3 2(t).

Real processes: (L2) So-called Malkus waterwheel, a constant flow of
water pours in at the top bucket of a simple circular symmetrical
waterwheel and the base of the waterwheel has perforations to allow the
outflow of water.

(L3) Reaction in chemical mixture of three special components.
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(L4) is a system of difference equations; (L5) is its implementation on
computer.

In preceding papers, for instance, [6], implementations of strange
attractors we-re too complicated. In [7] we presented such phenomenon
mechanically as rolling of a ball along a smooth surface with three juts by
gravity effect. The motion of the ball proves to be unpredictable.

Also such surface was made of iron and tested.

(M1) System of differential equations
x'(8) = 2 (x(0), y(®) / (2 (), ()" + (Z (x(©), y(£)))? + 1),

Y'(6) = Z (0, y(0) / ((Z (), y(£))” + (2 (x(1), ¥ (©)))? + 1).
Z(x,y) is the surface defined by the formula

Z(x,y) =Y, ((x — cos(27zj/3))2 +(y - sin(27rj/3))2 + 0.01)_1 +
x?+ y2

If the initial conditions is (— a;0), 0 < a < 1 then the point moves
along the li-ne (—a <x < 0; y =0), further does along the line (0 <x < g, y
=0), ¢ < a, and further motion is unpredicable.

M2. Definition. If an algorithm treating rational numbers and
claborating “suffice-ently long” sequence {X,- n=1,2,3, ...} fulfills the
following conditions:

1) Aq=0)(V'ne N)(|Xn | < 0);

2) Ap>0) (¥'me N)( Fn=>=m)(| X, | > p);

3) a sequence {x,: n € N }is not close to a periodic one;

4) small perturbation of initial data (passing to neighbor machine numbers
the sequ-ence {X,: ne N } changes “sufficiently” (i.d. computational

instability takes place),
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then such algorithm is said to be a discrete strange attractor.
Corresponding program in pascal:
PROGRAM sab_att; USES CRT, graph;
var x,y,xn,yn,vx,vy,vxn,vyn,dx,dy,dxy2,ht,z,ffx,ffy,
xnl,ynl,vxnl,vynl ffx1,ffyl: double; i,j,nxy,it,nt,np,ihand,n_time,ik:
longint; var drv, mode,f,n,xg,yqg,zg: integer; xf,yf:array[1..3] of double;
xfg,yfg:array[1..3] of integer;
procedure grad(var fx,fy,xx,yy:double); var fxx, fyy, fxy, a: double;
begin fxx:=0.; fyy:=0.; a:=1.0; for j:=1 to 3 do begin dxy2:=sqr(xx-
xf[j])+sqr(yy-yf[j])+0.01; fxx:=fxx+2.0*(xx-xf[j])/sqr(dxy2);
fyy:=fyy+2.0*(yy-yf[j])/sqr(dxy2) end; fxx:=fxx-2.0*a*xx; fyy:=fyy-
2.0*a*yy; fxy:=sqr(fxx)+sqr(fyy)+1.0;
xx:=fxx/fxy; fyy:=fyy/txy; fx:=fxx; fy:=fyy; end,;
begin {main} drv:=0; mode:=VgaHij; InitGraph(drv,mode,'c:\tp\bgi');
randomize; SetTextStyle(0,0,2); OutTextXY(30,20,'Pankov, Tagaeva,
2018. Strange attractor'); z:=300.; zg:=round(z)+30; xf[1]:=-1.0;
yf[1]:=0.0; xf[2]:=1.0/2.0; yf[2]:=sqrt(3.0)/2.0; xf[3]:=1.0/2.0; yf[3]:=-
sqrt(3.0)/2.0;
for j:=1 to 3 do begin xfg[j]:=round(z*xf[j]); yfg[j]:=round(z*yf[j]);
Setcolor(green); circle(xfg[j]+zg,yfg[j]+z9,8); end;
x:=0.3; y:=0.1; vx:=0.; vy:=0.; ht:=0.1; nt:=400;
for it:=0 to nt do begin {it} grad(ffx,ffy,x,y); vxnl:=vx+ffx*ht;
vynl:=vy+ffy*ht;
xnl:=x+(vx+vxnl)*ht/2.0; ynl:=y+(vy+vynl)*ht/2.0;
grad(ffx1,ffyl,xnl,ynl); vxn:=vx+(ffx+ffx1)*ht/2.0;
vyn:=vy+(ffy+ffyl)*ht/2.0;

Xn:=x+(vx+vxn)*ht/2.0; yn:=y+(vy+vyn)*ht/2.0;
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Xg:=round(z*xn); yg:=round(z*yn);
Setcolor(white); circle(xg+zg,yg+zg,2+(it div 100)); delay(50);
X:=XN; Y:=yn; vx:=vxn; vy:=vyn; end {it}; END.

M3. Mechanical implementation
1) Cut a hexagon of diameter 60-100 cm from tin. Number its vertices as 1-
2-3-4-5-6 and its center as 0.
2) Arrange the hexagon horizontally and flex it in such a way that segments
1-0, 3-0, 5-0 have large slope down to point 0 and segments 2-0, 4-0, 6-0
have slight slope down to point 0.
3) Release a little steel ball from point 2. It should roll down to point 0, lift
(a little) up to point 5, roll down (unpredictable) along segment 4-0 or

segment 6-0, lift (a little) etc.
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SOLVING OF A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS
OF THE FIRST ORDER WITH INITIAL-BOUNDARY CONDITIONS
BY THE METHOD OF AN ADDITIONAL ARGUMENT

Egemberdiev Sh.
Institute of Mathematics of NAS of KR

This article uses the method of additional argument for some first-order
differential equations with initial-boundary conditions. A purpose of the article: the
reduction of initial-boundary value problems for systems of nonlinear partial differential
equations to equivalent systems of integral equations using the method of an additional
argument.

Keywords: differential equation, additional argument, initial condition, integral
equation.

Bbyn makana kourym4a apryMeHT BIKMAChIH KOJIJIOHYY MEHEH JKeKede TYYHIYIyy
mudPepeHIMANIBIK TEeHAEMEeNIep YYYH KOIOJIraH OalliTanKbl-YeKTHK Macelelepan
m3miiee. MakallaHbIH MakcaThl: KOIIyMYa AapryMEHT BIKMAachlH KOJJOHYY MEHEH
KeKede TYYHAYIYY ChI3BIKTYY dMec nuddepeHuanplk TeHIeMelep CUCTeMachl YUyH
KOIOJITAaH OAaINTaNKbI-YEeKTUK Maceseliepid SKBUBAICHTTUK WHTETPAIIBIK TCHIEMEIep
CHUCTeMachlHa KENTHUPYY.

93



VYpyHTTYY ce34ep: KOIIymMua apryMEeHT bIKMAachl, OalITankbl-4eKTUK Macesenep,
UHTETPaJJIbIK TCHIEME.

Cratpss DpHUMEHAET METOJ JOIOJHUTEIBHOIO apryMeHTa K CHCTEMaM
midQepeHIMaNbHbIX YpPAaBHEHHH B YaCTHBIX INPOU3BOJHBIX C HAaYaJIbHO-KPACBBIMH
ycanoBusMu. Llenb cTatbu: ¢ IOMOIIBIO METOJA JOIOJIHUTEIBHOIO APryMEHTa CBECTH
HayaJIbHO-KPACBYIO 3a7ady JJI1 CHUCTEMbl HEJIMHEMHBIX YPaBHEHUH B YacCTHBIX
IIPOU3BOJHBIX K DKBUBAJICHTHON CUCTEME MHTETPAJIHBIX YPABHEHUM.

KiroueBple cioBa: METOJ JOINOJIHUTENBHOIO AaprymMeHTa, HadalbHO-KpaeBas
3a/1a4a, MHTErpajabHbIC YPaBHEHHUE.

1. Introduction

There are various methods for studying solvability of systems of
partial differential equations. For instance, there are classical methods of
characteristics, Galerkin’s method, flows methods. The additional
argument method was invented in Kyrgyzstan (see, for instance, [1]) for
studying solvability of systems of first order partial differential equations
when other methods are not applicable. In some cases the application of
this method allows one to find more effectively and specifically the
conditions of local solvability in original coordinates for systems of
nonlinear and quasi-linear first order differential equations.

2. Statement of problem

In [2, 3, 4] it was shown that a system of differential equations with
various initial-boundary conditions can be explored by using the method of
an additional argument.

The present paper is devoted to an investigation of the following

system of nonlinear partial differential equations:

MEX) 0 29 PN p ¢ vt ), te[0,T] @)
OX OX
_aptx) (vt Y e
ox° _( ox ) xefd ?
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with initial-boundary conditions:

v(0:)=p(x), VLO=p(). vEX)=u(t), 3
pt )=o), Py, @)

It is assumed, that the functions f(z, x, v), o(x), w(), u®), a(t), y) are
continuously differentiable with respect to all their arguments and that the
following compatibility condition holds:

9(0)=y(0), (5)
with w(t) >¥=const>0, te[0,T].
It is required to find functions v(t,x), p(t,x), which satisfy the equations (1)-
(2) and the initial-boundary conditions (3)-(4).

3. Solving of problem

The boundary-value problem (2), (4) has the solution

pt.x)= a(t)+ y(t)(x-X)+(X-X) Jx'asv(t, s)ds + T(s — X))o, v(t,s)ds.

Differentiating (1) with respect to x and taking advantage of equality

(2), for the function w(t,x):= NLX) e get the equation
ow(t, x) vt %) ow(t,x) __ of (t,x,v(t, X)) N of (t, x,v(t, x)) Wi, X) (6)
at R X v Y
where

V(tX)= ) + (e, s)ds.

