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In this paper we consider mathematical models of objects to be presented as interactive software.
Supra, the authors proposed independent computer presentation of natural languages and implemented some
notions of Kyrgyz and English. In the paper such mathematical models are described for some relations
including family relationship.
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WHTepakTUBIUK MporpaMMalbiK KaOayy TYPYHI® 4YarbUIABIpyyra THHUINTYY HEPCEIepIuH
MaTeMaTHKAIBIK MOJENACPH Makauaza kapaigar. Mypaa aBTOpIOp TapaOblHaH TaOWTbId THIACPIH
KOMITBIOTEP/IE KO3 KapaHIbIChI3 TYPJO® YarbUIIBIPYY CYHYIITAIraH jKaHa K33 OUp TYIIYHYKTOP KBIPTHI3 XKaHa
AHTJIUC TWIJACPUHJIC WIIKE aliblpbuiraH. Makanaza k33 Oup OaiyaHblTap (ajlapIblH HUUHAC YH-OYIeIyK
OaliaHpIITAP) YIYH THHUINTYY MaTEMATUKAIBIK MOJICIIEP CYPOTTOITOH.

YpyHTTYY cO3/16p: MaTEMATHKAIBIK MOJIC/b, THI, KOMITBIOTEP/IMK MOJIEIb, OaiiaHbIIl, Ko3
KapaH/IbIChI3 YarbUIABIPYY, YHPOHYY.

B crathe paccMaTpHBarOTCS MaTeMaTHYECKHE MOJIENM OOBEKTOB JJISI MX TPEACTABICHUS B Gopme
WHTEPAaKTUBHOTO co)ra. PaHee aBTOpBI MPEIIOKHIN HE3aBUCUMOE KOMITBIOTEPHOE IPEACTABICHHE
€CTECTBCHHBIX SI3BIKOB M PEAM30BaIl HEKOTOPHIC MOHSATHUS KBIPTBI3CKOTO M aHTJIMHCKOTO S3bIKOB. B cTaThe
OITMCAHbI TAKUE MATEeMAaTHUYCCKUE MOJICITH JI1 HEKOTOPBIX OTHOIICHHH, BKJIFOUYas POJCTBEHHBIC OTHONICHHS.

KiroueBble crioBa: MaTeMaTH4ecKast MOJIEIb, SI3bIK, KOMIBIOTEPHAst MO/IENb, OTHOIICHHE, HE3aBUCUMOE
MIpesICTaBlIeHne, 00yUIeHHE.

1. Introduction

One of main tasks of present day informatics is developing of interactive
computer presentations of all familiar real and virtual objects to offer the user the
opportunity to master them safely and effectively before real treating. If such
computer presentation does not depend on the user’s knowledge and skills on similar
objects then we call it independent. In our opinion, such presentations are more
effective because the user can learn inductively - without referencing other objects in
mind. In regards with learning a language, the user begins to thinking in it, without
translation in mind.

Earlier, investigating and learning a living language were implemented with the
assistance (including bilingual dictionaries and text-books) of persons who had a
complete command of it; investigating of a dead language was done by means of



remained bilingual texts and texts with additional implicit suggestions and
conclusions. Invention of recording sounds gave possibility to fix examples of an oral
language objectively. Invention of talking pictures fixed examples of phrases with
connection to situations and actions. Computer games gave the user the opportunity
to choose actions with corresponding phrases. Existing software to learn languages
base on languages native to the user, nevertheless some notions are presented
independently. This survey demonstrates that there were not completely independent
presentations of natural languages.

Using ideas [1], [2], [3] we [4-11] gave definitions and developed elements of
such presentations. We described mathematical models in general [12]. A candidate
dissertation had been confirmed [13]. We will base on Kyrgyz language mentioning
other languages too. We shall consider also feedback for checking-up knowledge of a
language. We use random generation of tasks and situations for independent
presentation of notions and objective estimation of knowledge.

2. Definitions for independent presentation

Definition 1. If low energetic outer influences can cause sufficiently various
reactions and changing of the inner state of the object (by means of inner energy of
the object or of outer energy entering into object besides of commands) at any time
then such (permanently unstable) object is an affectable object, or a subject, and such
outer influences are commands.

Definition 2. A system of commands such that any subject can achieve desired
efficiently various consequences from other one is a language.

Hypothesis 1. A human's genuine understanding of a text in a natural language
can be clarified by means of observing the human's actions in real life situations
corresponding to the text.

Definition 3. Simple mathematical models consist of fixed (F;) and movable

(M;) sets and temporal sequence of conditions of types (M; < Fi), (M; N Fj =©),
(Mj N Fi z9).

Computer interactive presentations are built on the base of mathematical

models.



Definition 4. Let any notion (word of a language) be given. If an algorithm
acting at a computer: generates (randomly) a sufficiently large amount of instances
covering all essential aspects of the notion to the user, gives a command involving
this notion in each situation, perceives the user's actions and performs their results
clearly on a display, detects whether a result fits the command, then such algorithm is
said to be a computer interactive presentation of the notion.

Certainly, commands are to contain other words too. But these words must not
give any definitions or explanations of the notion.

Definition 5. If all words being used in Definition 4 are unknown to the user
nevertheless s/he is be able to fulfil the meant action (because it is the only natural
one in this situation) then the notion (word of a language) is said to be primary. If the
user has to know supplementary words to complete the action then the notion is said
to be secondary. Thus, there arises a natural hierarchy of notions.

Using this method we can present not only real notions (objects and actions) but
also notions which have imaginary concepts.

Hypothesis 2. A person learning a natural language without references to any
other ones, hearing a notion in various situations begins to form a kind of
mathematical model in mind corresponding to this notion by means of trial and error
method and attempts to fulfill operations similar to mathematical ones: closing and
compactification. After successful completing such operations, the human feels
“mastering” this notion.

Hypothesis 3. Any notion has a minimalistic mathematical model (involving
minimal number of entities in Occam’s sense).

3. Mathematical models for relations

Nouns are remembered better if they are demonstrated with relations. Many of
nouns can be included to any relations.

We will use verbs 1) 6ep (give), 2) kexmup (let it/him/her come to).

Images of objects being fixed in a model but mobile in reality are marked with a
low fence.

1) Mathematical model. Fixed F; (human or animal), G;(hands or paws)c F;;
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movable M; (food or thing).

Temporal sequence: 1. (M; 1 Gj =©), 2. (M; N Gj =T).

Example 1. Relation food. Fixed
F1 = kuwu (human), F, = nun(elephant), F3 = mouisin(squirrel);
these words are known to the user,
movable M; =uan(bread), M, =xoor(melon),

Ms =orcanear(nut), My =maw(stone); these words are unknown to the user.
Commands. 1. Hawnowl kuwuee 6ep! (Give bread to human)!
2. Koonoy nunee bep! 3. Kaneaxmoi muitivinea dep!

2) Mathematical model. Fixed F; (human or animal), Gj(neighborhood) > F;;
movable M; (human or animal).

Temporal sequence: 1. (M; 1 Gj =©9), 2. (M; N Gj =T).

Example 2. Family relation. There are adults (fathers and mothers) in solid
color clothing (fathers’ colors differ from mothers’ ones) and children (boys and
girls); color of upper part of child’s clothes is of their father’s; color of lower part of
child’s clothes is of their mother’s.

No preceding known words.

Scene 2.1. Fixed: fathers. Movable: children appear one by one. Firstly, one
child (boy or girl) is present.

Command:

Oprex bananvilkvizovr amacwvina kenmup! (Let boy/girl come to his/her father)!

Next child (boy or girl) enters into the screen, next command ...

Scene 2.2. Fixed: fathers and mothers. Movable: children appear one by one.

Preceding scene repeats with commands
Opkek bananvilkwviz0vl anacvina kenmup! (Let boy/girl come to his/her mother)!

Scene 2.3. Fixed: children. Movable fathers and mothers appear couple by
couple. Firstly, one couple is present.

Command:

Amanvilananot yynynalkeizeina xeamup! (Let father/mother come to his/her

son/daughter)!



5. Conclusion
This paper is a next contribution to our general project of developing
mathematical models of various notions for independent presentation of natural
languages. We hope that such software would be interesting and useful for people to

learn languages.
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ON CONSTANTS RELATED TO EFFECT OF "NUMEROSITY™"
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Mathematical constants can be defined as dimensionless numbers not depending on linear

transformations of tasks. Supra, by the authors’ definition, appearance of phenomena in systems only with
large number of components is said to be the effect of numerosity. The least number of components
preserving such phenomenon is said to be the constant related to it. Supra, the authors constructed a system
of random difference equations to simulate the ancient popular synergetic process and a system of difference
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equations to simulate mutual repelling of electrical charges on a topological torus. General notions of
“effect” and “phenomenon” are presented and constants related to the mentioned phenomena are estimated in
the paper.

Keywords: constant, numerosity, effect, phenomenon, definition, differential equation, difference
equation

MacesneHn CBI3BIKTYy ©3TOpTKOHAe ©3repTIec, 6I4eMCy3 CaH MaTeMaTUKalIbIK TYpYKTyy Ooiyn
caHamat. Myppaa, aBTOpIIOp CyHYIITaraH aHbIKTamMa OOIOHYa, Kem  Oenykke 33 OOJTOH cucTemana
KyOynymirap mnaina 60yy «kemde» 3ddexTricu men aranrad. MeiHAal KyOyIymTy KO3roody OeIyKTepayH
9H a3 MYMKYH OONTOH caHbl aj KyOyiymika Oaiimanran TypykTyy Oonyn cananat. Myppaa, aBTOpIIOp
Oenrwiyy upree KyOylIylIyH 4arbUIIBIPYy4dy, KOKYCTYK MEHEH alblpMa TEeHIEMeNep CHCTEMAachlH KaHa
TOTOJIOTHSUIBIK IIAKEKTE 3JIEKTP 3apsifaplblH €3 apa TYPTYJIYIIYH 4arsULIbIpyydy aiblpMa TEHIAEMeIep
chucTeMachlH Ty3ny. Makanana «dddekr» xana KyOyaymr TYIIYHYKTOPYHYH JKalllbl aHBIKTaMaapbl
KOpPCOTYJAY JKaHa aliTbuIraH KyOymymTapra OaiiaHraH TypyKTyynap OaamaHfbl.

YpyHTTYY co3aep: TYPYKTYY, «Kemdey, 3hdexT, KyOoymyr, aHsikTaMa, TuddhepeHnrnanIbK TeHIeMe,
aliplpMalyy TEeHAEME

MaremaTHyeckue KOHCTAaHTbl MOKHO OIIPENENUTh, Kak Oe3pa3MepHbIe Ynciia, He U3MEHSIOINECS IpU
JMHEHHBIX TpeoOpa3oBaHMIX 3afad. Panee, o onpeaeneHno aBTOPOB, BOSHUKHOBEHHE SIBJICHUM TOJIBKO AJIS
CUCTEM C OOJBIIMM KOJMYSCTBOM KOMIIOHEHT Ha3BaHO 3(P(PEKTOM «MHOXKECTBEeHHOCTH». Camoe Majoe
YHCJI0, BBI3BIBAOIICC TAKOC ABJICHHUC, HA3BIBACTCA HOCTOHHHOI\/'I, CBSI3aHHOM ¢ OTUM sBiIeHUeM. Panee ABTOPLI
MOCTPOMJIM  CHUCTEMY  CIy4YalHbIX Pa3HOCTHBIX YPaBHEHHMH, OTPAKAIOIIYI0 JaBHO  HM3BECTHBII
CUHEPIreTUYECKUNA IPOLECC, U CUCTEMY CIy4YalHBIX PA3HOCTHBIX YPaBHEHUH, OTPaKAIOIIYI0 B3aUMHOE
OTTAJIKMBAaHKUE ODIICKTPUYECKUX 3apsiIOB Ha TOIMOJIOTHUYECKOM Tope. B crarbe mpexacrTaBiieHbl o0O0IIHEe
OIIpeleNiCHUs TOHATUH <«3(QQEKTa» U «SIBJICHUS» U OLEHEHbl KOHCTAHTHI, CBSI3aHHBIC C YIOMSHYTBHIMH
SIBIICHUSAMU.

KntoueBbie  cioBa:  KOHCTaHTa,  MHOXECTBEHHOCTb, 3((deKT, sBICHUE,  OMpeleseHHe,
nrddepeHnnansHOe ypaBHEHHE, pa3HOCTHOE ypaBHEHUE.

1. Introduction

Mathematical constants can be defined as dimensionless numbers being
solutions of some tasks and not depending on linear transformations of tasks.

Discoveries of new "phenomena™ and "effects” used to be sufficient steps in
developing science but there were not definitions of these notions before our
publication [1]. We gave corresponding definitions and examples, proposed methodic
to search new phenomena.

Besides well-known effects of infinity, of multi-dimensionality, of singular
perturbations we distinguished the effects of analyticity, of self-ordering.

Some of them correspond to real effects, other (the effect of infinity) are
specifically mathematical.

The law of large numbers can be considered as some phenomena in statistic.

Supra, by our definition, appearance of phenomena in systems only with large

number of components was said to be the effect of numerosity.

11



We found some phenomena due to this effect not related to statistic.

In this paper we propose a definition of constants related to this effect and
estimate two of them.

2. Definitions

Consider a mathematical statement (theorem) in general as an implication of
conditions A=B, or, more concrete, if there is a general class X of objects x and A <
X, B cXthen A cBor (xeA) = (xeB)). To search "phenomena” and "effects"
more systematically we have proposed

Definition 1 [1]. To prove sufficiency of A for B one is to construct an example
without both A and B. An (interesting, nonpresumable, single) way of violating B is
said to be a phenomenon.

The notion “single” can be defined more exactly. Let X be a set and a measure
mes can be introduced in it. Then a subset P <X\B is a phenomenon if mes(P)=0. In
other words, if xeX then x eP almost never”.

Definition 2. If P is a property (or some properties) of elements xeX having a
property E such that a logical proof (EAC)= P (where C is any additional condition)
is too complicated and the property P was discovered not by a logical way but by
meeting paradoxes, by experiments in physics and chemistry or by computational
experiments in mathematics then E is said to be an effect.

These definitions yield the following methodic. If some objects xeX with
different but similar unexpected properties have the same property E then this
property is considered to be an effect. Putting additional conditions on x new
phenomena may be found in the class X.

Definition 3. Appearance of phenomena in systems only with large number of
components is said to be the effect of numerosity.

Definition 4. If a phenomenon occurs less often for number of components less
than N and does more often for number of components greater than N then the

number N is said to be the constant of numerosity for this phenomenon.
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3. Constant related to the phenomenon of irgoo

The common Kyrgyz word irgéo means: discrete optimization by means of
synergetic, or "random vibration of balls of different sizes of same material in a wide
symmetrical vessel yields migration of the biggest one to the center of their surface."
This experimental fact is too difficult to be proven by any mathematical model but
can be corroborated by numerical experiments with a system of difference equations.

Thus, we stated

Hypothesis 1 [2]. For a large number of balls in a vessel, in a certain class of
processes described by random difference equations, the probability of the event "the
biggest ball is close to the center of surface of heap of balls" is 1 as time tends to
infinity.

The cylinder of radius 1 is taken as a vessel. Let a (large) natural number n and
(small) positive radiuses r; >r, >...>r, be given.

Definition 5. If a set of n points {(X«, Vi, zJ): k=1..n} =R *fulfills the conditions

1) re<z, X+ y’<(1-r )’ forall kin 1..n (all balls are in the vessel);
2) (Xc— % )+ (Ye—Y; )+ (zk—17; )°> (r; + r )>for all k= in 1..n (the balls do not
overlap) then such set is said to be admissible.

Definition 6. A (short) vector {u, v, w} (w<0) is said to be admissible for a
given admissible set of points and a number k in 1..n if the set obtained by means of
changing the k-th point to the point (x,+u, yet+v, z+ w) is admissible too. Such
passing from one set of points to a new set of points is said to be an admissible shift.