From (3) it follows that w(0,x)=¢'(x), and we determine the values for
w(t,0) and w(t,X) from the equality:
ov(t,0)
ot

+V(t,0)W(t,0) = — apg(,O) +(t,0,v(t,0)),

av(t, X)

+v(t, X)w(t, X) :—%ﬂu f(t, X,v(t, X)).
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It yields the following relations:
w(t0)=(1/y@)[[(1.0, w(®)- y¥)-v'®),
W(tX)=(1/ p®) X u®)- o' -2 ®1.
Denoting the right side of these equations by g(t) and z(t), we can write

down initial- boundary conditions for the equations (6) as

W(0.X)=¢'(x), w(t,0)= (1), wtX)=(1). (7)
then compatibility condition of the problem (6)-(7) are
¢'(0) = p(0). (8)

The problem (6)-(7) can be reduced to the following system of
equations (their equivalence can be proven), i.e.
w(tx)= fz(tx))+ ¢'(a(z(t,x),t,x) - ¢'(0) +

X

+ [ [0.f(pa(pt 0w (p)+ [ wipa(ptr)en(-[wir,a(.tr)dn)de)de +

z(t,x) r(t,p)

+ [[0,f(.)w(p,a(p.t,x))dp, (9)

z(t,x)
with (t,x) € G, where the domain
G={(tx): 0<z(tx) <t<T,

0<x<X+r(10) - | Q-ep-[wimqmt))dn)dr};

r(t,0)
r(ts)= [w(@)eo(|wer.a@.t rt.)dn)dr, (10)
with (t,x) € Gg, where the domain Go={(s,2): 0<s<t<T},
astxX)= | ep(-[wirae.t7)dn)dr, (11)
r(t,s) N

with (s,t,x) P, where the domain
P={(s,t,x): z(t,x)< s<t<T,
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r(t,s)<Sx<X+r(t,0)- | (1-ep(-[wr.q0.t.7)dn)dz };

r(t,0)

t

x= | w@ep([wnat.tr)dy)dr, (12)

2(t,%)
with (t,x) Gy, where the domain Gi={(tx): 0<z(tx) <t <T, 0 <x <
r(t,0)}, with the conditions

z(t,0)=t, for te[0,T], (13)
z(0,x)=0, for (t,X)e Gy, (14)
where the domain G,={(t,x): te[0,T],

r(t,0)< x<X+r(t,0)- (jo)(l—exp(—lw(n,q(n,t,r))dn))dr}.

The following theorem can be proven.

Theorem 1. If functions w(t,x), z(t,x), r(t,x), q(s,t,x) satisfy the
system of relations (9) - (14), and w(t,x) eC**(G), z(t,x) eC*}(Gy), r(t,s) e
C(Gy), q(s,t,x) «C**(P) and matching condition (8), then w(t,x) will
satisfy differential equation (6) and initial conditions (7).

Conversely, if problem (6) - (7) has a continuously differentiable
solution w(t,x), the consistency condition (8) is satisfied, the functions
w(t,x), z(t,x), r(t,s), q(s,t,x) satisfy relations (10) - (14), then the function

w(t,x) is a solution to the integral equation (9).
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PECULIARITIES OF TRANSLATION OF MATHEMATICAL
TEXTS (ENGLISH-KYRGYZ-RUSSIAN)

'pankov P.S., ?Bayachorova B.J., *Karabaeva S.zZh.
YInstitute of Mathematics of NAS of KR,
’KNU named after J.Balasagyn

Nowadays most of scientific texts in Kyrgyzstan must be written in two or three
languages. Hence, two or three such texts are to be equivalent. This is a necessary task
for all researchers and teachers of high schools. Various difficulties arising in such
process are considered in this paper. A table of differences in denotations is also given.

Keywords: mathematical text, translation, Kyrgyz language, Russian language,
English language, difference

A3bIpkbl yuypaa Kelprel3crangarsl WIIMMHNA TEKCTTEPAUH KOMUYJIYTY KU K€ Y4
TUJIZIE JKa3bUIBIIIBI a03el. [lemMek, 9KU ke Y4 TeKCT SKBUBAJICHTTYY Oouyiry 3apbii. by
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0aapIbIK M3UJIIOOYYIIep jKaHa KOTOPKY OKYY >KalIapAblH MYTaJuMIEpU YUYH 3apbLil
MmacenepieH Oonyn caHanar. byn mpomeccre  Kenun  YbIKKaH —ap  KaHJa
KBIMBIHYBUIBIKTAP OyN Makanaja kapanar. OmoH/0i 351 OeNriiee ailblpMavybUIBIKTaPhI
Tabuiaga 6epuerT.

YpyHTTYy ce31ep: MaTeMaTUKAIBIK TEKCT, KOTOPMO, KBIPIbI3 TUJIH, OPYC THIIH,
aHTJIUC THJIU, albIPMaYbLIIbIK.

B HacTosimiee Bpemsi MHOTrMe HayuyHble TEKCThl B KbIprel3craHe IOJIKHBI OBbITH
HanucaHbl Ha JBYX WJIM Ha TpeX s3blkax. CieoBaTeNbHO, J1Ba WM TPU TEKCTA JOJIKHBI
OBITh SKBUBAJICHTHBI. JTO - 33j1a4a JUIsl BCEX HccieloBaTenel U npernojaBaresiei By30B.
PasnuuHble TPyOHOCTH, BO3HHUKAIOIIME B OTOM IIPOLECCE, PACCMOTPEHBI B CTATHE.
Taxoke npuBeseHa Tabiuna pa3Muuil B 0003HaUCHUSIX.

KirroueBsple ci10Ba: MaT€MaTHUYECKHUM TEKCT, IEPEBOJ, KBIPIBI3CKUN S3bIK, PYCCKAN
A3BIK, AaHIVIMACKUN A3BIK, Pa3IMUuE.

1. Introduction

Nowadays most of scientific texts (or their parts) in Kyrgyzstan must
be written in three languages. Hence, two or three such texts are to be
equivalent. This is a necessary task for all researchers and teachers of high
schools, not for philologists only. Moreover, a philologist who does not
know the subject area cannot prepare an adequate translation.

There are a lot of publications on this subject. For instance, [1]
stresses difficulties of translations: «Mathematical texts raise particular
dilemmas for the translator. With its arm’s-length relation to verbal
expression and long-standing “mathematics is written for mathematicians”
ethos, mathematics lends it self awkwardly to textually centered analysis.
Mathematics has an uneasy relationship with language. Geometry is
intrinsically visual rather than verbal, while algebraic texts often use more
symbols than words.»

Nevertheless, there were not distinguished peculiarities of translation

of mathe-matical texts in very different languages such as English, Kyrgyz
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and Russian, toge-ther with capacities of Kyrgyz language [2] for
presentation of mathematical objects.

Also, we did not find systematical description of differences in
denotations.

2. Definition of language and related topics

We proposed

Definition 1 [3]. If low energetic outer influences can cause
sufficiently various reactions and changing of the inner state of the object
(by means of inner energy of the object or of outer energy entering into
object besides of commands) at any time then such (permanently unstable)
object is an affectable object, or a subject, and such outer influences are
commands. In Kyrgyz: «raacup 3Tuiryy4y» 0OBbeKT.

Definition 2 [3]. A system of commands such that any subject can
achieve desired efficiently various consequences from other one is a
language.

These definitions unite human and computer languages.

Hypothesis 1. A human's genuine understanding of a text in a natural
language can be clarified by means of observing the human's actions in real
life situations corresponding to the text.

These definitions lead to the following definition of one kind of
information.

Definition 3. Command information is the quotient set of the set of
commands by the following relation of equivalence: two commands vyield
same actions by an affectable object.

We have used this definition for competitions of translators (see

below).
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3. Examples of difficulties in translation

A whole list of such differences is too vast, so we give examples.

3.1. Differences in common meaning of words and one in
mathematical terminology.

The Russian words «ocTpsiii, Tymoi» correspond Kyrgyz ones «xypu,
Mokok» and English ones “sharp”, “blunt” but the expressions «ocTpslii
yrou, Tymo# yrom are to be translated as «tap Oypu», «xeq oypu» (literally
“narrow angle”, “wide angle”); “acute angle”, “obtuse angle”.

3.2. Different ranges of meanings of words.

The Russian word «yrom» and the Kyrgyz one «0ypu» correspond to
two Eng-lish ones: «corner» and «angley.

«KBaJpaT WUMeEeT 4YeThIpe yriaa» - «a square has four cornersy -
«KBaJpaT TOPT OypUKa 39»;

«yron B kBagpate pasen 90%» - «the angle of the square is 90% -
«xBagparrarsl 6ypu 90°ka Gapabap».

The Russian word «pemenue» corresponds to four Kyrgyz words
«4bITapyYy, YbITapbUIbILI, Yeuyy, yeuum» and to six English ones: «to solve
(solving), solution, to decide, decision, to resolve, resolutiony.

3.3. Differences in definitions. The Kyrgyz expression «HaTypayiIbIK
cannap» is to be translated into English “natural numbers without zero”,
and vice versa the English expression “natural numbers” is to be translated
into Kyrgyz «Hatypanasik canaap kaHa (MyMKYH) HOJD».

3.4. Any language has notions which are absent in other languages. In
Kyrgyz language: «upree» - “discrete optimization by means of
synergetic’’;

«cpIpT(Bl)» - “exterior’”, «uu(m)y» - “exterior” (exists in English);
2 9
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«er(y)» — “upper-space”, «act(p1)» — “before-and-lower-
(observed)-space”, «uek(daern)» — “boundary-strip”, «com» — “left-space”,
«oH» — “right-space”, «opto(cy)» — “middle-spot”, <«okau(sl)» — “near-
space”, «apa(cel)» — “between-space”, «amn(s1)» — “before-forward-space”,
«apt(p1)» — “behind-space”, «kapiibl
(ceI)» — “opposite-space”.

For instance, «ky1 ycTeIyH YCTYHOH Y4yl KeTTu» can be translated
“the bird flew out of the upper-space of the table” only.

«tpenen(n)» is a mathematical term in Kyrgyz. The Russian
«mpenen» and the English “limit” are incorrect extensions of a common
Latin word “limit” (boundary).

In English: “upload” means « TaTepHET apKbLIyy KOMIyTEpre
KYKTOOY.

3.5. Any language has specific expressions. For instance the phrase
“the room was nine feet in square” is usually understood and translated as

“the room was nine (foot in square)” = nine square feet?

while the genuine sense is

“the room was (nine feet) in square”= nine feet x nine feet.

3.6. While translating the aim is not the term but the meaning. For
instance, translation of the (feeble, but standard) Russian «gatumx» into
Kyrgyz is «cesrnu» (from Latin “sensor”). Translation of Russian
«ISITUKOHEYHas 3Be37a» into Kyrgyz is “Oemr yuTyy *Kbuiabi3”.

Remark. While investigations new notions can arise. They need to be
named in all three languages. A new relation was detected in [4]: two

points on different sheets of a Riemann surface have same coordinates.
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4. Table of differences in denotations

Notion English Kyrgyz, Russian
natural numbers HATYPaJIJIbIK CaHap
I, 2, 3... or 0, 1, 2, | HarypanbHble uncaa 1,2, 3...
3...
Large natural 2,020 2020 2020
numbers 10,000,000 10000000
10000000
Decimal fractions | 5.2 (decimal point) 52  (ymyp,  nosuyuonmas
3ansamasi)
n!/(k!(n-k)!) C(n,k), (Z) ck
n!/(n—k)! P(n,k) A%
Division of numbers =/ o/
Tangent of x tan tg
Cotangent of x cot ctg
Hyperbolic sine of x sinh sh
Hyperbolic cosine of x cosh ch
Hyperbolic tangent of x tanh th
Hyperbolic cotangent of x coth cth
Inverse sine sin™ arcsin
Inverse cosine cos™ arccos
Inverse tangent tan™t arctg
Inverse cotangent cot™ arcctg
Inverse hyperbolic sine arsinh, sinh™* arsh
Inverse hyperbolic cosine arcosh, cosh™ arch
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Inverse hyperbolic tangent artanh, tanh™ arth

Inverse hyperbolic cotangent | arcoth, coth™ arcth

Curl of vector curl rot

Scalar product of vectors has many different denotations in all

languages: ab; ab; (a,b); @,b) ...

Vector product of vectors has various denotations in all languages:
axb; [a,b] ...

5. Translators' competition with objective quality estimation [5]

See Definition 3.

A team consists of three persons.

1st step. The first teammate (“watcher") is shown a simple drawing
and must describe it (what s/he see) in English. If all English words are
correct (their correlation is not checked by the computer) then this text is
sent to the second class to the second teammate.

2nd step. The second teammate (“translator') is shown this English
text and translates it into Kyrgyz. If all Kyrgyz words are correct then the
Kyrgyz text is sent to the third class to the third teammate.

3rd step. The third teammate ("painter") draws by then the Kyrgyz
text.

If his/her drawing coincides with the initial one then the translation is
adequate.

6. Conclusion
We hope that this paper would draw attention to difficulties and

improve quality of translations of mathematical texts by our colleagues.
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DETERMINATION OF THE OPTIMAL VOLUME OF
LIVESTOCK PRODUCTION BY THE CRITERION OF MAXIMUM
INCOME

Jusupbaev A., Asankulova M., Iskandarova G.S., Suynalieva N.K.
Institute of Mathematics of the NAS of the KR

The paper develops a mathematical model and algorithm for solving the problem
of choosing the optimal breed of animals without restrictions on the volume of
production according to the criterion of maximum net income. The performance of the
model is shown in a numerical example.
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byn xymymTa eHaypylydyy Man uap0a a3bIKTapblHBIH KOJIeMy YeKTen0ereH
y4ypAa MajblH OHIYPYMAYYJIYK aCbUINYYJIYTYHYH ONTHUMAAYy TaHIOO MACEJIECHHE
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MaTeMaTUKaIbIK  MOJIEIb ’)KaHa yYbIrapyy alroOpUTMAcChl UIITEJNMN  YbIKKaH.
MareMaTuKanblK MOJEIANH UIITEMIYYJIYTY CaHIbIK MUCAT MEHEH KOPCOTYJITOH.

VYpyHTTYy ce31ep: MaTeMaTUKalblK MOJENb, aWJ00 asHThl, OHIYPYI,
TYWIYMAYIYK, YbITBIM, KHUpEIlle, 4apoa.

B pabote pazpaborana maremarnueckass MOJACIb M QJITOPUTM PEUICHUS 3aJaud
BbIOOpA ONTUMAIBHOM MOPOABI KUBOTHBIX 0€3 OrpaHHUYEHHs Ha 00BEMbI IIPOU3BOJICTBA
MPOAYKIIMKM >KMBOTHOBOJCTBA. PaboTOCIIOCOOHOCTh MOJENHM TOKa3aHbl Ha YHCIOBOM
puMepe.

KiroueBsie ciioBa: MatemMarnueckasi MOIENb, TOCEBHAs TUIONIA/Ib, TPOU3BOICTRBO,
YPOKaMHOCTh, PACXOJI, JOXO, XO35KUCTBO.

Problem statement. Let a livestock farm that has sufficient financial
resources and acreage of various categories (irrigated, rainfed, etc.) in the
amount of s,, keK planned to get the maximum income from production
by updating his farm with more productive breeds of cattle. It is assumed
that for each type of cattle breed, its productivity and the corresponding
daily feeding ration are known. In addition, the yield of feed crops for each
category of sown area is known,

It is required to determine the optimal composition of productive
animals to ensure the maximum net income for the farm from the
production and sale of livestock products. The mathematical model of the
problem is represented as.

Find the maximum

L(x,y,2) = Zahzh _(chijkj +ch|hy|h) (1)

heH keK jedg heH leL
under conditions
D %X <5, keK, (2)
i€do
DA% =22 W, jed, 3)
keK heH leL
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2.0y =7" heH, (4)

leL

X 20, kEK, J EJO , (5)
2">0, heH, (6)
y' >0, lelL, heH -isaninteger, (7)

where z={z"heH}, x={xgkeK, jel}, y={y':heH, leL-is
an integer},
Jj —is an index of the type of agricultural crop production used in the daily
diet of animal feeding, j&Jo;
Jo — is population of types of crop production aimed at animal feed,
Jo={12,..n};
k — is an index of the type category of acreage in the farm, kekK;
K — is population of types of acreage categories, K={1,2,...,p},
h — is an index of the type of livestock products produced on the farm,
heH;
H — is population of the types of products animal husbandry, H={1,2,...,
H},
| —is an index of the type of animal breed in the farm, | €L;
L— is population of the types of animal breeds, L={1,2,..., L };

The known parameters are:
sx— Is the size of cultivated area of k category in the economy, keK;
ay; — yielding capacity of j type of cropper on k category of farm acreage,

keK, jedo;

a?.— annual demand for j-th type of crop production per animal of I-th

breed in the production of h-type of product, where
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a?,=,3h|7/?,, j€d,, leL, heH,; (8)

ﬂﬂ —is a fraction of j-th crop production in the daily diet per animal of |-
breed on the farm for production of h-type of product, j&Jo, l L, he H;

7?. — is the number of days in the diet of feeding crop products of the j-th

type for the I-th breed of animal in the production of the h-th type of
product, je&lo, lel, heH;

8" — is the the volume of production of the h -th type received by the farm

from one animal of the I-th breed, leL, he H;

a" — is the sale price of the h-th type of livestock products on the farme,
heH:

Cyj— IS the costs per unit size of the k -th category of sown area for the j-th

type of crop, jeJo, kekK;
¢ — is the annual expenditure per animal of the I-th breed in the production

of the h — th type of animal products, he H, lL;

Unknown variables are:
Xy — the size of the k-th category of sown area allocated for the j-th type of
crop, j €o, kekK;

y! — number of animals of the I-th breed in the farm for the production of

the h-th type of product, he H, l €L;
2" — volume of h - type livestock products sold, heH.
Obijective function (1) determines the maximum net income received
by the farm from the production and sale of livestock products;
Assumption (2) requires that the total size of the sown area of the farm

allocated for forage crops for each category should not be greater than the
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size of the sown area of this category;

Assumption (3) shows that the volume of agricultural products
produced for each type of feed must be equal to the volume of the farm's
needs for internal needs (for feed);

Assumption (4) requires that the volume of livestock products
produced for each type must be sold;

Assumption s (5), (6) require non-negativity of variables;

Assumption (7) requires that the value of variables must be an integer.
The Mathematical Model (1)-(7) can be presented in the form of Table 1.

Table 1
Record of the problem condition (1)-(7) as a Table
Xap | Xag | oo [ Xan [ Xon [ Xoo | o [ Xon | oo [ Xor [ Xo2 | oo [ X [ 28 [ 22 ] ... [ 2
1 /1 |...|1
1 |1 1
1 |1 1
an a dp1
a2 az ap2
a1 don Apn
-1
-1
-1
Cir |Cio | |Con|Con|Con| . Con| .. |Coa|Cpal|...|Cm|a [&°]...]&"
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Continuation of Table 1

1 1 1 2 2 2 h h h
Y1 Y, e Y Y1 Y, - Y TR/ Y, - Y
< |S
<|S,
< S
1 1 1 2 2 2 h h h | —
Q| —0y Q| —0yp —ay Q| —0p 0y | = 0
1 1 1 2 2 2 h h h | —
Uy | Oy Q| Oy | —Cy —Qy, Oy | —Cy Oy | — 0
1 1 1 2 2 2 h h h | —
Q| —Qy Q| %y | Ay —Qy, Q| -y | — 0
1 1 1 _
2 o, 6, =10
2 2 2 _
6; A 6, =10
h h h —
6, o, .. 6 =10
1 1 1 2 2 2 h h h
G C, G G, G, G G, C, G — | Ma
X

Solution Algorithm. The algorithm for solving problem (1)-(7)
differs from the algorithm described in [1] with minor changes as in [1],

calculations begin with calculating the values of the parameters aﬂ , ] &€Jo,

| L, h e H by the formula (8).
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Using the values of the parameters ay, Cy, S, keK, jelou §'.¢/', d",

heH, leL, a numerical model of the problem is formulated according to
1)-(7).
From the solution of the problem, the quantitative composition of

cattle in the farm is determined y={y':, he H, | &L} and the corresponding

size of the acreage for feed crops x={ x,: keK, j€Jo}, as well as the volume
of livestock products sold z={ z": heH}, which allows to ensure the
maximum net income for the farm. The Solution Algorithm ends.

Let's check the performance of the mathematical model and the
algorithm for solving the problem using a numerical example.

Example. Let the main activity of the farm is the production of
livestock products: milk and beef meat. The farm knows two breeds of
dairy cattle and two breeds of meat cows. At the same time, the farm has
acreage of S = 366 the farm has acreage of S; = 280 hectares are irrigated,
and S, = 86 hectares are rainfed.

We believe that the first type of breed is a cash cow with a milk yield
of 3600 kg of milk and a corresponding feeding ration (Table 2), and the
second type of breed - a cash cow with a yield of 4500 kg of milk and a
feeding ration (Table 3). Similarly, the first and second types of breeds for
the production of meat are bulls (heifers) with a live feeding diet weighing
300 kg and 450 kg, respectively (meat Tables 4 and 5).