Algorithm 1 (of approximate calculations). For any initial admissible set of
points repeat the following steps:

1) shift all points up with a (short) vector;
2) while it is possible, in the obtained admissible set of points execute random
admissible shifts.

The adjusted

Hypothesis 2. With the probability 1, there exists such number M that after M

steps there will be x, °+ y; °<4?and there will not be other points over this point.
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To verify this hypothesis a program was written in pascal. For example, let
n=50 and r,=0.3—0.01k, k=1..19; r,=0.1, k=20..50.

Some runs of this program gave the constant of numerosity N ~ 50.

4. Constant related to self-ordering of electrical charges

We applied the effect of numerosity to search self-ordering of discrete electrical
charges in viscous media [3], [4], [5]. Motion of equal, repelling by the Coulomb law
electrical charges from a random initial distribution on a topological torus form a
final regular grid was modeled by computer.

Motion of N electrical charges is described by a system of N two-dimensional
differential equations. These differential equations are approximated by a system of
difference equations.

The following program with graphical demonstration of the initial distribution
and of the final one was written in pascal (with N=256).
program sabina; uses crt, graph;
var hxy,vx,vy,dx,dy,dxy,dxyl,hxyl,z,z2,xj,yj,dxy2,dxyd: double;
1,J,nxXy,it,nt,np,ihand,n_time,ik: longint;
var drv, mode,f,n: integer; x,y:array[1..300] of double;
xn,yn:array[1..300] of integer;
begin {main} drv:=0; mode:=VgaHi; InitGraph(drv,mode,'c:\tp\bgi");
randomize; SetTextStyle(0,0,2);

OutTextXY (30,20,'Repelling 256 electrical charges on torus");
OutTextXY(100,40,'(Wait a little)"); z:=700.; z2:=z/2.0;
np:=10; {nt:=500*n_time;} hxy:=1.0; hxyl:=hxy; nt:=1000; nxy:=256;
for ik:=1 to nxy do begin x[ik]:=z*random; y[ik]:=z*random;
xn[ik]:=round(x[ik]); yn[ik]:=round(y[ik]);
Setcolor(green); circle(xn[ik]+80,yn[ik]+70,2); end;
for it:=0 to nt do begin {it} if it>np then hxy:=2.0*hxy1,; if it>2*np then

hxy:=4.0*hxy1;

for i:=1 to nxy do begin {i=ix} vx:=0.; vy:=0.; for j:=1 to nxy do

begin if j<>i then begin
14



Xj:=x[j]; if Xj>x[1]+z2 then xj:=xj-z; if Xj<x[i]-z2 then xj:=x]+z;

yi:=yll; 1 yj>yli]+z2 then yj:=yj-z; if yj<y[i]-z2 then yj:=yj+Z;
dxy2:=sqr(x[i]-xj)+sqr(y[i]-yj)+1.;

dxyl:=z/(dxy2*sqrt(dxy2)); if dxyl<sqr(z)/nxy*0.5 then begin
dx:=(x[i]-xj)*dxy1; dy:=(y[i]-yj)*dxyl; vx:=vx+dx; vy:=vy+dy; end; end; end,;
X[i]:=x[i]+vx*hxy; if x[i]>z then x[i]:=x[i]-z; if X[i]<O0. then x[i]:=x[i]+z;
yli]:=y[i]+vy*hxy; if y[i]>z then y[i]:=y[i]-z; if y[i]<O0. then y[i]:=y[i]+z; end {i=ix};
for ik:=1 to nxy do begin xn[ik]:=round(x[ik]); yn[ik]:=round(y[ik]) end; end {it};
Setcolor(white);

repeat for ik:=1 to nxy do begin circle(xn[ik]+80,yn[ik]+70,8);
circle(xn[ik]+80,yn[ik]+70,6); circle(xn[ik]+80,yn[ik]+70,4);
circle(xn[ik]+80,yn[ik]+70,2) end,

delay(100); until keypressed; end.

Runs of this program found the constant of numerosity N ~ 110.

Also, when the number of charges is a square of even number then the grid is
square in most of experiments; when it is a square of odd number then the grid is
triangular in most of experiments.

Conclusion

Search for constants of numerosity yield certain conclusions on the indefinite

notion “many”’. We hope that such constants would be found for other real and virtual

processes.
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AXIOMATIZATION OF KINEMATICAL SPACES

Zhoraev A.H.
Kyrgyz-Uzbek University

Survey of peculiarities of axiomatization in mathematics based on works by A.A. Borubaev and G.M.
Kenenbaeva, axiomatization of kinematical spaces is presented in the paper. A new axiomatization of
controlled motion of objects in a space with bounded velocity is proposed in the paper. A new notion of
generalized kinematical space is defined.

Key words: axiomatization, topological space, kinematical space, velocity, motion, length.

A.A. bepyb6aeB xxana .M. KenenGaeBanapipIH HIITEPUHAEC MaTeMaTHKAIarkl akCHOMAJIAITIPYYHYH
©3re4eNIYKTOPYH Kapoo kKaHa KHHEMATHUKAJIbIK MEMKMHIUKTEPIN aKCUOMAJAIITEIPYy MaKaitajga KopcoTyJy.
blnmaMzapIrel  4YEKTENreH, MEUKUHIUKTE HEpCeJIEpAHH OamkapeiraH  KbIMMBIIIOOCYH — YKaHBI
aKCHOMAJNAIITBIPYy Makanaga CyHymTanasl. JKaumelmaHraH KHHEMaTHKaJIbIK MEHKUHAMKTHH KaHbl
TYIIYHYTY @HBIKTAJITaH.

YpyHTTYY co3A6p: aKCHOMAIAIITHIPYY, TOMOJOTHUSIIBIK MEHKUHANK, KHHEMAaTHKAIBIK MEHKUHANK,
BUIIAMIIBIK, KBIHMBIIA00, Y3YHAYK.

B craTbe npencraBieHbl 0030p 0COOCHHOCTEH aKCHOMATH3aIlMK B MaTeMaTHKE Ha OCHOBE paboT A.A.
Bopy6aepa u .M. KenenbOaeBoii 1 akCHOMAaTH3allMs KHHEMAaTHYECKUX IPOCTPAHCTB. B craThe mpemioxeHa
HOBasl aKCUOMATHU3aIUs YIIPABISIEMOTO JBIKEHUSI OOBEKTOB B IMPOCTPAHCTBE C OTPAHUYCHHON CKOPOCTHIO.
OnpenerneHo HOBOE OHATHE 00OOIIEHHOTO0 KHHEMATHIECKOTO IPOCTPAHCTBA.

KiroueBsie coBa: akcCHOMaTH3aIMs, TOTIOJIOTHYECKOe MTPOCTPAHCTBO, KHHEMATHIECKOE TPO-
CTPaHCTBO, CKOPOCTb, ABIKEHUE, JUTHHA.
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1. Introduction

The goal of this work is developing of a system of axioms to present controlled
motion of stretched objects with bounded velocity.

The second section presents a survey of axiomatization as whole.
A.A. Borubaev [1] made an extended survey of ideas and axiomatization of topology
and uniform topology. On this base, in the series of works [2-4] a general survey of
mathematics was done: firstly, some ideas appeared, effects and phenomena had been
discovered; further, systems of axioms were developed.

The third section contains a survey of axiomatization of controlled motion of
points in a topological space.

The fourth section presents controlled motion of stretched objects with bounded
velocity. Topological structures on sets are built by introducing families of subsets
meeting some properties. To generalize the notion of a kinematical space we propose
to use a family of subsets having “length” (we will call them “passes”) and a family
of subsets (we will call them “things”) which are to be moved along “passes”.

2. Survey of axiomatization in mathematics

A.A. Borubaev [1] wrote: Axiomatization of the notion of continuity had led to
the notion of a topological space. There were two ways of axiomatization of the
notion of uniform continuity: 1) through the proximity relation of two sets A and B
(distance(A,B) is zero in a metric space) as development of P.S. Alexandroff’s and
K. Kuratowski’s viewpoint on a topological space; 2) through axiomatization of
properties of the system of &-neighborhoods in a metric space as development of
Hausdorff’s viewpoint. The first way had led to the construction of proximity spaces
(V.A. Efremovich), the analysis of proximity spaces was held by Ju.M. Smirnov, the
second way had led to the construction of uniform spaces (A. Weyl).

The first systematic exposition of the theory of uniform spaces in terms of
entourages was given in Bourbaki’s book. Another, but equivalent to the previous
concept of a uniform space and defined in terms of a family of coverings was
introduced and studied by Tukey. Later, a broad and important study of uniform

spaces in the terms of coverings was carried by Yu.M. Smirnov. Isbell’s book, in
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which the theory of uniform spaces got an important development, was also written
in terms of the coverings.

One can see that the uniform spaces can also be described in terms of
pseudometrics (L. Gilman, M. Jerison); in terms of metrics over semifields
(M.J. Antonovskii, V.G. Boltyanskii, T.A. Sarymsakov); in terms of equivalent nets
(V.A. Yefremovich, A.S. Schwarz) and small sets (V. Sandberg) and others.

On the base of this, in the series of works [2-4] a general survey of mathematics
was done: firstly, some ideas appeared, effects and phenomena had been discovered;
further, systems of axioms were developed. As different systems of axioms codify the
same idea, they are equivalent.

3. Survey of axiomatization of motion of points with bounded velocity

As a codifying the ancient idea of controlled motion with bounded velocity, the
notion of kinematical space was introduced [5].

Definition 3.1. A computer program is said to be a presentation of a computer
kinematical space if:

P1) there is an (infinite) metrical space X of points and a set X; of display-
presentable points being sufficiently dense in X;

P2) the user can pass from any point x; in X; to any other point x, by a sequence
of adjacent points in X; by their will;

P3) the minimal time to reach x, from x; is (approximately) equal of the minimal
time to reach x, from Xx;.

The space X is said to be a kinematic space; the space X, is said to be a
computer kinematic space; this minimal time is said to be the kinematical distance
px between x; and x,; a sequence of adjacent points is said to be a route. Passing to a
limit as X; tends to X we obtain the following.

There is a set K of routes; each route M, in turn, consists of the positive real
number Ty (time of route) and the function my, : [0, Ty] — X (trajectory of route);

(K1) For x; # X, eX there exists such M eK that my(0) = x; and my(Ty) = X», and

the set of values of such Ty, is bounded with a positive number below;
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(K2) If M={Ty, my(t)} € K then the pair {Ty, my (Tm —t)} is also a route of K
(the reverse motion with same speed is possible); (cf. P3).

(K3) If M= {Ty, my(t)} €e Kand T*e (0, Ty) then the pair: T* and function
m*(t)=my(t) (0 <t <T*)is also a route of K (one can stop at any desired moment);

(K4) concatenation of routes for three distinct points Xy, X, Xa.

If there exists a kinematic consistent with the given metric then the metric space
Is said to be kinematizable.

A similar definition also based on the notion of path was proposed in [6].

Denote the set of connected subsets of R as In. A path is a continuous map y :
In > X (a topological space).

Definition 3.2. The following definition is composed of some definitions in [6]
reduced to a "a priori" bounded, path-connected space X. A length structure in X
consists of a class A of admissible paths together with a function (length) L: A — R..

The class A has to satisfy the following assumptions:

(Al) The class A is closed under restrictions: if ye 4, y: [a, b]— X and [u, V] c [a,
b] then the restriction y |, \; € A and the function L is continuous with respect to u,v;
(A2) The class A is closed under concatenations of paths and the function L is
additive correspondingly. If a path y: [a, b] — X is such that its restrictions ¥, ¥, to
[a, c] and [c, b] belong to A, then so is .

(A3) The class A is closed under linear reparameterizations and the function L is
invariant correspondingly: for a path ye 4, y: [a, b]— X and a homeomorphism ¢ :
[c, d] — [a, b] of the form ¢(t) = ot + S, the composition 1 (1)) is also a path.

(A4) (similar to (KI)).

The metric in X is defined as
(2o, ) = Inf{L(p) |y: [a, b] = X; ¥ € A; y(a) = zo; y(b) = z3}.

4. Axiomatization of motion of points with bounded velocity

We [7] proposed controlled motion of stretched sets in topological spaces with
bounded velocity based on motion of points as [1].

We propose more general definition.
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Consider the practical task. Let there be a thing and obstacles. It is necessary to
move the thing to another place. Is possible? If yes then in what minimal time it can
be done?

Definition 4.1. There is a family P of connected subsets of the set X (we will
call them passes); each pass has the positive length (time) and a family Q of
connected subsets of the set X (we will call them things).

(It means that a thing moves along a pass).

The space X is said to be a generalized kinematic space.

(G1) For each x e p eP there exists such geQ that x e g [a thing can be in each place
of a pass].

(G2) For each x; # x,eX there exists such pass peP that x; , X, P and the set of
lengths of such p is bounded with a positive number below; this infinum is said to be
the generalized kinematical distance px between points x; and x,.

(G3) For each q; # g, Q there exists such pass peP that g, , g, P and the set of
lengths of such p is bounded with a positive number below; this infinum is said to be
the generalized kinematical distance px between things p; and p..

(G4) If X1, X, ep; and X, , X3 €p, then there exists such pass ps eP that Xy , Xo, X3 €ps
and length(ps) <'length(p,)+ length(p,).

(G5) If for each x; # X, eX there exists such pass p;, eP that length(pi.) =pox (X1, X2)
then the generalized kinematical space X is said to be flat (with respect to P).

If there exists a generalized kinematic (families P and Q) consistent with the
given Hausdoff metric for Q then the metric space is said to be K-kinematizable.

If Q=X then Definition 4.1 generalizes Definition 3.1.

Example. It is known that the space R with the metric

Po((X1,Y1), (X2,y2)):=max{| X1—Xa, | y1— Y[}
is not kinematizable in the sense of Definition 3.1. Let passes in R*be squares
S(X0,Yo,h):= {(X,y)] 0=Xo <X<Xo+h<1; 0<Yo<y<Yo+h}
with length h.
Then the set
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{(x1,y1), (x2,y2)}= S(min{xy, Xz}, min{ys,y2}, max{| x1—xal, | y1—yal})
with the length being equal to py((X1,Y1), (X2,Y2))-\
Hence, the space R*with the metric p, is a generalized kinematic space.
5. Conclusion
We hope that the new definitions in this paper would provide effective computer

presentations for motion of things in virtual and real spaces.
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MSC 45D05

SPECTRAL PROPERTIES OF LINEAR EQUATIONS WITH INTEGRALS
ON UNBOUNDED DOMAINS IN ANALYTIC FUNCTIONS

Muratalieva V.T.
International University of Kyrgyzstan

Supra the author constructed and implemented the following algorithms on a computer. Given
an equation of Volterra type with power coefficients by integral summands, the algorithm presents
data to detect existence of solutions and occurrence of arbitrary constants in it; also, given an
equation with a coefficient, specific values of the coefficient are found. In this paper such items are
considered for equations on unbounded domains.

Keywords: integral equation, unbounded domain, Volterra equation, algorithm, analytical
function.

Mypna, aBTOp TOMOHKY aJTOpPUTMAECPAM TY3YI >KaHA KOMIIBIOTEPJIC >KY36r'e alllbIpraH.
Hapaxanyy KeOeWTYHAYJIYY MHTErpal/ibIKk KOIIylyyudynapbl Oap TeHaeme OepuireH. Tenmemene
YYYH QITOPUTM YBITAPBUIBIIIBIHBIH KAIIOOCYH AaHBIKTOO OJIyHa MYMKYHIYTYH JKaHa aHja
Kaajaranjail TypakTyy caH 0ap SKEHIUTMH aHBIKTOO YYYH MajbIMaTThl OepeT. OHIOHI0W 31
KO3 (UIIMEHT MEHEH TCHJIEME CYHYIITAIraH, OyJ TeHIeMeae KodpOUIMEHTTHH 63roue MaaHUCHH
Talyy, aHanu3liee Macejecu KapanaT. byn makamaga Oyn CBIAKTYy Macelnenep 4YeKTenOereH
aliMakTa TeHJeMeJep YUYH Kapaar.

YpyHTTYY ce3liep: HHTETpANIIbIK TeHIEME, UeKTea0ereH aiimak, BonsTeppa THOMHICTH
TEHJEME, AITOPUTM, AaHATTUTUKAIBIK (DYHKITHS.

Panee aBTOp mocTpomsia M peajan3oBalia Ha KOMIBIOTEpE ClEAYIOUIe alropuTmbl. JlaHo
YPAaBHEHUE CO CTEIECHHBIMH COMHOMHTEISIMM IIPU  HMHTETPAIBHBIX CJIAaraéMblX, airOpUTM
MPEJCTABIsIeT JaHHbIE JJIs ONpPENENCHUs CYIIECTBOBAHUS pEIIeHHWs M Halu4yus B HEM
MPOM3BOJIBHBIX IOCTOSIHHBIX; TAKXK€ JIaHO YypaBHEHHE C KO03(QUIMEeHTOM, HaXoaaTcsi 0ocoOble
3HaueHus ko3dduuuenrta. B jaHHON cTaThe Takue BOMPOCHI pacCMATPUBAIOTCS Ui ypaBHEHUH Ha
HEOIpaHMYEHHBIX 001aCTAX.

KitoueBble cnoBa: HMHTErpajbHOE YpaBHEHME, HEOTpaHHUEHHas 00jacTb, ypaBHEHHE TUIA
Bonbreppa, anroputM, aHaauTudeckast QyHKIHSL.

Introduction

Before our publications, we did not find investigations on spectra of Volterra
equations with a parameter. Supra we constructed and implemented the following
algorithms on a computer [1-4]. Given a linear equation with power coefficients by
integral summands, the algorithm presents data to detect existence of solutions and
occurrence of arbitrary constants in it; also, given an equation with a coefficient,
specific values of the coefficient are found. Non-linear equations are considered in
[5].

In this paper such items are considered for equations on unbounded domains.

22



1. Statement of problem
We will use denotations
R := (-w0;0); Ry := [0; ©); Riv :=(0; ©); Ng:={0,1,2,3,..}; N:={1,2,3, ..}
We will use the term “Algorithm” as it is usually understood in Analysis:
arithmetical operations and comparison over numbers in R (for rational numbers this
definition coincides with the strict one).
We will write discrete arguments in brackets to bring denotations nearer to
algorithmic ones and to bypass the common ambiguity of expressions such as ay;,
We will consider equations of type
P(t,D)u(t) + lf_tooK(t, s)s™u(s)ds = et f(t) (1)
where D=d/dt, P(t, D) is a polynomial with respect to D with analytic coefficients,
f(t) and K (t, s) is an analytic function, A <R is a coefficient, the integral is supposed
to converge.
Particularly, we will consider the equation
u(t) + ﬂ,f_toos"u(s)ds =elf(t), n €N,. (2)
We will consider given and unknown real-valued analytical functions in the
form
f@© = f[0] + f[1]t + f[2]t* +..., 3)
u(t) = et (u[0] + u[1]t + u[2]t? + ---). (4)
Denote Z,,(t) = et ffwess”ds,neNo. It is known that Z,(t) = 1,
Z,(t) =t"—nZ,_4(t),neN.
Zi() =t —1,Z,(t) =t?> =2t + 2, Z3(t) =t3 -3t +6t—6.. (5
2. Particular cases of integral equations
Let n=01in (2):
u(®) + 2 [° u(s)ds = etf(t). (6)
Substituting (3) and (4) we obtain
et(u[0] + u[1]t + u[2]t? + u[3]t3 + ---) +

+ /Ift eS(u[0] + u[1]s + u[2]s? + u[3]s3 + -+ )ds =
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= e!(f[0] + FI1]t + f[21¢% + f[3]e3 + --),
ul0] + u[1]t + u[2]t? + u[3]t3 + - +
FA(Z,(Oul0] + Z;(Ou[1] + Z,(Oul2] + Zs(Du[3] + ) =
= f[0] + f[11t + f[2]¢% + F[3]t3 + -
u[0] + u[1]t + u[2]t? + u[3]t3 + --- +
FA[O0] + (¢ — Du[1] + (£ — 2t + 2)u[2] + (¢3 — 3¢2 + 6t — 6)u[3] + )
= f[0] + f[1]t + f[2]t% + F[3]t3 + -
We obtain the following system of linear algebraic equations
u[0] + A(u[0] — u[1] + 2u[2] — 6u[3] + ) = f[0];
ul[1] + A(u[1] — 2u[2] + 6u[3] + ---) = f[1];
u[2] + A(u[2] = 3u[3] + ) = f[2];
u[3]+ A[3] + ) = f[3]

Theorem 1. If f(t) is a polynomial then the equation (6) has the unique
polynomial solution for A=-1; If A=-1 then the equation (6) either has no solution or
has endless number of solutions; the spectrum is Ae{-1}.

Letn=11in (2):

u(t) + [ su(s)ds = e'f(¢). (7)

Substituting (3) and (4) we obtain

et(u[0] + u[1]t + u[2]t? + u[3]t3 + ---) +

+ lft eSs(u[0] + u[1]s + u[2]s? + u[3]s3 + -+ )ds =

= et (f[0] + f[1]t + f[2]t% + F[3]t3 + ---),
ul0] + u[1]t + u[2]t? + u[3]t3 + - +
+A(Z;(Ou[0] + Z,(D)ul1] + Zs(®)u[2] + Z,(Du[3] + ) =
= f[0] + f[1]t + f[2]¢% + F[3]¢t3 + -
ul0] + u[1]t + u[2]t? + u[3]t3 + - +
+A((t — Dul0] + (t2 — 2t + 2)u[1] + (t3 — 3t2 + 6t — 6)u[2] + ) =
= f[0] + f[1]t + F[2]t% + F[3]t3 + -
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ul0] + A(—u[0] + 2u[1] — 6u[2] + ---) = f[O];
ul[l] + A(—2u[1] + 6u[2] + --+) = f[1];
ul2] + A(=3uf2] + ) = f[2].

Theorem 2. If the function f(t) is a polynomial then the equation (7) has the
unique polynomial solution for A=1/k, ke N otherwise for some f(t) then the equation
(6) either has no solution or has endless number of solutions; the spectrum is endless.

Theorem 3. If n>0 and the function f(t) is a polynomial then the equation (2)
has endless spectrum.

3. An integro-differential equation

We will consider the equation

W) +2[" u(s)ds = e'f (). )
Substituting (3) and (4) we obtain
et (u[0] + u[1] + (u[1] + 2u[2Dt + (u[2] + 3u[3])t% + ) +
+ if_twes(u[o] +u[1]s + u[2]s? + u[3]s® + -+ )ds =
= et (f[0] + F[1]t + f[2]¢% + F[3]t3 + ),
u[0] + u[1] + (u[1] + 2u[2Dt + (u[2] + 3u[3Dt? + - +
+(Zy,(Ou[0] + Z, (Ou[1] + Z,(H)u[2] + Zs(Ou[3] + ) =
= f[0] + fI1]t + f[2]t2 + F[3]t3 + -,
u[0] + u[1] + (u[1] + 2u[2Dt + (u[2] + 3u[3Dt? + - +
+A[0] + (t — Du[1] + (t% — 2t + 2)u[2] + (¢t3 — 3t? + 6t — 6)u[3] + )
= f[0] + f[1]t + f[2]t% + F[3]t3 + -
We obtain the following system of linear algebraic equations
u[0] + u[1] + A(u[0] — u[1] + 2u[2] — 6u[3] + ---) = f[O];
ul1] + 2u[2] + A(u[1] — 2u[2] + 6u[3] + --) = f[1];
u[2] + 3u[3] + A(u[2] — 3u[3] + ) = f[2];
u[3] + 4u[4] + Au[3] + ) = f[3]

Theorem 4. If f(t) is a polynomial then the equation (8) has the unique

polynomial solution for A=-1; If A=-1 then the equation (8) either has no solution or
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has endless number of solutions; the spectrum is A e{-1}.
5. Conclusion
There can be various phenomena for equations of type (1) including infinite

spectrum. Algorithms can be constructed for some subclasses of such equations.
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QUOTIENT SPACES ARISING IN ASYMPTOTICAL BEHAVIOR
OF SOLUTIONS OF DELAY-DIFFERENTIAL EQUATIONS

Zheentaeva Zh.K.
Kyrgyz-Uzbek University
Jik_kuu@mail.ru

Supra, the author introduced the following equivalence relation is in the space of solutions of
initial value problems for dynamical systems: distance between two solutions tends to zero while
time increases. The phenomenon "the dimension of the quotient space is less than one of the initial
space™ was called "asymptotical reduction of dimension of space of solutions™”. Also, the author
introduced the Hausdorff asymptotical equivalence relation is introduced: distance between two
solutions with invertible transformation of argument tends to zero. The corresponding quotient
spaces are considered in this paper.

Keywords: quotient space, equivalence relation, asymptotical equivalence, delay-differential
equation, initial value problem, Hausdorff metric.

Mypnra aBTOp JOUHAMHUKAIBIK CHCTEMAJIAPABIH YbITAPBUIBIIITAPBIHBIH MEUKUHIAUTHH]IE
TOMOHKY/16 aCUMIITOTHUKAJIBIK KBUBAJIECHTTYYJIYKTYH TYIIYHYTYH KUPTU3[IU. YOaKTBIT ©CKOHJO
DKM YBITapBUIBIIITHIH apachblHAa apaiblk Heiare ymryinar. ®OakTop-MEHKUHAUKTUH YEHEMHU
OamTankbl MEMKMHIUKTHH YeHEMUHEH KUUYY OOJIrOH KyOYITyIll, «YbIrapblIbIITap MEHKUHIUTUHUH
YeHEMUH AaCHMIITOTUKAJBIK TOMOHIOTYY» Jen aiteumrad. Jlarel, aBTop Xxaycaopdryk
ACUMIITOTUKAJIBIK SKBUBAJIECHTTYYJYKTYH TYHIYHYT'YH KUPrU3[u: YOaKTBIT ©CKOHAe apryMEHTHUH
Kaiipa KaJIbIObIHA KEJITUPYYYYy ©3repTYy MEHEH KU YbIIapbUIBIIITHIH apachlH/la apajiblK HeJIre
ymrynat. by makanana nan keiareH GpakTop-MeHKUHAMKTEp Kapasart.

YpyHTTYYy ce3nep: (hakTOp-MEWKUHAMK, SKBUBAJICHTTUK KATBIIIbI, KEUUTYYdy apryMEHTTYY
muddepeHIHanIbIK TeHAeMe, OallTanKel Macese, XaycaoppTyk MeTpuka.

Panee aBTOp BBENA CHEAYIOIIEE OTHOLICHHE ACUMITOTHUYECKOW DKBUBAJIIEHTHOCTH B
IIPOCTPAHCTBE PEIICHUI HAYaJIbHBIX 3a/1a4 U1 JUHAMUYECKUX CHUCTEM: PACCTOSIHUE MEXKIY IBYMs
pELICHUSIMA CTPEMUTCSl K HYJIO IMPH YBEIWYEHUM BpPEMEHHU. SIBIEHHE «pa3MEpHOCTb (akTop-
MIPOCTPAHCTBA MEHbINE, YEM pPa3MEPHOCTb HCXOJHOTO MPOCTPAHCTBa» OBLJIO HA3BAHO
«aCUMIITOTHYECKOE YMEHBIIEHUE Pa3MEPHOCTH IPOCTPAHCTBA PEUICHMI». ABTOp TaKXKe BBeja
MOHATHE XaycAOp(OBONH ACHMITOTHYECKON SKBUBAJIEHTHOCTHU: HEOIPAaHWYEHHOE CONMKEHUE
pemieHHid ¢ oOpaTUMBIM  NpeoOpa3oBaHMEM  apryMeHTa C  YBEJIMYEHHEM  BPEMEHH.
CootBercTBytomIMe (PaKTOP-MPOCTPAHCTBA paCCMaTPUBAIOTCS B 3TOH CTaThe.

KitoueBble croBa: (akTOp-MPOCTPAHCTBO, OTHOLICHUE SKBUBAJIEHTHOCTH, aCUMIITOTHYECKAs
SKBHUBAJIEHTHOCTh, AU(PQPEpeHInaTbHOEe ypaBHEHUE C 3ala3/bIBaIOIIUM apryMEHTOM, HadajbHas
3ajaya, xaycaopQoa MeTpuKa

1. Introduction

Is one of the main in the theory of dynamical systems. Many mathematical
methods were developed for investigation of the problem of behavior of solutions of
initial value problems as time tends to infinity including the theory of stability [1]-

[2], method of characteristic equations for autonomous and periodical dynamical
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systems, method of special solutions for delay-differential equations [3]-[4]. Various
sufficient conditions were obtained to provide some kinds of behavior of solutions.
Various definitions and denotations were introduced for each kind.

Supra, the author [5] introduced the following equivalence relation is in the
space of solutions of initial value problems for dynamical systems: distance between
two solutions tends to zero while time increases. The phenomenon “the dimension of
the quotient space is less than one of the initial space” was called "asymptotical
reduction of dimension of space of solutions"”. Also, the author [6] introduced the
Hausdorff asymptotical equivalence relation: distance between two solutions with
invertible transformation of argument tends to zero.

This paper demonstrates that the corresponding quotient spaces generate new
mathematical objects.

Section 2 contains definitions of asymptotical equivalence and A-exponential
asymptotical equivalence and the phenomenon of asymptotical reduction of
dimension.

Section 3 proposes definitions of Hausdorff asymptotical equivalence and
Hausdorff asymptotical quotient space.

Section 4 contains examples of Hausdorff asymptotical quotient space for
various types of differential equations.

Denote R,:=[0,20); R.+:= (0,0).

2. Review of preceding definitions

"Ordinary" equations and systems of equations with delay in more general form
can be presented as follows (we are restricted with existence and uniqueness of
solution of an initial value problem).

Definition 1. A dynamical system is a tuple of a number h>0 [delay], a totally
ordered set A of real numbers with the least element but without the greatest one
[domain of functions]: A=Rp:=[-h,«) or A=Ny:={0,7,2,3,...}, a topological space Z
[range of functions]; a set @ of functions [-h,0] —Z [initial conditions]; if h=0 then

@ = Z; a function W(t,p): Ax @ — Z such that its restriction on [— h,0] equals ¢
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[solutions of initial value problems]. If A=R; then W(t,p) is supposed to be
continuous with respect to t.

We will consider the following classes of spaces with their dimensions:
1-spaces: Z = R; dimension =1;
d-spaces: Z =R% d eN:={1,2,...}; dimension = d;

N-spaces: Z is a normed linear space with norm ||-||z; dimension (finite or infinite) is
the number of elements in the basis;

M-spaces: Z is a metric space with metric p; the inductive Ind-dimension is used;
U-spaces: Z is a uniform space with set of entourages Yz; Ind-dimension is used.

Definition 1. (The most general are U-Spaces). The following equivalence is
said to be asymptotical equivalence (A-exponential asymptotical equivalence):
For N-spaces

(o1~ @) < (lim{ |[W(t, 1) - W(t, )| [2: t—>oc}= 0);
((pr~2 @2) <= (sup{ ||W(t, 1) - W(t, ) ||z exp(At): teA}< o0));
For M-spaces
(o1~ @2) < (lim{ pz(W(t, 1), W(t, 2)): t—>o0}= 0).
((@1~2 @2) < (sup{ pz(W(t, 1), W(t, ¢2)) exp(At): teA}< ).
For U-spaces:
(pr~2 @) = (W eY7)(TteA) (Tt >t)(W(E 1), W(t ) €V).

Definition 2. The factor-space @*:=@ /~ of the space @ by the asymptotical
equivalence is said to be an asymptotical quotient space; respectively, the quotient
space @*,:=@ |~, of the space @ by the A-exponential asymptotical equivalence is
said to be A-exponential asymptotical quotient space.

Example 1. (The Floguet-Lyapunov theory).