Table 2

Daily feeding ration dairy cows of the first type of breed
with a milk yield of 3600 kg of milk

Daily ration kg | Fodder | Commo | Total for | Number
Feed name (1 animal) unit nunit | 1animal of
days
1 | Medick (dry fodder) 4 0,5 2,0 720,0 180
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Chaf Wheat 1 0,2 0,6 180.0 180
Barley 3 2 360.0
Haylage 6 0,3 1,8 1080,0 180
The Wheat 0,3 109,5
concentrati | Barley 2,4 15 1 2,4 5475 365
onofthe | Seed 0,6 219,0
feed
Silage (Corn) 10 0,3 3,0 1800,0 180
Mineral feed 0,010 - - - 365
Salt 0,030 - - - 365
Pasture Forage 40 - - 7200,0 180
Green Fodder
Total - - 9,8 - -
Table 3

Daily feeding ration for dairy cows of the second type of breed
with a milk yield of 4500 kg of milk

The name of the Eodder Daily ration (1 | Number | For a year
animal) of days | (1 animal)
1. | Medick (dry fodder) 10 kg 180 1800 kg
Wheat 1kg 180 kg
2. Chaff 3 kg 180
Barley 2kg 360 kg
3. Haylage 8 kg 180 1440 kg
Wheat 2 kg 730 kg
The
4. | concentration Barley 3 kg 0,5 kg 365 182,5 kg
of the feed Seed 0,5 kg 182,5 kg
(Corn)
5. | Silage (Corn) 12 kg 180 2160 kg
6. | Mineral feed - 365 3,6 kg
7. | Salt - 365 10,8 kg
Pasture Forage
8. 50 kg 180 9000 kg
Green Fodder
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Table 4

Daily feeding ration for bulls and heifers of the first type

with a live weight of 300 kg

The name of the Daily ration | Fodder | Comm | Total for Number
. X . ) of
Fodder (1 animal) unit | onunit | 1 animal
y days
1. | Medick (dry fodder) 3 0,5 1,5 540,0 180
Wheat 0,5 0,4 90,0 180
2. | Chaff —poey | 2 [15 | 92 270,0
3. Hayalage 6 0,3 1,8 1080,0 180
The Wheat 0,5 182,5
concent Barley 0,5 15 182,5 365
4. | ration 1,5 1 182,5
of the Séecrjn 0,5
feed (Corn)
5. | Silage (Corn) 5,0 0,3 1,5 900,0 180
6. | Mineral feed 0,010 - - - 365
7. | Salt 0,030 - - - 365
Pasture Forage - 5400,0
8. [Green Fodder 30 ) 180
Total - - 6,7 - -
Table 5

Daily ration of feeding bulls and heifers of the second type
for meat with a live weight of 450 kg

Daily ration Number For a year (1

The name of the Fodder (1 animal) dZI/s animal)

1. | Medick (dry fodder) 5kg 365 1825 kg

2. | Chaff 1 kg 365 365 kg

3. | Hayalage 10 kg xr 180 1800 kg

The Barley 1 kg 365 kg

4. | concentration | Seed (Corn) | 3 kg | 1 kg 365 365 kg

of the feed Barley 1 kg 365 kg

5. | Silage (Corn) 10 kg 180 1800 kg
6. | Mineral feed - 365 -
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7. | Salt - 365 -

Pasture Forage
8. 30 kg 180 5400 kg
Green Fodder

In addition, the following are known: - sales price per unit volume of
milk a* =25 soms, meat a® = 140 soms;

- crop yields in irrigated fields (1) and rainfed fields (1) included in
the feeding ration,, ay, k=1,2, j=1,2,...,7, Table 6;

Table 6
Medick (dry Green Silage
Wheat | Barley fodder) Hayalage Fodder (Corn) Seed (Corn)
1 2 3 4 5 6 7
| |2070.0 | 1962.2 | 2380.0 6281.0 5730.0 12340.0 20280.0
I1]1500.0|0 1700.0 0 0 0 0

- these are expenses for growing agricultural crops per unit of size (I) and
(I1) fields, |cg|.7, Table 7.
Table 7

1 2 3 4 5 6 7

I 2279.0 |1096.0 |2618.0 |5071.0 |9225.0 13574.0 7743.0

I 2000.0 |1000.0 |2000.0 |5000.0 |9000.0 13000.0 7000.0

In addition, the consumption for the maintenance of one cattle of each

breed in the production of milk and meat, respectively, is known ¢

=50040.0 soms, ¢/ =55080.0 soms, ¢ 3 =18030.0 soms, ¢ =25020.0
soms.

It is required to determine the optimal quantitative composition of
cattle, which allows to ensure the maximum net income to the farm from

production and sale of products.
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For Mathematical Formalization of the problem we will determine the

annual need for feed per animal of each type of breed in the production of
products @, jely, lel, he H.

For Mathematical Formalization of the task will determine the annual
requirement of feed for one animal of each breed in production using the
daily feeding ration, determine the annual demand of each type of
agricultural products included in the composition of the feed for one dairy
cow with milk yield of 3600 kg of milk and one cow with milk yield of
4500 kg. We will also determine the annual demand of each type of
agricultural products for feed for one bull and heifer of the first and second

types of breed for meat (refer to Table 8).

Table 8
Annual feed requirement per animal depending
on breed and productivity
Consumption of feed for one Feed requirement per cow for
The name of the dairy cow meat
Fodder 1 type of 2 types of 1 type of breed | 2 types of

breed witha | breed witha | with a live breed with a

yield of 3600 | yield of 3600 | weight of 300 live weight of

kg kg kg 450 kg
1. Wheat 289,5 362,5 272,5 365,0
2. Barley 907,5 1090,0 4525 730,0
3. perennial grass
3.1. Medick (dry 720,0 1800,0 540,0 1825,0
fodder)
3.2. Hayalage 1080,0 1440,0 1080,0 1800,0
3.3. Green Fodder 7200,0 9000,0 5400,0 5400,0
4. Corn
4.1. Silage 1800,0 2160,0 900,0 1800,0
4.2. Seed 219,0 182,5 182,5 365,0

We formulate a numerical model of the problem.
To find the minimum of

L(X,y,z)=25z" +1407° — (2279.0X1,+1096.0X1,+2618.0X15+5071.0X 4+
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+9225.0X15+13574.0X16+7743.0X17+2000.0X2,+1000.0X5,+2000.0x55+
+5000.0x,4+9000.0x,5+ +13000.0%,6+7000.0%,7+50040.0 y; +55080.0 y;

+18030.0 y2 +25020.0 y2) (9)

under conditions

,
D %, <280, D x,; <86, (10)
j=1 '

2070,0%1;+1500,0X,,=289,5 y: +362,5 y: +272,5 y2 +365,0 y?,
1962,0%,,+0x2,=907,5 y:+1090,0 y: +452,5 y2 +730,0 y2,
2380,0%13+1700,0X,5=720,0 y: +1800,0 y: +540,0 y +1825,0 y?2,
6281,0%14+0%4=1080,0 y: +1440,0 y: +1080,0 yZ +1800,0 y,
5730,0x45*+0X,5=7200,0 y: +9000,0 y: +5400,0 yZ +5400,0 y?,
12340,0x;+0%26=1800,0 y:+2160,0 y: +900,0 y2 +1800,0 y2,

20280,0%,7+0x,;=219,0 y'+182,5 y: +182,5 y? +265,0 y2, (11)
3600 y:+4500y:=7z',  300y?+450y?= 7%, (12)
x>0, k=12, j=1,2,..7, (13)
2">0, h=1,2, (14)
y/ >0, =12, h=12-uenoe. - is an Integer (15)

Let's write the numerical model of the problem (9) - (15) in the form
of Table 9.
Table 9

Representation of the problem condition (9)-(15) as a Table

X11 X12 X13 X14 X15 X16 X17 X21 X22 X23 X24
1 1 1 1 1 1 1
1 1 1 1
2070.0 1500.0
1962.0 0
2380.0 1700.0
6281.0 0
5730.0
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12340.0
20280.0
- - - - - - -7743.0 | - - - -
2279.0 | 1096.0 | 2618.0 | 5071.0 | 9225.0 | 13574.0 2000.0 | 1000.0 | 2000.0 | 5000.0
Continuation of Table 9
Xos | Xes X |yi |y vy |y |z |7 |0
< S;
1 1 1 < S,
-289,5 -362,5 -272,5 -365,0 = 0
-907,5 -1090,0 | -452,5 -730,0 = 0
-720,0 -1800,0 | -540,0 -1825,0 = 0
-1080,0 | -1440,0 | -1080,0 | -1800,0 = 0
0 -7200,0 | -9000,0 | -5400,0 | -5400,0 = 0
0 -1800,0 | -2160,0 | -900,0 -1800,0 = 0
0 -219,0 -182,5 -182,5 -265,0 = 0
3600,0 4500,0 -1 = 0
300,0 450,0 -1 = 0
- - - - - - - 25,0 140,0 — | max
9000,0 | 13000,0 | 7000,0 | 50040,0 | 55080,0 | 18030,0 | 25020,0

Let's solve problem (9)-(15) using the MS EXCEL spreadsheet [2].

Get the optimal plan for the distribution of acreage for forage crops
(refer tp Appendix)
x={ x11=0,83; x1,=54,81; X13=28,74; X14,=22,58; X15=154,87;
X16=17,27; X17=0,89, X,1=22,69, X,=0, X23=63,31, X24=0, X25=0, X26=0,
Xo,7=0%}, composition of cattle breeds in the dairy and meat sector

y={w=2 y,=97 y;=0; y;=0}

and the volume of products sold by the farm z={ z' =443,7 1.}, as well as

the size of the household's net income L(x,y,z) =4356053.0 soms.
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MSC 49M37
OPEN THREE-SECTOR MODEL

Choroev K., Suynalieva N.K.
Institute of Mathematics of NAS of KR

The article offers a macro-economic open three-sector model. The main task of
developing a three-sector model is to maximize the volume of consumption. The
criterion of maximum specific consumption is used as a criterion for the dynamic
problem.

As a result of the study, based on the open three-sector model of the economy and
using the Pontryagin maximum principle, the optimal dynamic rule for the distribution
of labor and investment resources between the sectors of the open three-sector economy
was found.

Keywords: open three-sector model, maximization of consumption, distribution of
labor and investment resources.