Some types of linear autonomous delay-differential equations have countable
sets of characteristic values {4, t»,...} which can be semi-ordered:

Re(wa)>Re(w) > ...;
lim{Re (w): k —o} = —oo such that functions exp( t) (and for multiple values

also exp(ui t+vi Int), v € N), are (components of) particular solutions.
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If W(t, @) can be presented as 2{cy (p)exp(u t+vi In t): ke N} where ¢, (@) are
linear operators then the phenomenon "asymptotical reduction of dimension of space
of solutions” takes place, the infinite-dimensional space @ reduces to the space with
basis { exp(u t+ vk In t): Re g4 >0}

3. Definitions of Hausdorff asymptotical equivalence and asymptotical

guotient space

Definition 3 (A=R;, in this section). Let seR.,%[s,0)— R, be of the class @ of
strictly increasing continuous functions, lim{X(t):t—>w}=c0.

The following equivalence is said to be Hausdorff asymptotical equivalence:

For N-spaces (¢ = @) < (Vee Ry ) (3, H(Vie[s, ) (||W(L, @) —W(E,p)|| 2 <é);
For M-spaces (g1 = @) < (Vee Ryt )(35, 9) (Vtels, ) (oz(W(t, @), W(KE), 92))<é);
For U-spaces (¢1 = ¢2) < (Veelz) (Vte[s,«))( (Wt @), W), ¢2)) €d).
Lemma 1 [6]. The introduced relation is a correct relation of equivalence.
Proof. Reflexivity of the relation = is obvious. Prove the symmetricity. Let ¢
= ¢,. There exists the inverse function £(t) e@to the function X(t).
Substituting £(t) instead of t into (1), we obtain:
(V2(t) els,29)) ( (WD), 1), W(HSTD), 92)) €8).

The condition £(t)=>s is equivalent to the condition H(<(t))> (s). Hence
(te[H(s),2)(W(),@2), (W(L(D). 1)) €6); @2 = .

Prove the transitivity. For given e 17 find such g e I7 that & ° & < & There

exist such sy, Sps, Jio(t), Hs(t), that
(Pt e[S12,99))( (W(t, @1), W(H2(1),92)) €41,

(Pt elS23,9))( (WL, @2), W(Shs(t), ) €1).
Substituting $,(t) instead of t, we obtain

(7 G1a(t) €[523,99))( (W(S12(1), 2), W(S3(S12(1)), 03)) €41).
The condition $,(t)> s,3 is equivalent to the condition t > £i,5(S,3). Hence the

preceding assertion can be written as

(7t e[ 12(523), 29)) (W( (1), @2), (W((Fo3 Hh2) (1), 93)) €61).
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If we choose s;s=max{si», £12(S23)} then the above assertions imply

(Vtels13,29)(((W(t, 1), W(Sh2(1),02)) €61)A (W(I12(D), @2), (W((3912) (1), 93)) €61)).-

Hence
(Pt els13,99))(W(L, 1), W((Fh3H12) (1), @3)) €61 ° &)

The transitivity is proven. Lemma is proven. A Hausdorff asymptotical quotient
space will be denoted as @*~.

4. Examples of objects generated by quotient spaces

Solutions of scalar differential equations (A=Z=R).

Example 2 [6]. All continuous and increasing to infinity functions are Hausdorff
asymptotically equivalent. All continuous, increasing and tending to any number fun-
ctions are Hausdorff asymptotically equivalent.

Example 3 [6]. All solutions of the equation z’(¢2)=az(t), a>0 form three classes
of Hausdorff quotient space @*~.

Solutions of vector differential equations.

Example 4. We consider from out point of view [7]. System of differential

equations
x'(t) = Z (x(6), y(©)) / (2 (x(0), ()" + (2 (x(), y(©)))? + 1),

y'(£) = 2 (x(), y(©)) / (2 (0, y(£))” + (Z (x(0), y(£))? + 1),

Z(x,y) is the surface defined by the formula
Z(x,y) = le ((x — cos(27rj/3))2 + (y — sin(27rj/3))2 + 0.01)_1 + x2+ y2

If the initial conditions is (—a;0), 0 < a < 1 then the point moves along the li-ne
(—a <x < 0; y =0), further does along the line (0 <x < &; y =0), ¢ < a, and further
motion is unpredicable.

Conclusion
We hope that consecutive revealing of functions being Hausdorff asymptotically

equivalent for various types of differential equations would yield new mathematical

objects and it would be interesting for investigation of equations.
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ENLARGING OF DOMAINS OF SOLUTIONS BY MEANS OF
FUNCTIONAL RELATIONS

Kenenbaev E.
Institute of Mathematics of NAS of KR

Solutions of some differential equations have values connected by functional relations. For
examples, even, odd and periodical solutions, Vallée-Poussin’s assertion, Lagrange interpolation
polynomial for ordinary differential equations, Asgeirsson’s identity for partial differential
equations of hyperbolic type are considered. In the paper functional relations are used for enlarging
of domains of solutions. An algorithm for rectangular domains is built.

Keywords: functional relation, ordinary differential equation, partial differential equation,
solution, domain, algorithm.
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Ap kaHpmail TunTern aWpeiM  IupQGepeHIHANABIK  TeHIEMENEpAUH  YeUUMIACPHHIC
GyHKIMOHAIABIK 63 apa OalaHbIITapra OalIaHBIITYy MaaHuiep O0ap. Mucaibl, XyI, Tak jkaHa
ME3THIAYY Yblrapbuisii, Bamne-Ilyccen katbimbl, kKaiuMku TuddepeHIHaIiblK TeHaeMenep YU4YH
JlarpaHXIbIH MHTEPHOSIIMAIBIK  HOJMHOMY, TUIEpOONanblk TUOTErH AuQQepeHInanibk
TeHaeMelep YYYH AcreidpccoH Oupaeinuru kapanar. Makanaga (QyHKIMOHAIABIK ©3 apa
OaiiaHpIITap YbITAPbUIBIILITAP/bl AHBIKTOO YOHPOCYH KEHEUTYYy YuyH KoinoHynaT. Tuk Oypuryy
aliMaKTap y4yH aJropuTM KypyJar.

VYpyHTTyy ce3lep: (YHKUMOHAIABIK ©3 apa OailjaHblll, 4YbIrapbUIbII, KaAUMKH
maddepeHIMaNIBIK TEHAEMe, alpbIM TyyHAylyy auddepeHnnanaplk TeHAeMe, YbIrapbUIbIII,
aHBIKTOO aliMarbl, aJITOPUTM.

Pemenus HexkoTophIx AuddepeHInanbHbIX YPaBHEHNH PA3JIMYHBIX THIIOB UMEIOT 3HAYCHMS,
CBsi3aHHBIC (DYHKIIMOHAIBHBIMU COOTHOIIEHUSAMH. Hampumep, paccMOTpEHbI Ye€THBIC, HEUYETHBIE U
NIEPUOJUYECKHE pelleHMs, cooTHomeHue Bame-IlycceHa, MHTEpHOISLMOHHBIM MHOTOYJICH
Jlarpanxa, ToxmecTBo AcredipccoHa i auddepeHnnanbHbIX ypaBHEHUH THUIEPOOIHMYECKOTO
Tuna. B cratbe (yHKIMOHAIbHBIE COOTHOUICHHS NPUMEHSIOTCS [y pacIlIMpeHus obsacTtel
ornpezaeneHus peuieHui. [loctpoeH anroput™ aJis NpsIMOYTOJIbHBIX 00JIacTeM.

KntoueBble  cioBa:  (DyHKUIMOHAIbHOE  COOTHOIIEHHE,  pELIEHHE, OOBIKHOBEHHOE
maddepeHnanbHoe  ypaBHeHHE, au(p(EepeHIInaIbHOe YpPaBHEHHWE B YAaCTHBIX IPOU3BOJHBIX,
peleHue, 00J1acTb ONpeAeIeHUs, AITOPUTM.

1. Introduction

It is known that solutions of some types of differential equations have functional
relations (in our terminology) connecting their values in different points. By given
values of solutions in several points one can find their values in other points. In the
paper we use functional relations for enlarging of domains of solutions.

Sometimes known values of function in some points (multi-point value problem)
define it within all the domain. Otherwise, we propose

Definition. If the function f(x):X— F is known on a set X, < X, there is a
functional relation (*) on values of f(x) and f(x) can be defined on a set X; by means
of (*), Xog c X, X then X; is said to be an (*)-enlarging of Xo.

The second section contains examples of functional relations with one-step
enlargings. The third section contains an algorithm for enlarging of rectangular
domains for Asgeirsson’s identity.

In this paper we will use functional denotations of type x[n] instead of x.

2. Examples of functional relations with enlarging and value problems

Denote the functional relation number F for every equation as the minimal

number of connected points (if it exists). We will give either mention of k-point value
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problem (k-PVP) or a formula for (*)-enlarging.

2.1. Odd and even functions on R. F=2, X; ={x e R| (%o € R)( |X|=] Xo|)-

2.2. The set of IVP y1{x)=a, y(0)=0, arbitrary a=0: F=2:

(*) YX[IDx[2] - y(x[2])x[1]=0. 1-PVP.
2.3. The set of IVP: y{(x)=a, y(0)=y,, arbitrary a=0, yo; F=3:
(*) (YX[1D) - y(x[3D)(x[11 - x[2]) - (y(x[1]) - y(x[2D)(x[1] - x[3])=0. 2-PVP.

2.4. The linear differential equation of the k-th order y®(x)=0, or a polynomial
of (k-1)-th order: F=k+1. Let numbers x/1/, x/2],....x[k+1], v[1], y[2],....y[k+1] be
given. Construct the Lagrange interpolation polynomial of the (k—1)-th order by the
values x/1], x/2], ... x[k] u y[1], y[2],....y[k] then (*) L(x[k+1])—-y[k+1]=0. k-P\/P.

2.5. The first result on functional relations (in our terms) for a linear ordinary
differential equation was obtained by C.J. de la Vallée Poussin (for instance see [1]):
the k-PVP y®x)+p:(x) y D) +...+ pe(X) y(x) = 0, asx<h,
p(X) eCla,b], y(x[i]) =c/i/, i=1, ..., k has a unique solution when

Il Pallfasr(b—a)+ || Pallfasy (0—2)%2/ +... + | pollary (b—a)"/n! <1.

2

2.6. A solution of the hyperbolic equation

P u(xy,x,) = 0 meets the

Asgeirsson’s identity (F=4): (*) u(wy, vi)+ u(wy, vo)—u(wy, V)— Uu(ws, v)=0.

It is considered in the next section.

2 2
2.7. A solution of the wave equation %u(xl,xz) = :7u(x1,x2) meets the
1 2

similar Asgeirsson’s identity (F=4): for four vertices of a rectangle obtained by
means of rotation of the rectangle (6) on 45°.
3. Algorithm for Asgeirsson’s identity
The definition: Ng={0, 1,2,...}.
X; ={(xy) € R*| (F (%, Yo) € R?)
(((Xo, Yo) € Xo) and ((Xo, y) € Xo) and ((x, Yo) € Xo)))}-
In other words, only three points defined by four numbers
(X0, Yo), (Xo, Y1), (X1, Yo) (1)

generate the fourth point (xy, y1 ).
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Example of infinitely many steps: the set
Xo:={(2-2'", 22" e RYneN} {22, 2-2") e RneN}{(0,0)}.
At the first step, the only triple (1) is (0,0), (2—2'°, 2-27%)=(0,1),
(227, 2-2"%) =(1,0), the fourth point is (1,1).
At the second step, the only triple (1) is (1,1), (2-2*, 2271 =(1,1.5),
(227, 2-2'1) =(1.5,1), the fourth point is (1.5,1.5).
At the third step, the only triple (1) is (1.5, 1.5), (2-2'7% 2-27%)= (1.5,1.75),
(2272, 2-2"%) =(1.75,1.5), the fourth point is (1.75,1.75) etc.
Let the set X, be a union of several coordinate rectangles.
Firstly, consider the domain being the union of two rectangles
Xo:=(U1x V; ) (Upx V,) cRA
Algorithm 1.
A If U~U, = Iand ViV, = Jthen no additional points appear.
B) If (U U,=IandVinV, =) or (UnnU, #=TJand ViV, = O) or
(Ui U, #Dand ViV, = ) then Xi:=(U; v Uy) x (VL o V,).
After enlarging all possible pairs of rectangles consider triples of rectangles
(three points (1) are in three different rectangles).
4. Conclusion
There are publications [2], [3], [5], [6], [12], [18], [20], [21] and other ones.
Their survey demonstrates that there did not exist a unified classification of
multidimensional partial differential equations and some existing classifications were
based on formal writings of them. Authors of [23], [24] proposed to classify
equations by properties of their solutions. Examples in this paper substitute this point
of view. The algorithms mentioned above can be implemented in any algorithmic

language.
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ON THE INFLUENCE OF INTEGRAL PERTURBATIONS TO THE
BOUNDEDNESS OF SOLUTIONS OF A FOURTH-ORDER DIFFERENTIAL
EQUATIONS ON THE HALF-AXIS

Liskandarov S., 2Komartsova E.A.
YInstitute of Mathematics of the NAS of Kyrgyz Republic,
Department of Mathematics, Kyrgyz-Russian Slavic University
mrmacintosh@list.ru, ¢c_elena_a@mail.ru

The boundedness of all solutions of Volterra type fourth order weakly nonlinear integro-
differential equation is investigated in the cases when the corresponding linear homogeneous, linear
inhomogeneous and weakly nonlinear differential equations can have solutions unbounded on the
half-axis. Sufficient conditions are established and illustrative examples are constructed.

Keywords: integro-differential equation of the fourth order, weak nonlinearity, boundedness,
influence of Volterra type integral terms.

Bosbreppa THOMHAETH TOPTYHUY TApPTHUITETH CBI3BIKTYY ChIMaJl MHTErpo-AudQepeHnan bk
TEHJIEMEHEHUH OapblK YbITAPBUIBIIITAPBIHBIH JKapbIM OKTO YEKTEITeHJUTH, ara THeLenyy
TOPTYHUY TAPTUIITETU CHI3BIKTYY OUpP TEKTYY, CBI3BIKTYY OMp TEKTYY dMEC ’aHa CBI3BIKTYY ChIMal
i depeHINaNAbIK TEHAEMEJIEPUHUH JKapblM OKTO 4YEKTEeNOEreH YbIrapbUIbIITApbl OOIyIIy
MYMKYH Y4ypyHIa, u3uiaeHeT. JKeTumryy maprrap TaObliaT KaHa WUTIOCTPATUBIUK MHCANIAP
Typrysynar.

YpyHTTYY ce37ep: TOpTYHUY TapTUIITETH MHTErpo-AuddepeHInan bk TeHJEME, CBI3BIKTYY
ChIMAJIJIBIK, YEKTENTeHIUK, BonbTeppa THOMHAETM MHTETPaJIbIK MY4eJIepIyH TaaCupH.

Uccnenyercs  OorpaHMYEHHOCTh  BCEX  peHIEHMH  €1al0  HEJIMHEMHOro  MHTErpo-
muddepeHIMaTbHOTO ypaBHEHUsT 4YETBEPTOro TMopsaka Tuma BoibTeppa B choydasx, Korjaa
COOTBETCTBYIOIIME JIMHEHHOE OIHOPOAHOEC, JIMHEMHOE HEOJHOPOJHOE W CIabo HEIMHEHHOe
muddepeHanbHble  YpaBHEHHUS MOTYT WMETh HEOTPAaHWYCHHBIE Ha TMOJYOCH pEeIIeHUS.
VY cTaHaBIMBAaKOTCS JOCTATOYHBIE YCIOBUS U CTPOATCSA WIUTHOCTPATUBHBIE IPUMEPHI.

KitoueBbie cnoBa: MHTETrpo-AuddepeHInaIbHoe ypaBHEHWE YEeTBEpTOro MOpsaKa, cradas
HeJ'II/IHeI\/'IHOCTI), OFpaHquHHOCTB, BIINAHHUC I/IHTel"paJ'II)HI)IX YJICHOB THUIIA BonLTeppa.
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All functions involved in the study and their derivatives are continuous and the
relations hold for ¢t > ¢y, t =T > ty, || <0 (j=0,1,2,3,4); ] = [ty,); IDE -
integro-differential equation; DE - differential equation.