Byn cratesiga ayblk y4 CEKTOPIIyY MaKpOIKOHOMMKAJIBIK MOJEIb CHYIITAJIAT. Y4
CETOpJIyy MOJENIN TY3YYHYH Oallkbl Maceinecu OOJyll KEpEeKTOOHYH KOJOMYH
MaKCUMaJAATHIPYy 00yl scenteneT. JMHaMUKaIbIK MaceJIeHUH KPUTEPHIlM KaTapbl
KEpEKOOHYH YIYIIYHYH MaKCUMyMYy KaObul ajblHAaT.

A4YBIK Y4 CEKTOpJlyy MOJAEIAWH HETU3UHAE JKYPIY3YJIreH H3WIIOOHYH
KBIUBIHTHITH! JKaHa [[OHTPSATMHANH MaKCHUMyM NPUHIMOWHUH >Kap/iaMbl MEHEH 3MIeK
’KaHa WHBECTULMSIBIK PECYPCTapAbIH aublK Y4 CEKTOPIYH apachlHa OeNyIITYpPYYHYH
ONTUMAJIYy JUHAMUKAJIBIK IPEKECH TaObLIIbI.

VYpyHTTYy ce31ep: aublk Y4 CEKTOpJLyy MOJEIH, KEPEKTOOHYH KOJIOMYH
MaKCHUMaJIAIITBIPYY, SMIeK ’KaHa HHBETULUSIIBIK pECypCTapAbl OOIYIITYPYY.

B crarbe nmpearaeTcss MaKpO3IKOHOMUYECKasi OTKPBITask TPEXCEKTOPHAsT MOJIEIb.
OcHoBHast 3ajada pa3pabOTKM TPEXCEKTOPHOM MOJENU SBISIETCS MaKCHUMHU3AIUs
o0bema noTpebieHus. B kauecTBe KpuTepusi TUHAMHUYECKOHN 3a7auu MPUHAT KpUTEpUit
MaKCUMyMa YAEJIbHOI0 MOTpeOIeHHS.

B pesynbrare npoBeIeHHOTO HCCIEIOBAaHUS HA OCHOBE OTKPBITON TPEXCEKTOPHON
MO/IEJIM SKOHOMHUKHU U € TMOMOIUIbIO MpUHIMNA MakcumMyMa [loHTpsiruHa ObUTO HalEHO
ONTHMAJIbHOE TUHAMUYECKOE MPABUIIO PACHpPEEIICHUs TPYIOBBIX U MHBECTULIMOHHBIX
PECYPCOB MEXAY CEKTOPAMU OTKPBITON TPEXCEKTOPHOU SKOHOMMKH.

KitoueBble ciioBa: OTKpbITas TPEXCEKTOpPHas MOJENb, MaKCUMHU3alus o0beMa
noTpeOIeHus1, paclpeieleHue TPYIOBbIX U HHBECTUIIMOHHBIX PECYPCOB.
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Currently, the economy of the Kyrgyz Republic (KR) still has a
number of structural imbalances in the economic sector due to the fact that
the level of consumption has been declining for many years, while
investment has continued to grow. Without structural changes, the KR
economy will gradually lose momentum due to insufficient domestic
demand. Insufficient domestic consumer demand is mainly due to an
unbalanced distribution of income.

These challenges are closely linked to a number of institutional
problems, among many others. Currently, the government is promoting
reform of the organizational structure to resolve these problems.

Kyrgyzstan does not have sufficient energy resources and industry to
drive economic growth. Because of this, after gaining independence,
Kyrgyzstan has not been able to achieve stable economic growth and is the
second-poorest country in the CIS, after Tajikistan.

According to preliminary data from the National Bank of the Kyrgyz
Republic, by the end of this year (2020), due to well-known events (the
coronavirus pandemic, October political events and the scale of corruption
processes), economic growth will decrease by 5.9%.

The problems that have arisen in the country require specialists to
develop new methods and methodology for analyzing the country's
economy. The development of a new macroeconomic cross-industry model
should take into account the problem of the domestic market's availability
of domestic goods (especially the needs of the food market), as well as the
ratio of imports and exports.

At present, we can conclude that due to the acute confrontation
between various political forces, reaching a compromise and implementing

the agreed option seems hopeless, and the "shock" option is the only
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possible and feasible one.

To solve the accumulated problems, you can use a subset of the open
three-sector model. The open three-sector model is presented in relative
terms. For construction, we use the following notation:

v — Is the growth rate of the number of employees (assuming its constancy,
it follows, as in the Solow model, that L = L(t) = L(0) - e'%);

0; = % — share of the i —th sector in the distribution of labor resources;
s; — share of the i —th sector in the distribution of investment resources;

k; = %— stock-to-weight ratio of the i —th sector;

f—: = F;(k;, 1) — industry productivity of the i —th sector;

Y2 = Y—LZ — specific import of consumer goods;
Y1 — quota coefficient for import of investment goods;
zo — Specific export of materials;
qo — is the world price of the exported materials;
q7,q3 — world prices of imported investment and consumer goods;
a,; — direct costs of materials per unit of output of the i — th sector;
w — physical capital depreciation rate (same for all sectors);
J=u+v — coefficient of reduction of capital stock due to depreciation of
physical capital and growth in the number of employees.
Specific weight of sectors

x; — labor productivity of the i —th sector.
Xi .
Xi = r = eifi(ki),l = 0,1,2, (1)
Differential equations for the stock-to-weight ratio of sectors

dk; _ S 10 -
dt - _)\kl + 9_(X1 + Y1))k1(0) - ki ) 1= 0;1:2- (2)
i
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Natural balances

- labour
Bp+6,+6,=1,0<6;,<1; (3)
- investment
So+s1+s,=1,0<5s;<1; 4)
- material
(1 —ag)Xg = a1X; + 0%, + Z. (5)

Trade balance

doZo = d1Y1 *+ A3 Y2 (6)
Industrial balance

Yo = Y1X1- (7)

Thus, the reduced subset of the open three-sector model differs from
the full model in the following aspects:

1) out of the three foreign trade balances of the sectors, the most
important balance (6) of the material sector was selected;

2) omitted internal cost balances of sectors;

3) the specific import of consumer goods is considered fixed, so the
consumer security condition is omitted.

The simplification of the model is caused by difficulties in solving the
full problem of optimal balanced growth of an open three-sector economy.
As these difficulties are overcome, it is hoped that the full task will be
solved.

Optimal balanced growth refers to the growth in the capital-to-capital
ratio of all sectors, balanced in terms of labor, investment, and material

resources, and optimal in terms of the "maximum discounted specific
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consumption™ criterion.
The main task of developing a three-sector model is to maximize the
volume of consumption. As a criterion for the dynamic problem, we take

the criterion of the maximum specific consumption:
5f e 9tc(t)dt » max, (8)
0

since c(t) = x,(t) + y,, then for y, — const, the problem reduces to

maximizing the specific output of the consumer sector:
6] e 9%tx, (t)dt —» max, (9)
0

This problem can be solved using the Pontryagin principle [Pontryagin
et al. (1969)]. The phase variables are the stock-weight ratio of sectors
ko, k1, k,, and the equations of motion are equations (2) for the stock-
weight ratio of sectors.

The transition economy is characterized by the following features in
the distribution of labor and investment resources between sectors:

- insufficient resource provision of the Fund-creating sector, which is
partially compensated by equal shares of labor and investment
resources;

- oversupply of labor resources in the consumer sector due to more
favorable working conditions compared to the sectors that produce
the means of production;

- lack of labor resources in the material sector, which is compensated
by greater capital intensity (consequently, large capital investments
are required).

Formally, these features are reflected in the following relations:
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sV <5, s <59, sd > s,
67 < 6g, 67 <63, 63 <63, (10)
s =~ 6
This initial allocation of resources differs significantly from the
stationary one and will shift in its direction as a result of implementing the
optimal rule for the dynamic problem.
We use the Cobb-Douglas production function to solve the stationary
problem for the stock-building capacity of the Fund-creating sector
Fi(Ky, L) = AKKSLT%,  i=012,
then
filk) = Ak, i=0,1.2.

Considering that the stationary stock-to-weight ratio of sectors

1
kE ((]»+'V1)A1)1 @i Sj
‘ A 0;

fixed specific issues of the sector are as follows:

1
o5 i=0,1,2

ag
Xo = B0y (KE) = Byst6L 0057,
“0“1
< X1 = 91f1(kf) = ]916’1511_0[1 1D
471251
Xz = 92f2(k§) = stgzezl—azglazsll—al

where
(1+Yl 1- ‘ixl ] —
B =4; (5X)™, i=012 (12)

Thus, in the case of Cobb — Douglas functions, the stationary problem
has the following form:

29 X251
82532021_%910‘2511_“1 — max, (13)
90 + 91 + 92 = 1, Hi = O, (14‘)
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50+Sl+52:1, SiZO, (15)
@oay

(04)) 1—(10 Qo 1-aq __
(1 —ag)Bgs, 0, °0;°s; * =

ai aza3

(ay + by)B161s; " + a,B;s,* Hzl_azefzsll_“l +z3, (16)

The problem formed in this way is a classical problem for a
conditional extremum. Labor and investment balances (14), (15) will be
taken into account directly (64, 8,, s, s, — are variable variables), and the
material balance (11) will be included in the Lagrange function

L =x, + A[(1 = ag)xo — (ag + by)x; — azx, — 2g,],

Where x,, x;, x, are their expressions (66) and

6p=1—6,—0,, So=1—5; —5,.

As a result of the study, based on the open three-sector model of the
economy, the optimal dynamic rule for the distribution of labor and
investment resources between the sectors of the open three-sector economy
was found.
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MODELS FOR SELECTING THE OPTIMAL ROLLING STOCK

Kydyrmaeva S.
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The article considers an optimization two-level mathematical model for selecting
rolling stock of the required capacity, which can be used for various urban transport
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networks, in order to ensure the most complete and high-quality satisfaction of the
population's needs for transportation and the necessary level of service quality, in
conjunction with economic feasibility. The model assumes that passengers choose from
all possible routes connecting any two nodes in the public transport network. The
proposed method of selecting the optimal type of rolling stock allows you to reduce
operating costs.