Problem. Establish sufficient conditions for the boundedness on the half-

interval J of all solutions to Volterra type fourth-order IDE of the form:

t

x® () + f[Qo(t, )x(7) + Q1 (¢, Dx" (1) + Q2(t, Dx" (7) + Q3 (¢, D)x""(D)]dt =
to

= £(©) + F (£,x(6),x"(©), %" (0),x""(8), J;. H (£,7,2(2), %' (), 2" (1), x"" (1) )dr ),

t>t, (1)
with weak nonlinearities F (t, ug, Uy, Uy, Uz, Uy), H(t, T, Ug, Uy, Uy, U3):
{|F(t; U, Uy, Uz, Uz, Ug) | < Fo(8) + Tico g (®ugl
|H(t, T, ug, Uy, Up, Uz)| < 3 oA, (t, T)|ugl
with non-negative Fy(t), gx(t), h(t,t) (k=0,1,2,3,4, v=0,1,2,3) and in

cases when the following equations:

(F, H)

xB() =0, t=>t,, (1)
x® () =), t=¢t, (11)
x®(t) = f@)+F(tx(t),x'(t),x"(t),x""(t),0), t=t, (1,)

can have solutions unbounded on J.
We are talking about solutions x(t) € C*(J,R) of IDE (1) with any initial data

x®(ty) (k=0,1,2,3). Each such solution exists by virtue of conditions (F, H).
Note that such a problem was investigated earlier in [1] for fourth-order linear
IDE of the form:

x@ () + Tizo | OO ®) + [ et DxO @ de| = f(0), t2t ()
in case, when corresponding fourth-order linear DEs:
Ltx) =x® () + Tico e ®x@ @) =0, t=ty,  (lo)

L(t;x) = f(8), t =t (1)
can have unbounded solutions on J.
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To solve the above problem, we will follow the scheme of the method from [1],
namely, a non-standard method for reducing to a system [2,3], method of cutting
functions [4, p. 41], method of integral inequalities [5] are developed and lemma 3.3
[4, p. 110-111] or lemma [6] on an integral inequality of the first kind are applied.

Let us present the main results of this work below.

Following [2, 3, 1], in IDE (1) we make a nonstandard substitution:

x"'(t) + 2%x(t) = WD)y (t), (2)
where 0 # A — some auxiliary parameter, A € R; 0 < W (t) — some weight function,
y(t) — a new unknown function. Then, similarly to [3, 1], IDE (1) turns into the
following equivalent system:

(x"() + A%x(t) = W()y(0),
y'(©) + 2w W ®) Yy + W OW®) T - 2|y + 2 (ww) T x

t

X x(t) + f[PO (t,T)x(1) + P, (t,0)x'(7) + P,(t, T)y(t) + K(t,7)y'(1)]dT =

to

< -1 -1 2
=(W®) fO+W@®) F(tx@®),x'(©),-"x@) + W)y(d),

—22x'(t) + W)y () + W ()y(b), j H(t,7,x(1),x' (1), =A% (1) + W(1)y (1),

| X (@) + W@y (@) + W@y () de), t>t, (3)
where
Po(t,7) = (WD) [Qo(t, 1) — Q2 (t, D),
P(t,T) = (W) [0u(t,7) — 2205t D),
P,(t, D) = (W) [0t DOW (D) + Qs(t, DW'(D)],
Kt 1) = (W) Qs(t, DW ().

Then we proceed in the same way as in [4, 1]. Let
K(t, 1) = Xizo Ki(t, 7), (K)
W) () = Xio fiD), (f)

w,(t) (i = 1..n)—some cutting functions,
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Ri(67) = Kt o) (nOw®) L EO = £ (n©)
R;i(t,to) = A;(t) + B; () (i = 1..n), (R)
c;(t) (i =1..n)-some functions.

For an arbitrary fixed solution (x(t),y(t)) of system (3) we multiply its first
equation by x'(t), the second equation — by y'(t) [7, p. 194-217] and then we add
them. Then integrate between the limits from ¢t, to t, including by parts. For this,
similarly to [4, 1], we introduce the conditions (K), (f ), functions w,(¢), R;(t, 1),
E;(t), condition (R), functions c;(t) (i = 1..n) and apply lemmas 1.4, 1.5 [8]. Next,

after some transformations (for example, we represent W”(t)(W(t))_1 — A2 =

_ 2
Y2+ w'@®w) '~ 2" =2y = const # 0) we obtain the following identity:

(K®) +2(x®)" + () +r2(®) + Y (A6 )" +

t

+B;(0)(Y;(t,t))" = 2B, ()Y (¢, to) + ¢; (£) — f [B/(s)(Yi(s,to))” —
to
t

—2E/(s)Y;(s,ty) + ¢/ (s)]ds + JR{T(t, 7)(Y;(t, T))Zd‘[} =c, +

to

+2 jw(s)y(s)x’(s)ds+%z j [AQ(S)(Yi(S; to))z t

+ j Rite(5,7) (Yi(s,7)) dr| ds + 2 j Y () fols) = 2W' ()W () ¥'(s) +

+[2 42 =W SHWE)|ys) - 2 (W) x(s) -

S

— f[PO(s, T)x(7) + P,(s,)x' (1) + P,(s, 1)y (1) + Ky (s, 1)y (1)]dt}ds +

to

+2 f(W(s))_ly’(s)F(s,x(s),x’(s), —22x(s) + W(s)y(s), — 2*x'(s) +
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+W(s)y'(s) + W (s)y(s), jH(S, 7,%(7), x' (1), =A% (1) + W (D)y(2),

—22x' (1) + W(D)y' (1) + W' (D)y(2))dr)ds, (4)

where

t

Y(t,7) = f v (Dy' (dy (i =1..m),

T

c. = (X' (to))" + 2(x(te))* + (' (1)) +¥2(y(t))” + 2 i (to)-

Turning to the integral inequality taking into account condition (F,H), similarly
to theorems 1.1, 2.1 from [4] and the theorem from [1], we prove the following
theorem.

Theorem. Suppose that 1) 2 >0, W(t) > 0, y> 0; conditions (K), (f ), (R)
holds; 2) A;(t) =0, B;(t) =0, B/(t) <0, R;;(t,7) = 0, exist functions 4;(t) = 0,

2
¢;(t), Ri(t)=0 such that Ai(t) <Al ()A;(0), (Ei(k)(t)) < B )™ (),
R;;.(t,7) < R;(t)R;.(t,7) (i = 1..m;k = 0,1). Then, for any solution (x(t),y(t))
of system (3) the following energy estimate is valid:

E(tc,) = (x’(t))2 + /Iz(x(t))2 + (y’(t))2 + )/Z(y(t))2 +

t

A6 ) + [ Re@n (D) de

to

n

)

i=1

< M(t,c.), ()

where

t . L8 2
M(t,c,az{ﬁ + [ IR+ W) R exp<_§ | V(n)dn>d5} x

to

X exp (ftto V(s)ds),

V() = Z[A;(t) +R; O+ 2{7 W) + 2w OI(W(©) +

i=1

42



t

+7 2+ 2 —wr W) [+ 2w ) + f [Py (t, 7] +

HP, ()| + 7P, (8D + 1Kot Dde} + 2(W () {A g0 (D) +
+9:(®) + g (O(A+ 7 W (©) + gs (O + W) + 7 HW' (D) +

+3.(1) f (A ho(t,7) + hy (6, 7) + hy (6, D(A+ W (D)) +

+h,(t, T)(/iz + W@ + 7w (D)l)]de}.
Let, in addition, 3) A;(t) >0, y/j(t) >0, y;®)=0(1<j<n),

46, 2 0,q)(6,c) 2 0,4)(t.c) (v, ®) € L'URY,

where

q;(t,c.) = (Aj(t))_%(Mj(t, c*))%.
Then y(t) = 0(1).
From this theorem we have
Corollary. If all conditions of theorem are hold and W (t) € L*(J, R;\{0}), then
any solution of fourth-order IDE (1) x(t) =0(1), i.e. is bounded on the
half-interval J.

The validity of this corollary is obtained from the following Cauchy’s formula
[9, c. 393 - 394]:

t

x(t) = x(ty) cos A(t — t,) + %x’(to) sin A(t — t,) + % j[sin At — s)]W(s)y(s)ds

to
produced from replacement (2), i.e. from the first equation of system (3), for any
initial values x(ty), x'(to).
Let us give the simplest examples.

Example 1. For the weakly nonlinear fourth-order IDE:

L(t,x) = x®W() + J {[%

0

+ 4Q,(t, )| x(1) +
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5\/sint + cost
+ |- +4Q5(t, 1) [x' (1) + Q,(t, D)x" (1) + Q5(¢, T)X”’(T)} dt =
t+7+5
_ rtlx(@]|sinxr(r)
= Jy s —dr, t20, (1)
where

0,(t, 1) =20;t)(T+ 1) ++/t2 + 72 + 1 cos(tr),
1
2

cost
) + T] exp[t” + 17 +

t+3

0;(tt)=(t+1)?%(t+1)? ﬁ + [exp(

|sint|

t T 2t 2T\1 __
+et + et +exp(et) + exp(e“?)] —r

all conditions of the theorem and corollary hold for A =2, W(t) = (t + 1)72, y= 4,

here t, = 0,
i) = S )= 2T
P,(t,7) = (t + 1D?(r + 1)72{t2 + 12 + 1 cos(t1),
1
K(t, 1) E{ [ p( )-I-T] }exp[t7+T7+et+ef+exp(62t)+
2 -2
exp(e?)] - EREDIIA g (1) = 1, ho(t,7) = s, g () = 0 (k =

t+7+1

0,1,2,3),h(t,7) =0 (v=1,2,3);n=1, y, (1) = exp[t” + et + exp(e??)],

t+27+9

1
COS t

i [exp (Ct(fgt) + T]E, Ai(t) = ex Z(t 3 , B1(t) = Ai(t) =

(t+1)?(t+1) " ?|sinT|
t+7+1

Rl (tl T) = t—

t+4
(t+3)2’

d)—m, Ko(t,7) = o) = i) =0 (1 =1..n).
Therefore, any solution of the IDE (1,) is bounded on the half-axis R, =
[0, ). However, all solutions of the corresponding homogeneous DE: x™®(t) =
0,t = 0 under the condition x(0) # 0 are unbounded on the R, which follows from
the general solution of this simplest DE:
x(t) = cg + 1t + cyt? + c5t3 (¢; — arbitrary constants (k = 0,1, 2, 3)).
Example 2. Weakly nonlinear fourth-order IDE:

t+ 1) 2exp[t’ + et + exp(e?t cost
P G P _Jostl
t+5 Ve+2
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: |x(7)] sinx'(7)

t+27+9

dr, t = 0,
0

where L(t;x) — the same operator as in the IDE (1,) of Example 1, satisfies all
conditions of the theorem and the corollary, for the same A, W (t), y. Here

f1(®) = —

(t+1)"2exp[t”+et+exp(e??)
t+5

1 .
t+5’

LEm=-La®=

(t+1)?|cos t|

fo(®) = ——7= + t(t + 1)2.

This means that all solutions of the given IDE are bounded on the half-axis R,.
Wherein, it can be shown that for the corresponding DE:

(t + 1) 2exp[t” + et + exp(e?h)] _ lcost] Ly

t+5 Ve+2

all it solutions are not bounded on the R,.

x®(t) = —

Example 3. For the weakly nonlinear fourth-order IDE:
t

L(t; x) = et cos[x(t) —et] + j

0

|x(7)| sinx'(7)

t>0
t+27+9

) —_— )

where L(t; x) — the same operator as in the Example 1 for IDE (1, ), all conditions of
the theorem and the corollary are satisfied, here Fy(t) = et. Therefore, all solutions
of this IDE are bounded on the half-axis R,. However, the unbounded on the R,
function x(t) = et is a solution of the corresponding weakly nonlinear DE:
x® (t) = et cos[x(t) — e?],
which is easy to check.
Thus, we have found a class of weakly nonlinear fourth-order IDEs of the form

(1), for which the problem under consideration is solvable.
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SUFFICIENT CONDITIONS FOR THE STABILITY OF SOLUTIONS OF
FOURTH ORDER LINEAR VOLTERRA INTEGRO-DIFFERENTIAL
EQUATION

Komartsova E.A.
Department of Mathematics, Kyrgyz-Russian Slavic University
c_elena_a@mail.ru

Sufficient conditions for the stability of solutions, i.e. the boundedness on the semiaxis of all
solutions and their derivatives of the first, second, third orders of the linear integro-differential
equation of the fourth order of the Volterra type, are established. For this, a non-standard method of
reducing equations to a system is being developed with introduction of three certain positive
weighting functions. An illustrative example is constructed.

Keywords: linear integro-differential equation of the fourth order, a non-standard method of
reducing equations to a system, weighting functions, boundedness, stability.

Coe3pikTyy BombTeppa THOMHAETM TOPTYHUY TApTUNTETH HMHTETPO-AudQepeHInanibK
TEHJIEMEHUH TYypYMAYYJIyryHYH, 0. a. OapAbIK YbITapbUIBIIITAPBIHBIH XaHA alaplblH OMPUHYH,
9KMHYM, YYYHUY TYYHAYJapbIHBIH apblM OKTO YEKTEJIIe€HAUTMHUH, JKETUIUTYY MIapTTapbl
tTabbutaT. Byn y4yH TeHIemenepau cucTeMara CTaHJAPTTBIK SMEC KEITHPYY METOAy Y4 OH
CAJIMAaKTHIK (QYHKUUSATIAPIbl KHHUPYY apKbLITyy OHYKTYpYJ1eT. NImrocTpaTUBAMK MUCA Typry3yJiar.

YPpyHTTYY ce37ep: TOPTYHUY TapTUIITETH CHI3BIKTYY HHTErpo-audQepeHInaIibK TeHIeMe,
TEHJIEMEHH CHCTeMara CTaHJIApPTTBIK SMeC KeNTUPYY METOAy, CalIMaKThIK (YyHKIUsIAp,

YEKTEITCHIUK, TYPYMAYYIIYK.

Y cTaHaBIMBaIOTCS JOCTATOYHBIE YCIOBUS YCTOMUMBOCTH PEIIEHUM, T. €. OTPAHUYEHHOCTH Ha
MOJIyOCH BCEX PEHIeHMH W UX MEpBbIX, BTOPbHIX, TPEThUX MPOU3BOAHBIX, JTUHEHMHOIO HHTErpO-
muddepeHIManbHOr0 ypaBHEHHsI 4eTBEpPTOro nopsiaka tuna Bombreppa. s sToro pasBuBaercs
HECTaH/JApPTHBIH METOJ CBEJIEHUS YpaBHEHMM K CHCTEME C BBEIACHHEM TpPEX HEKOTOPbIX
MOJIOKUTETBHBIX BeCOBBIX (DyHKIMNA. CTPOUTCS WIUTFOCTPATUBHBIN IpHUMED.

KitoueBble cioBa: nuHeitHOe UHTErpo-AudepeHIINaTbHOE YpaBHEHNE YETBEPTOro MOPsJIKa,
HECTaHJAPTHBIN METOJl CBEJCHMs YpaBHEHMH K CHCTEME, BECOBBbIE (DYHKLMH, OTPaHUYEHHOCTH,
YCTOMYUBOCTb.

All appearing functions and their derivatives are continuous and relations are
true when t > t,, t =1 > t,, | = [ty, ©); IDE - integro-differential equation; DE -
differential equation. The stability of solutions to a linear IDE of the fourth order is
understood as the boundedness on the half-interval J of all its solutions and their
derivatives up to the third order inclusive.

The main purpose of this work is to solve the following problem.

Problem. To establish sufficient conditions for the stability of solutions to linear
IDEs of the fourth order Volterra type of the form
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x®(6) + az(O)x""(6) + a(O)x" (6) + a1 (O)x'(£) + ao(D)x(¢) + J [Qo (¢, T)x(7) +

to

+Q1(t, D)x" (1) + Q2(t, T)x" () + Q3 (¢, Dx""(D)]dT = f(£), t =t 1)

Note, that such a problem for other classes of IDEs of the form (1) was studied
in [1, 2] by the method of comparison [3, pp. 15-17] with solutions of the
corresponding differential equations; in [4] - by a modified method of weighting and
cutting functions [5]; in [6] - by the method of squaring equations [3, p.28].

We are considering solutions of the IDE (1) x(t) € C*(J, R) with any initial data
x®(t,) (k=0,1,2,3). Each such solution exists and uniqueness.

To solve the above problem, we are developing a method based on the ideas of
the method of reduction to the system [7, 8] and the method of cutting functions [3].
The essence of the method is as follows.

First, we make the changes in the IDE (1):

x'(t) = Wi ()y(t), (2)
y'(t) = W2 (0)z(2), 3)
z'(t) = Wz (Ou(), (4)

where 0 < W, (t) (k = 1,2,3) - some auxiliary weighting functions, y(t), z(t), u(t) -
new unknown functions.

From (2) - (4) by differentiation we have:

x" () = W@y () + Wi @)y (&) = Wi (©)y(t) + W1 (OW,(6)z(¢), ()
") = WY (©)y () + W/ ©y' () + (Wi (OW, (D) z(t) + Wy (DOW, (D)2 () =
= W' (©y(t) + [Wi (OWL () + (W (OW (D)) ]2() + Wi (W, (W3 (O)u(t), (6)
x® () = Wy (D () + W' (©)y' (£) + [W{ ©W,(6) + (Wi (W (D)'] z() +
+[W{ (W, (8) + (Wi (O)W,(1)' ]2 (&) + (Wi ()W, () W3 (8)) u(t) +
+W (OW,(OWs(0)u'(8) = W (©)y(t) + W' (OW,(0)z(t) + [Wi ()W, (0) +
+(WL (OW,(£))'] 2(t) + [Wy (OW, () + (Wi ()W, (D)) Ws (D)ult) +
+(WL (OW, () W3 (1)) ult) + Wy ()WL (W3 (Du' (£) = W' (£)y(t) +

+{w W, () + W OW, () + (W OW, )] } 2(8) + {IW; (©OW, () +
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+ (W, OW, () W3 (6) + (W (WL (OW;(0)) }ule) + Wi (W, (W5 (B’ (). (7)
Taking into account relations (2) - (7), from IDE (1) we obtain:
WL Oy () +{ W] OW, () + [W (OW,(6) + (W (W2 ()] } z(8) +

+H[W{ OW, (1) + (W (WL () [Ws(®) + (Wy ()WL () W5 (1)) Tu(t) +
+W, (OW, (W5 ()u'(t) + az ()W, ()y (@) + [W{ ()W, () +
+(WL (OWL (D) ]2() + Wy (WL (W5 () u(D)} + a, (O{W] Oy (L) +

+W (OW,(8)z(8)} + a, (WL (O)y(8) + ao(D)x(0) + j {Qo(t, T)x(7) +

+0, (6, WL (DY (1) + Qo (¢, DIW, (D) y(7) + Wy (D)W, (2)z(1)] +
+Q5(t, DWW (D y (1) + Q3(t, D) [W (DOW (1) + (W, (D)W, (1)) ]z(x) +

+Q3(t, W, (W, (DWs(Du(D)}dT = f(£), t =t (8)
We introduce the following notation:
W(t) = W ()W, ()Ws(¢),

b (t) = as(t) + (W)™ {{Wi (OW(®) + Wy (OW,(®) | Wa(t) + W' (1)},
b, = (W®) ™ (W OW5 @) + [W{ OW, () + (W OW, ) ] +
+as(t) [Wl’(t)Wz(t) + (Wl(t)Wz(t))’] + az(t)Wl(t)Wz(t)},
bi() = (W(®) ™ W7 (©) + as(OW]' (8 + a, (OW (8) + a, (OWA (D)},
be(t) = (W(B) ™ ao(6), Po(t,7) = (W(B)) ™ Qolt, D),

P(t,7) = (WD) {Q: (6, OWL (D) + Qo (£ DW, (1) + Qs (£, WY (1)},
P,(t,7) = (W(t)) ™ {Qx(t, DWL (W, (1) +
+ 0360 [W W, @+ (W W, () [},

Kt = (W©®) oW, F@©=Wm) FQO.
Then dividing both sides of (8) by W, (t)W,(t)W5(t) and using introduced
notation, from (2) - (4), (8) we obtain following system of three differential equations

(2) - (4) and IDE:
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( x'(t) = W (®)y(t),
y'(t) = W, (t)z(t),
z'(t) = W3 (Du(t),
1 u'(t) + by (D)u(t) + by (D)z(t) + (9)

+b;, () y(t) + b (£)x(t) + ft’; [Po(t, T)x(7) + Py (¢, Dy (7) +
\ +P,(t,7)z(t) + K(t,)u(r)]dt = F(t), t =t,.
This system equivalents to original IDE of fourth order (1).

Let [3]:

K(t,7) = Xizo Ki(t, ), (K)
F(t) = Xizo Fi (D), (F)

w,(t) (i =1..n) - some cutting functions,

R(6D) = K6 (wOw®) . EO=FO(1®) @=1.n),
Ri(t,t0) = A;(t) + Bi(t) (i=1..n), (R)
¢;(t) (i = 1..n)-some functions.

For any solution (x(t),y(t),z(t),u(t)) of the system (9), its first DE we
multiply by x(t), the second DE - by y(t), third - by z(t), fourth IDE - by u(t) [9
pp. 194 -217], add the resulting relations. Then we integrate between t, and t,
including by parts, at the same time we introduce the conditions (K), (F), functions
(), R;(¢t,7), Ei(t) (i =1..n), conditions (R), functions ¢;(t) (i = 1..n), using

lemmas 1,4, 1,5 [10]. As a result from the system (9) we obtain the following

identity:
(x(@®)" + ()" + (z(©)" + (u®)” +2 f by (s)(u(s)) ds +
+ ) (4O U )" +BOUit, 1) = 2BV, &) + i (8) -

- j [B{(S)(UL(S; to))z - ZE{(S)UL'(S, tO) + Ci’(S)] ds +
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+ j R (t,7)(U (¢, T))Zd‘[} =c, + f |4/ () (Uils,80))" +

to i=1t,
+ f Rit (s, D(Ui(s, D)) dr| ds + 2 f (W, ()y()x(s) + W, ($)z(s)y(s) +

t

+Ws(s)u(s)z(s)]ds + 2 J u(s){Fo(s) = ba(s)z(s) = b1 (s)y(s) — bo(s)x(s) —

— [ ti) [Py(s,T)x(t) + Pi(s,T)y(t) + P,(s,7)z(1) + Ky (s, T)u(t)]dt}ds, (10)

where

U;(t,7) Efwi(n)u(n)dn (i=1..n),

c. = (x(t)" + (¥(&))" + (2(te))” + (ulte))” + 2 ci (to).

We prove following theorem, passing from identity (10) to the integral
inequality, similarly to Theorems 1.1, 2.1 [3], applying Lemma 1 [11].

Theorem. Let 1) W,(t) > 0 (k = 1,2,3); the conditions (K), (F), (R) are
satisfied; 2) b5(t) = 0; 3) A4;(t) =0, B;(t) =0, B/(t) <0, R;.(t,7) = 0, there are
functions A;(t) € L*(J,R,), c;(t), R; (t) € L*(J,R,) such that A;(t) < A (t)A;(¢t),
(EP®) <BO P ® k= 0),

R (t,7) < R;(H)R;.(t,7) (i=1..n; k=0,1);

) Wy () + b (D] + Fo (O] + [ |Pe(t, Dl + f Ko (6, Dld € L, R, \{0})
(G=123; k=0,1,2); 5) functions W;(t) (G =1,23), W/@®), W),
(Wl(t)Wl(t))' are bounded on semiinterval J. Then any solution x(t) of IDE (1) is
stability.

Conditions 1) — 4) of the theorem ensure x(t) = 0(1), y(t) = 0(1), z(t) =
0(1). We have x'(t) = 0(1) by virtue W, (t) = 0(1) from (2). We obtain that
x"'(t) = 0(1) based on W,'(t) =0(1), W,(t) = 0(1) from relation (5). Since
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W) =0(1) ( =1,2,3), W,"(t) = 0(1), (Wl(t)WZ(t))' = 0(1), then it follows
from relation (6) that x'"'(t) = 0(1). (Here x(t) is any solution of IDE (1), 0(1) is
the E. Landau symbol, which means boundedness). Therefore, for any solution x(t)
of a fourth-order IDE (1), x®(t) =0(1) (k=0,1,2,3) are true, which is
equivalent to the stability of x(t).

Let's give the simplest illustrative example.

Example. For the fourth order IDE

x® (@) +[6+ eﬁ]x”’(t) +[11+ 3eVt — e 2 x" (©) +

=2t

(t + 1)2

-3t

t2+t+1

+ [6 +2eVt— g2t 4 x(t) +

IX’(t) -

-3t -3t

; 3t(smt)7 ) e €
+J (t+7 +4)5x(T)+[ QE’(t'T)_(HHl)ZJr(t+2T+3)4

]x’(r) +

e
+ [3Q3 (t,7) — m‘ x" (t) + Qs(t, T)X”'(T)} dr =
2 1
et"73t(sin3t)5 e 3t
= - , t=0,
t—7+8 (t+ 2)?
where
1
t+74+6 1 202 1 e 3 (cost)3
t, = —3t+31’{ + } t2+71 n3tsin3 5 7
Q(t7) =e t+7+7 t—T+5)° (sin3tsin3t) t24+74+1

all conditions of the theorem are satisfied at W;(t) = e~* (j = 1,2, 3).

Here tO = O, bg(t) = e\/zy bZ(t) = _e_t’ bl(t) = (t 1)2’ bO(t) = - t2+\1/f+1’

1

_ (sint)7 _ - _ e~ 2t _
Po(t,‘[) = T Grera)® P, (t,1) = m, P,(t,7) = T i ? n=1, lﬂl(t) =

t+7+6
t+1t+7 t—7+5’

_r
(t+6)(t+7)’

e? (sin3t)s, Ry(t,7) = A0 =22 B () = (D) =

1
3

Ri(6) = 0, E;(8) = — ¢1(8) = =, Ko(t,7) = = 20 Fy(0) = —

t+8’ tZ2+7+1

(t+2)2'

Consequently, any solution of given IDE is stability fort € R,..
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Note that, as an illustrative example is shown, the coefficients and kernels of a
fourth-order IDE of the form (1) can be nondifferentiable at some points of the

semiinterval J.
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ESTIMATES FOR SOLUTIONS AND THEIR FIRST DERIVATIVES OF A
WEAKLY NONLINEAR INTEGRO-DIFFERENTIAL SECOND-ORDER
EQUATION OF THE VOLTERRA TYPE ON A SEMI-AXIS

Asanova K.A.
Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic
kanya.asanova@gmail.com

Sufficient conditions are established for estimating on the semiaxis all solutions and their first
derivatives of a weakly nonlinear integro-differential equation of the second order of Volterra type.
For this, according to the idea of Professor N.V. Azbelev, a certain function with previously known
asymptotic properties is introduced into the given equation and the method of partial cutting is
developed. An illustrative example is constructed.

Keywords: second-order integro-differential equation, weak nonlinearity, function with
known asymptotic properties, estimation of solutions, estimation of the first derivatives of solutions,
partial cut-off method.
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DOKUHYM TapTHNTETH CBHI3BIKTYY chiMan Bosbreppa TuOuHIETH HHTETpo-auddepeHnnanbK
TEHJICMEHUH Oap/bIK YBITAPBUIBIIITAPBIH JXKaHA aJapAblH OMPUHYM TYYHIYJIApbIH >KapbiM OKTO
0aajoo YYYH JKETHIITYY IIapTTapbl TabbuiaT. byn ydyH Oepuiaren texaemere mpodeccop
H.B.A36eneBnun uaescsl OOIOHYa aCHMITOTHUKAIBIK KacHeTTepu OeNruiayy (GYHKIHS KAHHPUIICT
’KaHa )KeKeuye Kecyy MeTOAy eHYKTYpyneT. ViumocTpaTuBayy Mucal Typry3yiar.

VpyHTYy ce31ep: 3KMHYM TAapTUNTETH HHTErpo-An(p(epeHInaNIbIK TEHIEME, CBI3BIKTYY
CHIMAJIZIBIK, ACHUMITOTHKAJIBIK KacHeTTepu Oenrmnyy (yHKIHS, YblrapbUIbIITapabl  0aanoo,
YBIrapbUIBIITAPABIH OUPHHYH TYYHAYJIAPBIH 0aalI00, JKeKede Kecyy METOMYy.

YcTaHaBIMBAIOTCS JTOCTATOYHBIE YCJIOBUSA JUIsl OLEHKHM Ha TMOJYOCH BCEX pPELICHUH U UX
MEPBBIX MPOU3BOJIHBIX CIa00 HEIMHEWHOTO WHTETrpo-Tu(depeHIINATLHOTO YPAaBHEHUS BTOPOTO
nopsiika tuna BonbTeppa. s aToro nmo unee npodeccopa H.B.AzbeneBa B 3aaHHOE YpaBHEHHE
BBOJUTCS HEKOTopas (YHKIMS C 3apaHee W3BECTHBIMH ACHUMITOTUYECKHUMH CBOWCTBAMH U
pa3BUBAETCA METOJl YACTUYHOTO cpe3biBaHusl. CTPOUTCS WILTIOCTPATUBHBINA IPUMED.

KitoueBbie croBa: uHTErpo-audQepeHaIbHoe ypaBHEHHE BTOPOTO TMOpsijaKa, ciadas
HEJIMHEWHOCTh, (YHKIHMS C HW3BECTHBHIMH ACHMIOTOTHYECKMMH CBOMCTBaMH, OIEHKA pEIICHU,
OIICHKA MEPBBIX MPOU3BOIHBIX PEIICHHUI, METO]] YACTUYHOTO CPE3bIBAHUS.

All appearing functions are continuous and the relations take place at t > ¢, t >
7=ty J=[ty, o0); IDE — integro-differential equation.

Problem. Establish sufficient conditions for the estimate on the half-interval J
of all solutions and their first derivatives of a second order IDE of Volterra type of

the form
t

x"(t) + a1 ()x'(t) + ao()x(t) + j[KO (t,Dx(t) + K. (t, D)x'(7)]dt =
to
= f(0) + F(t,x(D), f, H(t,7,2(2))dD), t = to (1)
with weakly nonlinearity:
IF(t,%,0)] < Fo(8) + go(®lul + g, (®Olul, IH(E, 7,0)] < g2t DIx|  (N)
with non-negative functions (%), go (t), 91 (t), 9> (L T).
It’s about solutions of x(t)eC?(J,R) IDE (1) with any initial data
x®(ty) (k = 0,1). By condition (N), each such solution exists.
Note that earlier this problem was solved in the article [1] using the idea of the
W-method of N.V. Azbelev [2, pp. 89-99] and the development of the method of
weight and cut-off functions [3]. In [1], one can find a list of many works on solving

a similar problem for various classes of second-order linear IDEs. In this paper, we
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develop a method of partial cutting [4], which makes it possible to study the above
problem for a different class of IDEs (1) than in [1].
Below we begin to present the main content of this work.
First, using the ideas of N.V. Azbelev's W-method [2, p. 89-99], similarly, as in
[1], in IDE (1) we make the substitution
x(t) = W(@©)y(), (2)
where 0 < W(t) - a function with known asymptotic properties, y(¢) is a new

unknown function. Then the following second-order IDE is obtained for y (%) [1]:

t

Y'(®) +p@)y' () + q(®)y(t) + j [P(t, Dy(7) + Q¢ Dy (D]dr =

to

=W 'f®) +FEtW@)y(), ftf)H (to,W@y@)dr, t =t,, (3
rae p(t) = a; () +2W' W)™ q(t) = ap(t) + a,(OW' (OOW ()™ +
+WEW () P(tT) = (W(t))_l[Ko(t, DW () + K (t, DW'(7)],

Q(t, 1) = (W(t))_lKl(t, W (7).
Let [1,3,4]:
Q(t,7) = Xizo Qi(t, 1), Q)
W©) " f(©) = 5y £i(®) (f)
Y;(t) (i =1..n)—some cutting functions, D;(t) = Q;(t,t) (y;(t))~?;
kernels M;(t,7) = Q;(t,7)(¥;(7))"! (i=1.. n) — partially cut off;
Et) = fi®@i(0)™" (= 1.n);
Di(t) = A;(t) + Bi(t) (i=1..n), D)
c;(t) (i =1..n)—some functions.