Keywords: transport system, mathematical model, variables, choice of rolling
stock, route.

byn crartbsina TpaHCHOPTTYH KEPEeKTYY KbIUMbUIIArbl OOJYMYH TaHJOOHYH
ONTUMAJIIBIK 3KU JIEHTEAYY MaTeMaTHKaJIbIK MOJENM KapajiraH. AJl SKOHOMHKaJIbIK
MacarTyJlyK MEHEH IIaapJblK TYpPryHJIapAbl TPAHCIOPTTYK TallyyHY, TEWIOOHY
camararTyy jkaHa TOJYIrypaak KaMChl3 KbUIyy MakcaTblHIa, ap KaHAal I1aapibIK
TPAHCIIOPTTYK TOPJY aHJIM3/1e6re KOJJIOHYIly MYMKYH. Mojenae, maccaxupiep
TPAHCHOPTTYK TOPAOTY OKM TYWYHAY TYTAIITBIpraH OaapablKk MYMKYH OOJTOH
MaTpyTTapAaH KepeKTYYCYH TaHJall ayiar jaen cHymranaT. CyHymranrad KeliMbLIgarsl
COCTaBJblH ONTHUMAJAYy TYPYH TaHAall ajlyy METOAMKAChl JKCIYJIaTalUsIo0
YBITBIMIAP/IBI a3aUTyyra MYMKYHYYJIYK Oeper.

YpyHTTYy co346p: TPaHCIOPTTYK CHCTEMa, MaTEMaTHKaJIbIK MOJENb, ©3repMe,
KbIMMBUIYY COCTAaBThI TAHI00, MAPIIPYT.

B cratee paccMoTpeHa ONTUMH3AIMOHHAs JIBYXYpOBHEBas MaTeMaTHyecKas
MOJIETIb BBIOOpa MOJBM)KHOTO COCTaBa HEOOXOJUMOW BMECTUMOCTH, KOTOpas MOXKET
OBITh MCIIONIb30BaHA JUIsl aHAIK3a paboThl PA3IMYHBIX TOPOJICKUX TPAHCIIOPTHBIX CeTell,
Cc uHenplo oOecrneyeHHs HauOojee TOJIHOTO U KAauyeCTBEHHOIO YJOBJIETBOPEHHUS
NOTpeOHOCTH HAaceleHHs B IMEpeBO3Kax U HEOOXOAMMOro YpOBHS —KauecTBa
o0CiTyKMBaHMUsS, BO B3aHUMOCBSI3U C SKOHOMHYECKOW I1eJ1ecoo0pa3HoCThi0. Mojenb
IpearosiaraeT, 4ro Maccakupbl BHIOMPAIOT M3 BCEX BO3MOXKHBIX MapIpyTOB, COEIH-
HAIONIMX J100ble [JBa y3Ja B CETH OOLIECTBEHHOro TpaHcnopra. [Ipemnaraemas
METOAMKa BBIOOpPAa ONTHMAIBHOTO BHJA MOIBM)KHOTO COCTaBa MO3BOJSET CHU3UTH
9KCILTyaTal[MOHHbIE 3aTPaTh.

KiroueBple  ciioBa:  TpaHCHOpTHash CHCTEMAa, MaTeMaTH4YecKas  MOJIEINb,
MIEpEMEHHbIE, BHIOOP MOABUKHOIO COCTAaBa, MapIIpyT.

The solution to this problem of transport accessibility is associated
with the development and optimization of the urban transport network,
reducing travel time, improving the environmental situation, and improving
the quality of life in cities. All these factors directly or indirectly affect the

solution of most of the problems of modern cities.
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The optimal combination of different types of transport, as well as
rolling stock of various capacities, will ensure the most complete and high-
quality satisfaction of the population's needs for transportation. The
purpose of the urban passenger transport system (UPTS) is to meet the
demand for the movement of the population and provide the necessary
level of quality of service, in conjunction with economic feasibility.

The operation of urban public passenger transport depends on various
factors: network structure, distances between stops, routes covering the
network in question; pricing policies, tolls, traffic intervals, and type of
rolling stock [1].

Therefore, in this article we will consider models with respect to two
variables - the interval of movement and the type of rolling stock. We
assume that other factors affecting the transport system are fixed.

Let's consider an optimization two-level mathematical model that
offers the choice of the optimal size of the rolling stock. At the top level, a
function for social well-being that represents the costs of both the user and
the management company, taking into account technological constraints
and meeting demand. The lower level includes the ride distribution model.

Variables are the travel intervals of each route, where n is the number
of routes in the network that are a fixed variable (0,1), assuming that the
value "1" is assigned if the bus type k is used on route 1, and "0" in other
cases.

The cost structure used in this model is passenger costs (UC) and
operating costs (OS). Passenger costs are obtained by modeling and depend
on variables, as shown in the following formula:

ZP = t,TT + t,,TO + t,TD + t,TP (1)

where
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TT —is the total approach time to the stop point;
TO — total waiting time;

TD — total travel time;

TP — total time spent on the transfer;

t, — value of the approach time to the stop point;
t, — the timeout value;

t; — value of time of movement;

t, — value of the time spent on the transfer.

The total cost is equal to (km):

CK = Z Z L;IN;CK; 8y 2)
i k

where

L; — length of route i;

IN; — interval of the traffic on the route i;

CK; — unit cost of a kilometer on a k -type bus;

0, — the variable is assigned the value "1" if the bus type is assigned
to the route, and the value "0" in other cases.

The cost of waiting of rolling stock on the stopping points:

CR = TG, z z CRySx, Vi 3)
i k

where:
TG, — average time of embarkation and disembarkation of passengers, for
the bus of the form k;
CR,, — cost per passenger per hour when idle rolling stock on the k-type of
bus;

Y; — demand on trip (derived from the modelling of the transport network).
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TGy = Bo + max{BsNS; + PzNB;} (4)
where
NSj(NBj) — number of passengers who entered/exited using the j-door at
the stop;
Bo, Bs, Bg — are parameters.

If the stopping point is overloaded, then the movement of urban
passenger transport becomes disorganized and the time increases (,), and
the time limit before the arrival of the next rolling stock (f5) may increase.
Similarly, the time limit for getting off the bus (Sg) increases if the bus is
full and it takes longer for passengers to move around the cabin. Staff costs

are taken as:
cP=c, Z £, (5)
i

where C,, — cost of passenger transportation per hour.

Fixed costs for buses are calculated according to the following

CF =) > fiCFidis (6)
i k

On the basis of the above presented cost structure, the optimization

formula:

problem for the upper level as follows:

minZP = t,TT + t,,TO + t,TD + t,, TP+ZZL IN;CKy. 8y ;

+TGkZZCRk6le +C Zﬁ
+ z ZfiCFk(Sk,i (7)
i k
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6k,i € (0'1)'

z&m- = 1 for any i;
K

NDP¥
. . K} Ox
i i k

The first limitation is relative to the characteristics of the binary

variables &y ;.

The second restriction is that each route can only be assigned one type
of bus.

The third constraint is the demand satisfaction depending on the
capacity of different types of buses, where K;, — is the capacity of the k bus
type, and Oy is the bus load factor, which varies depending on the filling
and takes a value from 0O to 1.

The lower level is optimized by applying a public transport
destination model.

To solve the equilibrium model in a public transport network, you
need to represent a complex network as a graph

G'=(N,S), (8)
where S is the sum of arcs in the network that form sections of the route. A
route section is a section of a route between two consecutive nodes
connected by a route group. Then the optimization problem will look like
this:

Vs
minzf ¢, (x)dx; (9)

SES 0
When
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z h, =T, , foranyw € W;

TERy,
h, = 0,forany r € R.
where

¢, — Is the fare for public transport passengers on the stage with c;

V. — the passenger traffic on the route s;

s — section of the transport route indicating the starting point;

S — group of crossings on routes accessible to public transport
passengers;

W — source and end points in the matrix;

w — elements of group W, in which w=(i, j);

h,. — passenger traffic on route r;

T,, — total number of passenger trips in the matrix;

R - group of routes available for public transport passengers;

r is the route number.

The model assumes that passengers choose from all possible routes
that connect any two nodes in the public transport network. The chosen
path is reduced to minimizing the total travel time (cost). The total travel
time is made up of: transport costs, travel time, waiting time, and approach
time to the stop point.

The model assumes that between each pair of nodes in the public
transport network there is a group of "shared routes" that are equally
attractive to passengers.

Meeting the population's demand for transportation and providing
quality services will increase the income of urban passenger transport
companies by reducing operating costs, by increasing the volume of traffic.

With an increase in traffic volumes, the cost price decreases, which, taking
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Into account the growth of revenues, leads to an increase in profits and
profitability of enterprises.

The method of choosing the optimal type of rolling stock presented in
the article allows to reduce operating costs, but for the effectiveness of
implementation, a well-coordinated work of all participants in the
transportation process is necessary. The effect of implementing the

proposed method is to minimize the costs and expenses of passengers.
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DETERMINATION OF THE RANGE OF AGRICULTURAL
PRODUCTS PRODUCED WITH A LIMITED AMOUNT OF
FINANCIAL CAPACITY OF THE HOUSEHOLD

'Eshenkulov P., "Mamatkadyrova G.T., ]Iskandarova G.S., *Jusupbaeva N.A.
'Kyrgyz-Russian Slavic University
2Osh State University
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The paper develops a mathematical model for determining the optimal size of the
sown area for each type of agricultural crop and the amount of mineral (organic)
fertilizers used with a limited amount of financial capacity of the household.

Key words: mathematical model, costs, income, yield, acreage, economy, price,
production.

byn >xymymra wapOaHbIH 4YeKTeNreH (UHAHCAIBIK MYMKYKYYJIYK Y4ypyHAa
ATUIYY4Yy ap Oup aiibln yapOa eCyMAYKTOpYHYH aiJ00 asHTapbIHIArbl ONTUMANbIYY
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YeHEeMHUH JKaHa ajapra KOJJIOHYJIyydy MHHEpalbAblK  (OpraHUKalbIK) — Kep
CCMUPTKUUYTCPANH KOJIOMYH Ta6yy MACCJICCUHC MAaTEMAaTHKAJIBIK MOACJIb HIITCIUIL
YbIKKAaH.

VYpYyHTTYY CO316p: MaTeMaTHKaIbIK MOJEJb, YbITBIM, KHpEIE, TYIIYMIYYIYK,
aii100 asHTHI, yapOa, 0aa, OHAYPYII.