For an arbitrarily fixed solution y(t) to IDE (3), following [5, pp. 194-217], we
multiply both sides of the IDE (3) by y'(t), integrate within the limits from ¢, to ¢
including by parts , in this case, similarly to [1,3,4], we introduce conditions (@), (f ),
functions y; (t), D;(t), M;(t, T), E;(t condition (D), functions c;(t) (i = 1..n), apply
lemma [4]. Then we get the following identity:
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('©) +2 [ PO ) ds +aOEO) + Y AO ) +
+B; () (Yi(6,£0))* — 2Ei(0)Yi(t, o) + ¢i(6) —

- [ B 0.0 = 2B i, t0) + c{ s = . + [ {0 @) +
+ Y A0 0+ 2 [ Ml Do )y ()]s -

—ZJ }"(S){f [P(s, D)y (@) + Qo(s, 1)y’ (M]dz — (W(s)) ™ [fols) +

+F(s,W(s)y(s), fti H(s, T, W()y(r))dr)]}ds, (4)

where
t
Vit to) = j Yy Mdn (= 1..n),
to

e = 7' (t))? + q(t) (¥(t0)) " + Zity (ko).
Proceeding from identity (4), similarly to Theorems 1.1, 2.1 [3] and Theorem
[4], the following is proved
Theorem. Let 1) W(t) > 0, conditions (N), (@), (f), (D) are satisfied;
2) p(H)=0; 3) q(t) =q, >0, there is a function g*(t) € L*(J,R,) such that ¢'(t) <
q* (t)q(t); 4) A;(t) >0,B;(t) =0,B{(t) <0, A;(t) < A;(t)A;(t) functions are

exist, (EX(£))2 < BP()c ) (i =1..n;k = 0,1);
5)f 1Pt DIIQo(t, D) I1dT + go(t) + (W (1)) ™ [Ifo(O)] + ga(t) J;. galt, T)dr] €
L*(J,R,).

Then any solution y(t) and its first derivative y'(t) IDE (3) are bounded on the
half-interval /and for any solution x(t) and its derivative IDE (1) following estimates
are valid:

x(®) =Ww()0(1), x'(6)=[W()+IW'()I]Oo). (5)

Note that the first estimate from (5) follows from substitution (2), and the

second from the relation x'(t) = W(t)y'(t) + W'(t)y(t).
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t+2

Example. IDE (1) with a;(t) = 4 + ef|sint|, ay(t) =4 + 2e’|sint]| +—

2t -2t

cost COST

f(t) = —e 2tsint 42 , Ko(t, 1) = K. (t,7) +

(t+8 7+3)2’
2t+2 . . —2t+27
K (t,7) = e 227 /9 + (t — 1)e~ 10t sint sinT — pEITL
_ cosu |x| sinu u? x3 sinx
F(t,x,u) = e 2t ]Htrx—
(&, x,u) (lx|+1)(t+3)2 et+s5  |ul+4 ( ) (t+7+19)3(x2+8)’

t,=0 satisfies all conditions of the theorem for W (t) = e~2¢, here
t+2 2 1

p(t) =eflsint],  q(t) = tr3 D=3 aOF (t+2)(t+3)
Pet) = e 2% cost '
(t + 87 + 3)?
Q(t, 1) z\/9+(t—r)e‘1°t sintsint — ! )
et +71+11
n=1,9,(t) =sint,D(t) =3,4,(t) = 1,B1(t) =2,Q,(t,7) = _ﬁ'
ot o2t
Ei(t) =—-1,¢(t) =1, /o(t )— 9’ Fo(t )_m:go(t)zet_l_g
1
g:1(t) = e™?, 92(t,7) = (t+7+ 1973

This means, that for any solution x(t) such IDE the following estimates are

valid:

x®@)=e2t0(1) (k=0,1).
Thus, we have found a class of IDEs of the form (1), for which the above
problem can be solved. We believe that the results of this work are an essential

complement to the results from article [1].
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SUFFICIENT CONDITIONS FOR THE ASYMPTOTIC STABILITY OF
SOLUTIONS OF THE LINEAR VOLTERRA INTEGRO - DIFFERENTIAL
EQUATION OF THE FIFTH ORDER WITH INCOMPLETE KERNELS

Abdiraiimova N.A.
Osh State University
nazik.abdiraimova@gmail.com

Sufficient conditions for the asymptotic stability of solutions of a fifth-order linear integro-
differential equation with incomplete kernels of Volterra type on the semi axis are established. The
method of auxiliary kernels, non-standard method of reduction to the system, the method of
squaring equations, the method of cutting functions and other known methods are developed. The
Sylvester criterion and the Lyusternik-Sobolev lemma are applied. An illustrative example is
constructed.

Keywords: linear Volterra integral-differential equation of the fifth order, asymptotic stability
of solutions, auxiliary kernel method, non-standard method of reduction to the system, the method
of squaring equations, the Sylvester criterion, the Lusternik-Sobolev lemma.

Bonbreppa THOMHIETH TOJIYK dMEC SPOIYY ChI3BIKTYY KapblM OKTOT'Y OCHIMHYN TapTUIITETH
UHTETPO-TupPepeH AN IbIK TeH/IeMEHUH YBITapbUIBIILITAPbIHBIH ACUMITTOTUKAJIBIK
TYPYMAYYIAYTYHYH JKETHINTYY IIapTrapsl TaObuiar. Komrymua saponop MeTony, TeHAEMEHH
cucTeMara CTaHJIapTTBIK AMEC KENTHUPYY METOIy, TeHJEMENepId KBaJpaTKa KeTepyy MeETO.y,
Kecyyuy (QyHKuMsiap MeToAy jkaHa Oaimika Oelnruiayy METOJA0p eHYKTYpyJeT. CuibBecTpAHH
Kkputepuiin >kaHa JloctepHuk-CoOoneBAMH JeMMachl KOJJOHYyNaT. MImrocTpaTuBIUMK Mucal
Typry3ynar.

VYpyHTTyy ce3nep: BonbTeppa THOMHIETH CBI3BIKTYY OCLIMHYM TapTUOTETH HWHTErpPO-
muddepeHINANABIK TEHAEME, YbITapbUIBIITAPABIH aCUMITOTHKAIBIK TYpPYMAYYIYry, KOLIymua
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SZIPOJIOP METONY, TEHAEMEHM CHUCTeMara CTaHIAapTTBIK dMEC KEITUPYY METONY, TEeHAEMeEIepau
KBaJpaTka KeTepyy Merony, CunbBecTpauH Kputepuiin, Jlrocrepank-CoOoneBaNH JIEMMACHI.

VYcTaHaBIMBAIOTCSl JOCTATOYHBIE YCIOBHUS ACHMIITOTHYECKOW YCTOWYMBOCTH —pEIICHUH
JUHEWHOTO HHTErpo-aup(HepeHInalbHOTO ypaBHEHHsI MATOTO TMOpsaka Tuma BombeTeppa ¢
HETIOJIHBIMH SIIPAaMU Ha TI0JyOCH. Pa3BHBAIOTCS METOJ BCIIOMOTATENbHBIX sJIEp, HECTAHIAPTHBIHI
METOA CBCACHHUA K CHUCTCEME, MCTOH BO3BCACHHA ypaBHeHI/If/'I B KBaJpar, MCTOJ CpPE3bIBAOIINX
byHkmii u apyrue wusBecTHble Meronbl. Ilpumenstorcst kpurepuii CunbBecTpa M J1eMMma
Jlrocrepruka-CoboneBa. CTpOUTCS WILTIOCTPATUBHEIN MPUMED.

KiroueBsle croBa: nuHEHHOE BONBTEppOBa MHTETpO-AuddepeHatpHoe ypaBHEHHE MATOTO
nopsjka, ACUMIITOTHYCCKAsA YCTOﬁqHBOCTb peHleHI/IfI, METOL BCIIOMOTI'aTCJIBbHBIX AAep,
HECTaHJAPTHBIA METOJl CBEJCHHUS K CHCTEME, METO] BO3BEICHHs YPaBHEHUH B KBaJpaT, KPUTEPUI
CunbBectpa, temma Jlrocrepauka-Cobosesa.

All the functions and their derivatives appearing in the work are continuous and
the relations take place at t>t,, t>z>t;; I=[t,,); IDE-integro-differential equation;
DE-differential equation; the asymptotic stability of solutions of a fifth-order linear
IDE is understood as the tendency to zero t — oo all solutions and their derivatives up
to the fourth order, inclusive.

The problem. To establish sufficient conditions for the asymptotic stability of
fifth-order IDE solutions of the Volterra type of the form:

X (1) +a, (XY (t) + a5 () X" (1) +a, () X" () + 2, ()X (1) + 89 (t) x (1) +

"‘I[Qo (6 DX(@) + QDX (@) +Q,t, X" (D) + Q. X" (D)]dz = f (), t=2t, (1)

if conditions are met

Q.(t,7)|dzdt =0 (k=0,1,2,3). (2)

S ey 8
& ey

Note that, the IDE (1) does not have a kernel with x* (), therefore, such an IDE
will be called an IDE with incomplete kernels by analogy with the articles of the
authors [1, 2].

The problem presented by us is studied for the first time, and for its solution the
method of auxiliary kernels is developed [1, 2], by introducing into the IDE (1) a
certain kernel H,(t,z) with x* () by the "weight" rule [3, c.114].

Let's start getting the main result.

In the IDE (1), we enter the kernel H,(t,z) ¢ x®(z) in the following way:
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3 3
2.0t (2) = 2 Q(t. )X (2) + H, (., 2)x (2) - H, (t, )x“ (z) ©3)
k=0 k=0
and we perform integration in parts:

—j H, (t,2)x®@ (2)d7r = —H, (t,t)x"(t) +H, (t, t,)X"(t,) + j H,. (t,7)x"(r)dz. (4)

fo )

Then c regard to (3), (4) IDE (1) proceeds to the next loaded with IDE:
X (1) + 2, ()XY () + a5 (t) — H, (6, )] X" () + &, ()" (t) +a, ()X (t) + a, ()x(t) +

+J.{Q0 (t, 2)X(7) + Q,(t, 7)X'(7) + Q,(t, 7)X"(7) +[Q3 (t,z)+H, (t r)] xX"(z) +

+H, (6, 7)x? (D)7 = £ (1) = H, (6, ) X" (t)- ()
To IDE (5), we apply a non-standard method of reduction to the system from

[4], namely, in IDE (5), we make the following non-standard replacement [4]:
X"(t) + px"(t) +ax'(t) + rx(t) =W () y (1), (6)
where p, g, r - are some positive auxiliary parameters;
0 <W (t) -some weight function, y(t) - a new unknown function.
From (6) by differentiating, we have
x® (1) = —px"(t) — gx"(t) — X' () +W () y'(0) +W () y (1) =
=—p[=px"(t) — ax'(t) — rx(t) +W () y ()] — ax"(t) —rx'(t) +W ) y'(t) +W'[O) y(t) =
=(p* —a)x"(t) + (pa— )X (1) + prx(t) +W. () y(1) +W (1) y' (1), (7)
where W, (t) =W'(t) - pw (t); from (7), (6) we get

x® (t) = (p* — g)X"(t) + (pg — r)x"(t) + prx’(t) +W. (1) y'(t) + W) y(t) +
AW (R)Y"(t) +W'R)y'(t) = (p* — q)[—px"(t) — gx'(t) — rx(t) + W (t) y(t)] +

+(pq —r)X"(t) + prx’(t) + WL (1) + W' (£)]y' (1) + W. () y(©) +W (1) y"(t) =
=[2pg—r—p’Ix"(t) +[pr +q° — p*qlX'(t) ++ar — p*rIx(t) +
HW. () +(p* — W Iy (®) + LD +W'OIY' D) +W (©)y"®).  (8)
Substituting relations (6) - (8) into IDE (5), we will have
[2pg—r— p*Ix"(t) +[pr +q° — p*q]X'(t) +[ar — p*rIx(®) +
HWL(E) + (p* — )W (D] () +[W. (1) +W'(D)]y'(t) +W (1) y"(t) +

+a, (OI(P* —@)X"(t) + (pa — r)X'(t) + prx(t) +W. () y(t) +W () y' ()] +
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Ha, (1) — H, (6, )][-px"(t) — ax'(t) — rx(t) + W () y ()] + &, (£)x"(t) +

+ay (1)X'(t) + a, () x(t) + j {Q(t, 2)x(z) + Qi (1, 7)X'(7) + Q, (1, 7)X"(7) +
HQ,(t, 1)+ H, . (t, l;)] [-px"(7) —axX'(z) = rx(z) +W (2) y(7)] +
+H, (t, DI(p* —aA)X"(7) + (pa — r)X'(z) + prx(z) +W.(7) y(z) +W () y'(2)]}d7 =
= f(t) - H, (t,t,)x"(t,). 9)
After the simplest transformations and dividing both sides of (9) by the function
W (t), we receive a second-order IDE of Volterra type for y(t). Combining this IDE
and the replacement (6), we come to the following system:

X" (t) + px"(t) + gx'(t) + rx(t) =W (1) (1),
y"(£) +b, (1) y'(t) +, () y (1) +b, ()" (t) +b, ()X (1) + by () x(t) +

+'t|. [T0 (t, D)x(7)+T,(t,7)X'(7) + T, (t,7)X"(7) + T,(t, 7) y(7) + K(t, 7) y'(r)] dr = (10)

= (W)™ f ()~ W (1) H, () X" (L),
equivalent to IDE (5), where
b, (t) = &, (t) + [W. (t) +W ()] (W (),
by (t) = & (t) — H, (t,1) + a, (OW. () W (1)) ™ + p* —q +W. () W (1)),
b, (t) ={a, (t) - play (t) - H, (t. )] + (p* —a)a, (t) + 2pg —r — p W (1)) 7,
b, (t) ={a, (t) - ala, (t) - H, (t, )] + (pa - )a, (t) + pr +9° — p*a} W (t)) 7,
by (t) ={a, (t) - r[a, (t) - H, (t, )] + pra, (t) + ar - p*r}(W ()™,
To(t,7) = W (1) {Qy (t,7) — r[Qy (t, 7) + Hy, (t, 7)] + prH, (t, 7)},
T,(t7) =W (1) {Q,(t,7) —alQ;(t, 7) + HL, (t, )]+ (pa —1)H, (t, 7)},
T,(t7) =W (1)) {Q, (t,7) - PIQ, (t, 7) + H., (t, )]+ (p* —q)H, (t, 7)},
T (t,7) = W () {[Q, (t, 7) + Hy, (t, )W (2) + H, (t, 7)W.(2)},
K(t,z) =W ()™ H, ()W ().

For further investigation of the system (10), we also proceed in the same way as
in [4], i.e. first, we will carry out separate transformations for each equation of
system (10), then we add them and we will obtain the final energy identity.

To the first equation of the system (10), we apply the method of squaring the
equations [3, p. 28]. For any solution (x(t), y(t)) system (10) we square both parts of
its first equation-the third-order DE for x(t), we integrate in the range from t, to t,

including by parts, and we have the following identity [4]:
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Vo0 = [[(x"(8))* +(p? = 20)(X"(8))* + (4” =2 pr)(X'(s))* + r*(x(s))°]ds +
b
+ar(x())* +(pa—r)(X(t))* + p(x"(1))* + 2 prx(t)X'(t) + 2rx()x"(t) +
20X (X" (1) =c.+ [ W (5))*(¥(s))*ds, 11)
b

where ¢. =V,(¢,).
For the second equation, a second-order IDE for y(t) we apply the method of

cutting functions [3, p. 41]. Suppose that,

K1) = YK o) (K)
WO O =310, (M)

w,(t) (i=1.n) - some cutting functions,

RED)=KE)(vOw@) .  E®=fOWw®)" (=1n),
R (t1,) = A1) +B (1) (i =1.n), (R)
¢, (f) (i=1.n) - some functions.