B pabore pa3paboraHa MaTeMaTHuYecKass MOZETb 3aJaud  OIpeaeIICHUS
ONTUMAJIBHOTO pa3Mepa MOCEBHOM IUIOMIAU TMOJ KaXKIbli BUJ CEIbX03 KYJIbTYPHI U
00BEMBI UCIIOJIE3YEMBIX MUHEPATBHBIX (OPraHUYECKUX ) yI0OPEHHI Py OrpaHHYEHHOM
pa3Mepe (pUHAHCOBOM BO3MOXHOCTHU XO3SHCTBA.

KitoueBble cioBa: MaremaTtuyeckas MOJENb, PacXoi, J0XOMA, YPOKalHOCTB,
MOCEeBHasl IUIOMIAb, XO3SHUCTBO, IIEHa, IPOU3BOJICTBO.

Problem statement and mathematical model. Let the household has the
financial assets in the amount of D soms and has k categories of acreage
sk, k € K (irrigated, rain-fed, etc.) where was planned to grow n types of
agricultural crops. For growing agricultural crops used r types of mineral
(organic) fertilizers (nitrogen, saltpeter, etc.)

It is assumed to determine the yield of each type of crop in each
category of sown area and the corresponding costs, as well as the price of
sales of a unit of agricultural production.

In addition, the purchase price of a unit volume of mineral fertilizers
and the rate of consumption of each type of mineral (organic) fertilizers per
unit size of each category of acreage are known and etc.

We have to determine the optimal size of acreage for each type of
agricultural crop and the amount of mineral (organic) fertilizers used so
that the net income received by the household is maximum.

For the mathematical formulation of the problem, we introduce the
following notation:

k — index of farm acreage categories, k € K = {1,2, ..., m};
j — index of the type of agricultural crop, j € ] ={1,2, ...,n};
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r — index of the type of mineral (organic) fertilizers used by the farm in
the production of agricultural products, r € R = {1, 2,...,p};

Known parameters:

a;, — is yield of j — th type of culture on k — th category of cultivated
area, k € K;

d; — is the selling price of j — th type ofagricultural products, j € J;
S, — is the size of x —th category of household’s acreage, k € K;
c” —the market price of a unit of volume of r — th type of mineral

(organic) fertilizer, j € J,r € R;

i —is the consumption rate of r — th type of mineral (organic) fertilizers
per unit of sown area size of k —th category for j—th type
culture, j€J,r e R,k € K;

D — is the size of financial ability of the household;
cjx — is the cost of farming of j — th type of culture, in the unite of size of
k — th category of acreage, j € ],k € K;

Sought variables:

x; — volume of agricultural products sold of j — th type, j € J;
Zj, — volume of mineral (organic) fertilizers used
agriculture in the cultivation of agricultural products, j € J,r € R;
xj —size of k — th acreage for j — th type of culture, j € ], k € K;
Z — the size of financial resources used by the household.
According to the accepted notation, the mathematical model of the
problem has the following form.
z djx; — Z - max (D)
j€J
having conditions
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> @ =x;, je, (2)
k

keK

Z Z Ejrk Xjx = Zr, T ER, (3)
j€J kEK

Z X < Se k€K, (4)
J€J

ZCrZr+ZZCijjk =7 <D, (5)
TER j€J k€K

XjZO,XijO,jE],kEK, (6)
z, >0, TER, (7)
Z>0 (8)

Using the relations (2), (3) excluding from (1) and (5) variables Z,.
Then the mathematical model of the problem takes the following form:
To find maximum

L(x) = Z Z diajxj, — Z 9)

j€J kEK
having conditions
z X < Se kEK, (10)
Jj€J
Z Z(cjk + Z c’ fk)xjk =7 <D, (11)
jEJ kEK TER
xijO, j€], kEK, (12)

where x={x;.: j€J, k€K }.

Further, mathematical model (9)-(12) we will write in form of Table 1
and solve the problem with method in [1], where the notation is entered for
brevity:

qjk = djajk, ]E], k €K,
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TER
Table 1
X11 | X12 | - | Xk | X1 | Xoz | oo | Xk | oo | X1 | Xz | - | Xk | 2
1 1 1 < S,
1 1 1 < S,
1 1 1 < | Sk
by | by bir | by1 | bz by bni | bnz bn 1 = 0
1 < D
11 | Gz | -+ | Gk | 921 | Q22 | - | Q2 | oo+ | Gna | Gn2 | oo | G | 1| = | Max

Solution algorithm. Calculations begin with determining the values
qjk=djajk,j6], kEK, (13)

and
bix = Yrer c"g]?‘k +cik, JEJ, kEK. (14)

Next, using known data S,, k € K, a numerical model of the
problem of the form is formulated (9)-(12) and solved.

From the solution of the problem, the size of the sown area allocated
for each type of agricultural crop in each category of sown area of the farm
is determined k € K, and the amount of financial resources used Z < D,
bringing the maximum net income to the household.

Let's check the working capacity of the mathematical model and
algorithm for solving the problem using the following example.

Example. Let the household have a sown area of Let the farm have a

sown area of s = 400 h, of these irrigated area is s; = 300 ra, and rainfed
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area is s, = 100 h and has financial resources in the amount of 2 million
soms for growing crops.

The household plans to grow the following types of agricultural
products this year: potatoes, onions, wheat and barley, since according to
long-term data, the wholesale price of these crops is almost stable and in
high demand, price of potato is 20 som per kg, price of onions is - 15 som
per kg, price of wheat is 14 som per kg and price of barley is 12 som per
kg.

For farming farming uses mineral (organic) fertilizers: gerberit,
nitrate, water irrigation etc.

It is necessary to determine the optimal plan for the sown area of
irrigated and rainfed fields for each type of crop, as well as the volume of
mineral (organic) fertilizers used, taking into account the financial means
of the farm, so that the net income of the farm from the sale of grown
agricultural products is maximum.

Known: - yield (kg) of each type of crop |a;lje;kex ON irrigated
and rain-fed acreage:

12000.0 0.0

a],. - 15000.0 0.0

Klaz ~13200.0 2000.0
2600.0  1600.0

- vector of realized prices per unit volume of agricultural products of d,
(som per kg)

d = (dll dz, d3, d4) == (200, 150, 14‘0, 120),
- vector of the size of the sown areas s (hectar)

s = (s1,5,) = (300.0,100.0);
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- market price per unit volume of mineral fertilizers: herbicide - 55 som

per kg, saltpeter - 27 som per kg, irrigation water - 0,40 som per m’;

- the rate of consumption of mineral fertilizers per hectare, depending on

the category of sown area for each type of crop, |&jy||;; 1z k € K, T.e.

a) on the irrigated acreage (k=1)

~ 500 2000.0

- 500 20000 |
43 (100 500 1000.0 |

100 50.0 1000.0

r
&p

b) on rainfed cultivated area (k=2)

. 500 -

- 500 -
31100 500 -|

100 500 -

r
ng

- matrix of expenses for growing each type of crop per unit of sown
area size by category, [cjl;; k|, (SOm per hectare), so
41000.0 40000.0
43000.0 42000.0 |

‘Cjk ‘ = ’
42~ 110000.0  9000.0
9500.0  8500.0

- size of the financial means of the household D=2000000.0 soms.

Let's form a numerical model of the problem (9)-(13). According to
the algorithm for solving the problem, we determine the values
qjx ¥ by, j =1{1,2,3,4}, k € K = {1, 2} by formulas (13) and (14).
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240000.0 0.0 240000.0 41350.0

we have ‘ ‘ | 225000 0.0 - and ‘ ‘ | 45150.0  43350.0
Uilaz 7| 448000  28000.0 | Klaz = 112300.0 10900.0 |
31200.0 21600.0 11800.0  10400.0

The numerical model of the problem looks like this.

Finding the maximum

L(x) = 240000x,; + 0x;, + 225000x,, + Ox,, + 44800x3, +
+28000x3, + 31200x41 + 21600x4, — z (15)

under conditions

ijl — 300, ijz — 100, (16)

J€J J€J
43150x;, + 41350x,, + 45150x,; + 43350x,, + 12300x3, +
+10900x5, + 11800x41 + 10400x,, = z < 20000000, (17)
Xji = 0, j=1{1,2,3,4} keK={1,2}. (18)
problems (15) —(18) it can be presented as a Table 2.
Table 2
X11 X12 X21 X2 X31 X32 X1 X4 Z
1 1 1 1 = | 300
1 1 1 1 = | 100
43150 | 41350 | 45150 | 43350 | 12300 | 10900 | 11800 | 10400 | -1 | = 0

1 | <= | 20000000

240000 | O 225000 | O 44800 | 28000 | 31200 | 21600 | -1 | — max

Then after solving the problem (15)-18) with method as in [1], we get
optimal plan as
x* == {xll - 300, Xygp = 100}
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of acreage for each type of crop that provides the maximum net income of
the household is L(x) = 60175000 som.

The volume of potatoes grown is 3600 t. , of barley -180 t., and the
amount of mineral (organic) fertilizers used is determined from (3), that is
used for growing potatoes 15 t. of saltpeter, 600 thousands m? of irrigation

water, and for barley is — 1 t. For herbicidea, 5 t. of saltpeter.
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The paper develops a mathematical model of the problem of determining the
optimal size of the sown area for each type of crop on their own and leased plots and the
necessary financial credit to the household according to the criterion of maximum net
income. A method for solving the problem for the case with two-way restrictions on
production volumes is developed.

Key words: mathematical model, acreage, crop, credit, economy, income, costs,
production.

Byn xymymita yap6aHbIH Ta3za KUpEIIeCH MaKCUMAJTyy OONTOHION KPUTEPHSCHI
MEHEH JTUJIyydy ap Oup aibul yapOa eCyMIyKTepyH e3yHYH j>KaHa MKapara albIHyydy
aiiIoo asHTApBIHAATBl  ONTHUMAJAYy YEHEMHH >KaHa KepeKTenyydy (uHaHCaIbIK
HACBhISIHBI TaOyy MacelleCHHE MaTeMAaTUKAIbIK MOJENb WINTEIUI YbIKKaH. OHAYPYY
KeJloMy KU TapaObIHAH T€H YEKTENreH Y4ypy YUyH UbITapyy bIKMAachl KepCOTYIITOH.
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YpyHTTYy ce3lep:  MaTeMaTUKalblK MOJENb, aiI00 asHTBl, aWbul dYapOa
©CYMJIYKTopY, HachIs, yapOa, KHupelie, YbI'bIM, oHTypYII.

B pabore paspaboraHa MaTeMaTHueckas MOZEIb 3aJaud  OIpeesICHUs
ONTUMAJIBHOIO pa3Mepa MOCEBHOM IUIOIIAAM IOJ KaXIbli BUJ KYyJIbTYpPhl Ha CBOMX U
apeH/yeMbIX Yy4YacTKaX W Heo0X0oAMMOoro (hUHAHCOBOrO KpeauTa XO34HCTBY IIO
KPUTEPUIO MaKCMMyMa YHCTOTO A0xoaa. Pa3paboTan meron pemieHus 3aiadyd s
cllydyasi ¢ JByCTOPOHHUMH OTpaHUUYEHHUSIMHU Ha 00BEMBI IPOU3BOCTBA.

KitoueBple  cimoBa:  mMaTemaruyeckas — MOJAENb,  IIOCEBHas  ILIOLIAMb,
CeJIbCKOXO035ICTBEHHAs KyJIbTypa, KPEAUT, X035HCTBO, TOXO/I, pacXo[, IPOU3BOCTBO.

Problem statement. A household with a sown area of s and does not

have a financial assets, planned to get a loan for cultivation n type of
agricultural crop, j€J = {1,2, ...,n} and drew up a contract with the
processing company to sell them at the agreed price ¢;. Production volume
of x;, j € J is limited by upper and lower limitations due to agreement, so
di<x;<d',j€e]J.

For the household, the yield of each type of agricultural crop is
known, the rate of consumption of each type of fertilizer used (nitrogen,
saltpeter, herbicide, irrigation water, etc.) per unit area for each type of crop
and the wholesale purchase price, as well as the interest rate of the financial
loan.

It is necessary to determine the optimal size of the sown area for each
type of crop on their own and leased plots, as well as the size of the
financial loan so that the planned volume of agricultural products of each
type is fulfilled under the contract and the household's profit is maximized.

Let's formulate a mathematical model of the problem.

We shall introduce the following notation:
j—iscroptypeindex, jeJ={1,2, ...,n};
J —is the set of crop indices;
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r — 1S index of the type of mineral fertilizers used by the household for
growing agricultural crops, r € R;

R —is set of indexes of the type of mineral fertilizers purchased by the
household;

Known parameters.

C.

; — Is contractual sales price per unit of volume of j- th type of

agricultural products by the household, j € J;
¢j — is the cost of growing a unit of the size of the acreage under j- th type
of culture, j € J;
¢, — Is wholesale price per unit volume of mineral fertilizers used of r -th
type on the wholesale market;
D — is maximum amount of financial credit received by the household at
interest;
S — is the size of the acreage on the household;
a;, — is consumption rate per unit of sown area of r — th

types of mineral fertilizers under j — th type of culture, j € J,r € R;
b; —isyield of j — th type of agricultural crop, j € J;
a — is loan interest rate, A - loan term, in paper it is assumed that the term
of the loan is one year, 1 = 1;
B — is the amount of payment by the household for rent per unit of sowing
size area;

Sought quantities:

x; — agricultural production of j—th type produced by household
according to agreement with customer, j € J;
Z, —volume of r —th type of mineral fertilizers purchased by the

household
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According the agreement, r € R

y; —sown area held by j — th type of culture in its household area, j € J;
IV — the amount of the financial loan received by the household at interest;
w; — the size of the cultivated area of the household held by j — th type of
culture in rented area, j € J;

w — the size of the leased sown area by the household.

According to the adopted designations, the mathematical model of the
problem of determining the optimal size of the sown area for each type of
crop and the amount of financial resources received at interest, as well as
the size of the leased area for agricultural crops due to agreement of
production can be represented as.

To find the maximum

L(x) = z ¢jxj — (1 + ad)V - max (D

Jj€J
under conditions

D=5 (2)

S
Y=o, 3)
Jj€J
z a]r(y] + (1)]) = ZT' r E R, (4)
Jjej
bj(yj + wj) =x;, j€J, (5)
ZCj(yj+wj)+ﬁw+Zcrzr=VsD, (7)
JjEJ TER
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Z, >0, Te€R, )
w=0, V=0, (10)
where  x ={x;: j€J}.

Let's add substation of variables

xi=xt+x7, yi=yi +y}, 0 =0+, jEJ.

Let’s modify the problem (1)-(10).

Then the mathematical model of the problem of determining the
maximum net income and the amount of financial credit at interest, as well
as the size of the leased acreage to meet the contractual volume of
agricultural production, has the form.

To find maximum

(7, @) = z by (Y +y2) + (0! + w?) — (1 + ad)V (11)
Jj€J
under conditions

D oi+yh =5 (12)
JjeJj
D@+ =0, (13)
JjeJj
bj(yjl + wjl) = djli ] E]' (14')
b} +w) <di —dj, j€J, (15)

DIG+ ) cay) OF +yD+ (G +B +

J€EJ TER

+Z ) (Wi + wf)] =V <D, (16)

TER

143



v} =20, >0, 0} >0, w?>0, j€], (17)

where
y={yj, ¥} j€]} ®={w, 0} jE]}.
Mathematical model of a problem of the form (11)-(17) let's
represent it as in Table 1, where the notation is entered for brevity:

=cjb;, j€J, qj=C +XrerCrqjr, q,=q;+p, j€J, and we will
solve the proposed method in the work [1].

Table 1
Vilyvi vy | yi | vh|w|wf|w|ws| Joglep| V |
1 |1 |1 1 1 1 = S
1 (1 |1 1 11 1 - | = 0
1
by by = dj
b, b, = d;
b, b, = | dy
b, b, < |df
—d;
b, b, < |dj
—d
b, b, < |d,
—d,
Gl G| 92| G| | G| G| G | G |92 |Gz |- | u | Gn | -] =1 0
1 < D
Wil wi| wa| wy Wy | Wo| wi| wi| wy| wy Wy | wy| - 0 | — | max
(1+
al)

From the problem solution of (11) — (17) is determining the optimal

amount of sown area for each type of crop on our own y]f, jeJ and

leased area a)f j € J, the amount of the financial loan V™ received by the

household for the production of agricultural products and the size of the

leased acreage w*. Further, according to the system of equalities (4) and (5)
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we determine the volume of agricultural product produced and the volume
of mineral fertilizers purchased for each type of crop cultivation by the
household.

Let's check the working capacity of the mathematical model and
algorithm for solving the problem using the following example.

Example. The household signed a contract with a processing
enterprise for the production and supply of two types of agricultural
products (potatoes, onions) at the price of: 20 som per kg for potatoes, 15
som per kg for onions in volume not less than 1300 tons and not more 2700
tons of potatoes, for onions not less than 1000 tons and not more than 1500
tons.

Known:

- size of the household's acreage s=100 hectare;

- crop yield: of potatoes 12 tons per hectare and onions 15 tons per
hectare;

- the cost of growing a unit of acreage: 41 thousand som per hectare
and 43 thousand som per hectare;

- the price per unit of the volume of used mineral fertilizers:
ammonium nitrate is 55 som per hectare, irrigation water — 0,40 som per
me;

- rate of consumption of mineral fertilizers per unit size of the sown
area: saltpeter — 50 kg per hectare, irrigation water 2000 m*/hectare;

- the amount of payment by the farm for renting a unit of sown area
for crops is 10 thousand som per hectare;

- credit interest is @« =6%, the period of issuing for one year, so A = 1.

The maximum amount of financial credit received by the household is

up to 20 million soms.
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It is necessary to determine the optimal size of the sown area for each
type of crop, the amount of financial credit and the size of the leased area
for agricultural crops so that the planned volume of agricultural products of
each type is fulfilled under the contract and the net income of the
household has to be maximum.

According to the known data, the numerical model of the problem can
be represented as finding the maximum

L(x) = 20.0x; + 15x, — (1 + 0,06 * 1) (18)

under conditions

2 2
Zyj — 100, Z wj = w, (19)
=1 =1

50.0(y; + w1) +50.0(y, + wy) = 74,

2000.0(y; + w1) + 2000.0(y, + w,) = z,, (20)
12000.0(y; + w1) = x4, 15000.0(y, + w,) = x4, (21)
1300000.0 < x, < 2700000.0,
1000000.0 < x, < 1500000.0, (22)
41000.0(y; + w,) +43000.0(y, + w,) + 10000.0w + 55z; +

40,40z, = v < 20000000.0 (23)

Y, 20, w20, jej={1,2}, (24)

z, >0, r€ER (25)
w=0,v=0. (26)

Let's add substation of variables

xi=xt +x7,y; =y} +yi, 0y =0 +wi,je]={1,2}.
Converting the problem (18) — (26) to form
Finding maximum

L(y, @) = 140000(y} + y2) + 240000(w? + w?) +
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+225000(y3 + y2) + +225000(w3 + w3) — (1 +0.06x 1) (27)

under conditions
2 2
Z(yjl +y7) =100, Z(w} + /) = o, (28)
j=1 j=1

12000(y} + w!) = 1300000, 15000(y3 + wl) = 1000000,
12000(y? + w?) < 1400000, 15000(y% + w2) < 500000, (29)
43150(yi + y?) + 53150(w1 + w?) + 45150(y2 + y3) +
+55150(w} + w3) = v < 20000000, (30)
yi 20,5720, w; 20, w20, je]={1,2}, (31)
where  y={y/, y/: j=12} ®={w, o:j=1.2}
problem (27) — (31) can be presented in the form of Table 2.

Table 2.
yi yi vz v3 oh wf w3 w5 vV | w
1 1 1 1 = 400
1 1 1 1 1] = 0
12000 12000 = | 1300000
12000 12000 < | 1400000
15000 15000 = | 1000000
15000 15000 < | 500000
43150 | 43150 | 45150 | 45150 | 53150 | 53150 | 55150 | 55150 | -1 = 0
1 < | 20000000
240000 | 240000 | 225000 | 225000 | 240000 | 240000 | 225000 | 225000 | - | 0 | — max
1,06

After solving the problem (27) — (31) using the method in [1], we get the
optimal plan of the allocated sown area for each type of crop (potatoes,
onions) on our own and leased area:
y={ y/=100}, w={wi=8,33, w;=66,67}.
It follows from this plan that to fulfill the contractual conditions, the
farm must use all available acreage of 100 hectares, as well as 8.33 hectares
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of rental field for potatoes, and a rental field of 66.67 hectares for onions.
At the same time, 1,300 tons of potatoes and 1,000 tons of onions were
produced.

The household received a financial loan 8434583.0 som under 6% for
a year.

The net income of the farm is L(x) =32059342.0 som.
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