For an arbitrarily fixed solution (x(t), y(t)) to system (10) its second equation is

multiplied by y'(t) [5, c. 194-217], we integrate in the range from 1, to t, including

by parts, similarly to [3], we introduce conditions (K), (f), the functions
i (t), Ri(t,7), E (1), ¢;(t) (1=1.n), condition (R); in this case, we apply lemmas 1.4, 1.5
[6]. The result is the following identity:

V, (1) = (y'0)° + 2] b, ()(y'(8))7ds + b, (VW) + D LA O (L.))° + B OY, ()" -
2E, (0% (1) + 6,0 — [[ B0 (5.4,)) ~2EXSY,(5.8,) +6/(5) ds + [ R (L)% (1 ) 2 =
= oo+ [US)(YS) + DA ()Y, (56) +[ RE (5,7)(Y, (5. 7)) d e +

2] Y'S) F5(8) = W (5)) TH, (5, t)X" (o )1ds — 2] y (b, (8)X"(5) + b, ()X (5) +
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+h, (s)X(s) + .S[[I'O(s, 7)X(7) + T (S, 7)X' () + T, (S, 7)X"(7) + T4(s, 7) y(7) +

+K, (s, 7)y'(7)]d z}ds, (12)

where
Y0 = [y mdr (=10, e =V,(0) = (6 b H)VE) + Do)

Add up the identities (11), (12) and we will have the following final identity for
any solution (x(t), y(t)) of the system (10):

V(1) = [I(x"(s))” + (p* —20)(X"(s))* +(a° —2pr)(X'(s))* +r*(x(s))°1ds +
to

+Ar(x(1)* +(pg —N(X'(1)* + p(x"(1)* +2prx(®)X'(t) + 2mx()x" (1) + 20X (OX"(X) + (y'(1)* +
+2[b, (s)(y'(5)) ds + by ()(y(1))” + i{A O, (t.1))° + B O, (1. t,))° - 2E, )Y (t, 1) +

+6, (1) = [[ BIS)(Y; (5,1,)) —2E/(5)Y; (,1,) + /() Jds + [ R (&, 7)(¥; (t, 7))’} =V (t,) +
+ [ () (¥(5)) + 2y ()L o (8) — (W (5)) "H (5, t)X"(t,)}ds +
fo
+[4by (s)(y(s))* +iw<s)(¥i (s.,))% + [ R (5, 2)(Y;(s, 7)) d s 2 y(s)4o, (s)x"(s) +

+b, (s)X'(8) + by (s)X(s) + j[l’o (8, T)X(7) + T, (s, )X (7) + T, (s, 7) X" () + Ty (s, 7) y(2)] +

+K, (s,7)y'(2)]d 7}, (13)
where V(t,) =V, (t,) +V, (t,)-

Passing to the integral inequality from identity (13), using the generalized
Sylvester criterion [7, p. 137], the Cauchy-Bunyakovsky inequality and applying
lemma 1 [8], similar to the theorem from [4], we prove

Theorem. Let be 1) p>0, q>0, r>0, W(t) >0, the conditions are met (K), (f),

(R); 2) p*-29>0; ¢*-2pr>0;

qr pr r
3) all major minors of the matrix A positive, where A= { prpg-r qJ, I. €.
r q p
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4) b,(t)>0; 5) b(t)>b, >0, exists a function b(t)eLl*(1,R), such that

A =qr>0, A, = =qr(pg-r)-p’r’>0, A, =detA=[p?q®+r’—p’r—q’]r>0;

b!(t) < b; ()b, (t); 6) A@t)=0, B(t)>0, B'(t)<0, R (t,7) >0, exists functions
A'(t) e '(1,R,), ¢ (t), R'(t) e '(1,R,), such that
ABD<AMOAWL, EXO)<BYM®c®), RiLt7)<R®OR.(t7) (i=1.n k=01);

7) WO +(b 1) +|fo(t>|+(W(t»-1|H4(t,to)|{ [ T»zd{ +

[T+ Kot ) Jdz e LOLRA{OY)  (k=0.1.2).
%)

Then for any solution, (x(t), y(t)) systems (10) are valid statements:
xM(t) e L*(1,R) (k=0,1,2,3), (14)
y“ (@) =0@®, (v=02), (15)

b, O(Y'®)* e L'(1,R,), A t5)* =0Q) (i=1.n).
Note that in the proof of this theorem, following the article [4], the following

facts are used:

1") using the generalized Sylvester criterion [7, p. 137], it is shown that the condition

3) of the theorem ensures the non-negativity of the quadratic form:

ar(x()* + (pa—r)(X'(t)* + p(x"(1))* +2prx(©)x'(t) + 2rx(©)x"(t) +20x'()x"(t) > 0,
which is on the left side of identity (13);
2°) for any numbers ¢, €(0,1), i.e. 0<& <1 (k=0,1,2), applying inequalities

2Juv|=2 \/§|uv| <—u +gv? (k=0,12) (u,v-real functions) we get:

&

2 j [Y(9)by($)X(9)]ds < iz OO (s ar ey

2— (bl( D*(y'(s)*ds +4,(q° —2pr) (X (s))°ds,
2pr);

14

Wj(b (S)(Y'(s))’ds +&,(p? —ZQ)J(X"(S)) ds;

3") application of the Cauchy-Bunyakovsky inequality gives:
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ZJ‘{HT (s, r)x<k>(f)‘df}|y (s)|ds <2J.{|.(T (s, 7)) dr} ﬁ(xwf))zdf}z | y'(s)|ds (k =0,1,2).

bl
Note that the inequalities 1°), 2°) are essentially used in the transition from the
identity (13) to the integral inequality. Also, by virtue of the conditions 1)-6) of the
theorem, we get that v (t)>0 and the proof of our theorem can be carried out similarly
to the proofs of theorem 1.1 [3, p. 46-49], theorem 1.3 [3, p. 58-60], and theorem 2.1
[3, p. 83-85].

From theorem is analogous to consequence [4] it turns out

Corollary. If all the conditions of the theorem are satisfied and
W® () >0 (v=0,1) at t—o, then all solutions and their derivatives up to and
including the fourth-order IDE of the fifth order (1) tend to zero at t — «, that is, any
solution of the given IDE (1) is asymptotically stable.

Really, by virtue of the conditions of the theorem, we have statements (14), from
which, by applying the Lyusternik-Sobolev lemma [9, p. 393-394; 4], we obtain that

for any solution x(t) IDE (1) the statements are true: x“(t) -0 (k=0,12) at t - .
N3 replacements (6) taking into account y(t)=0(@) approvals (15) and
W(t) -0, t —> oo it follows that x"(t) -0 at t — . Finally, from the relation (7) based
on the conditions W®(t) -0 (v=0,1), t > and y'(t)=0(1) statement implies that
x®(t) >0 at t > o0, Thus, we have shown that x(t) -0 (j=0,1,2,3,4) at t >« for
any solution x(t) IDE (1), which is equivalent to proving the assertion of the

corollary.
Example. Fifth-order IDE (1) with

)=10+e't, ayt —%JFH (t,t)+35+7e'\k,
_l_

1

2 i \E

a ()= 5[4 4o 1k,
t+1 t+5

sint t+4 21e*2t t+4
t)=e?| — |+4 +29+9e't, a,(t — 16+ 26",
a0 ( t j (t+5j %)= t+2 t+5 \/_
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e 2" sint e cost

(5t+47+8)° (t+67+2)"

Qt,7)=2H,(t,7)+
4e" ¥ sinr e

t,7)=9H,(t,7)+ + ,
Qt.7) (t7) (5t+47+8)° e'+e"+3

5e "% sin e'sine™ e "% sin
‘ Q,(t,7)=—H. (t,7)+7H, () + 4

t,7)=14H,(t,7) + — , _
(o) (t7) (5t+47r+8)° t+r+1 (5t + 47 +8)°

e2e"t¥sint e sin6t

f(t)=- +
® t+10 t? +4

, t, =0 satisfies all the conditions of the theorem and

corollary for

1
t 2 1 s s _ i e—2t+21
H,(t,7)=e?"% | ex oSt et tr?/smtsmr——,
(47) {[ IO((t+5)2 t—7+9 (2t + 37+ 4)°

p=5 q=4,r=1 W()=e?, here

t+4 4 . 1
A, =51 A, =212 Db,(t)=1+e'Vt, b ()=—, b, =—, b (t)=——,
=51 4, =212, b =1+t b () = bo =5 B0 = s

1
(smt) sint 21 cost

b (1) =—— by (t) E_t+_2’ T,(t,7) E_m,

b, (t) =

T(7) = 1 (o) =- sme T( )= sint

el +e" +3 t+r+1 (5t+4r+8)3’

1
cost 2 1 N — 1
K(t,7)=4|ex +7| + e”’tr?fsmtsmr——,
(t.7) { p[(t+5)2] } (2t +37 +4)°

1

n=1 y,(t)=¢ “t3fsint, R, (t, r)—{exp((cos) ]+r}2+ !

t—7+9’

_ cost _ 1 sy LT sy 4T
Al(t)zeXp[z(tw) j Bl(t)_t+9’ A1(t)‘(t+5)3’ R1(t)‘(t+5)3’

__; ___ _ 1 _sm6t

Kolti7) = (2t+3z+4)5’E1() t+10° at)= Tl = +4

In conclusion, we note that we have found a new class of fifth-order IDE of the
form (1), for which the above problem is solvable. Note that our study differs

significantly from the studies from [10, 11].
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SUFFICIENT CONDITIONS OF THE CAUCHY PROBLEM FOR
NONLINEAR DIFFERENTIAL EQUATIONS IN PRIVATE DERIVATIVES

Baizakov A.B., 'Jeenbaeva G.A., Ananyeva Yu.N.
YInstitute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic,
’Kyrgyz-Russian Slavic University
asan_baizakov@mail.ru, baytemirova@mail.ru, ananjeva86@mail.ru

ChI3BIKTYY 3MecC jKekeue TyyHaynyy auddepeHumaniplk TeHaemenepre korwyinran Komm
MAacCeJIECUHUH YbIrapbIMJyyJIyTy >aHa YbIlapbUIbILTAPbIHBIH TY3YIYLIy HM3WIACHIU. €pre aHa
©31YK (YHKUMSUIApBIHA 39 OKEHIWTH aHBIKTaNAbl. JKekeue TYyyHAYlyy IudQepeHIraIIbK
TEHJIeMeJlepre KOKyJraH OalTankbel MaceIeCUHUH YbITapbUIbIIIBIHBIH KAIIAIBIHBIH KETULIIIPIIUK
mapTTaphl TaOBUIBI.

Herusru cesnep: Kekeue TtyyHaynyy auddepeHuuanisik TeHaemenep. |l tunrern
BonbTeppa nHTErpaniblk TeHAEMECH, KbICBIIN YarbUITyy NPUHLINOH.

UccnenoBanpl  paspemmMocTh 3afaud  Komm W CTpyKTypa peuleHMd Ul  HEeJIWHEHHBIX
mudepeHIMATBHBIX  ypaBHEHW B  YacCTHBIX INPOW3BOJHBIX. HalJeHBl J1OCTaTOYHBIE  YCIIOBUS
CYIIECTBOBAaHUSl peUICHWH HadalbHOW 3amaud jus  jaudQepeHInanbHbIX ypaBHEHHWH B  YacTHBIX
IIPOU3BOHBIX.

KitoueBsie cnoBa: auddepeHnnaibHble ypaBHEHNS B YaCTHBIX MPOU3BOJHBIX, MHTETPaIbHOE
ypaBHeHue BonbTreppa Il poga, mpuHIuUN cxkaTeix 0TOOpaXeHUH.

The solvability of the Cauchy problem and the structure of solutions for nonlinear partial
differential equations are investigated. Sufficient conditions are found for the existence of solutions
to the initial value problem for partial differential equations.

KittoueBsie cnoBa: auddepeHnnanbHble ypaBHEHUS! B YACTHBIX MPOU3BOIHBIX, HHTETPAIbHOE
ypaBHeHue Bonbreppa Il poga, mpuHIUI cKaThIX OTOOPaXKEHUH.

In this paper, we investigate the solvability of the Cauchy problem and the
structure of solutions for nonlinear partial differential equations.
I. Consider an equation of the form
u, +au, = f(t,x,u(t, x)) (1)
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with the initial condition
U =p(x) (2)
where, - const, f(t,x u(tx)eC(DxR)Lip(L] ).

The solution to the Cauchy problem (1)-(2) will be sought in the form
u(t, x) = c(t, x) +_[ _x[ e 0P cos(t —s)Q(s, p)d pds (3)

where c(t,x) - is a known continuous function, while
c(0,x) =(x),
Q(t,x) - is a new unknown function to be determined.

To define the function, it is necessary to substitute (3) in (1). For this purpose,

taking into account (3), we sequentially calculate the following relations. We get:

u (t,x)=c, +Jt'cos(t —5)Q(s, X)ds —a(u—c); (4)
ux+a(u—c):cx+Icos(t—s)Q(s,x)ds; (5)
0
Uy + (U =€ ) = +Q(t,x) — [ sin(t —s)Q(s,x)ds . (6)
0

From relation (6) we have
t
u, +au, =C, +ac, +Q(t,x) —Isin(t —5)Q(s,x)ds. (7)
0

Then, instead of the original equation (1), we have a nonlinear integral equation for
Q(t,x)=f (t, x,c+_f j. g r) cos(x—p)Q(s,p)dpdsJ+_|.sin(t —3)Q(s, x)ds + H(t,c), (8)

where H(t,c)=c, +ac,.
We will solve the nonlinear integral equation (8) by the method of squeezed
mappings [1].
Let be
H(t,c)eC(D) 9)
Those |H (t,c)|< M, =const.
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Let us consider the right-hand side of (8) as an operator acting on a function. We

have

Jajel<

(f(t,x,u) +jsin(t —5)Q(s,x)ds) + H(t,c)

where M =M, + M, =const .

We will estimate the difference

|A[Q.(t )] - A[Q,t. )] <] f [t, X,C +'|t' j. e 0 cos(t —s)Q,(t,s)d pdsj +jsin(t —5)Q, (s, x)ds —
—f (t, X,C +j' j. e %) cos(t —s)Q,(t,s)d pds} —'tfsin(t —5)Q(s,x)ds | <

< L{I J et cos(t-9)|Qup5)-Qu . s>||dpds}+T 10,0, 9)-Q,(0,9)] <

0

< (L2 4R - Q0= 54 0 - Q)

where «,T - are chosen such that

LTy <%. (10)

a
By the principle of squeezed mappings, it follows that the nonlinear integral
equation (8) has a unique solution.
Next, we prove the boundedness of solutions to the Cauchy problem (1), (2).
From (3), for all (t,x) € D, we have the inequality

t x
Juct ] <t ]+ [ [ &0 cost—s)|Q(s, ] dpds <, +% _ My, = const.
0

—00

So it is proven

Theorem 1. Let conditions (2), (9), and (10) be satisfied. Then the nonlinear
second-order partial differential equation (1) with initial data (2) has a unique
solution.

I1. Now consider an equation of the form

Uy, + U, +U, +au = f(t,xu(,x)) (11)

XX

with the initial condition

u=g(x) (12)
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where « — const,

f (&, x,u(t,x)) e C(DxR) Lip(L|, ).

The solution to the Cauchy problem (11) - (12) will be sought in the form
u(t, x) =c(t, x) +'[ JX. e I sin(x— p)Q(s, p)d pds (13)

where c(t,x) - is a known continuous function, while

c(0,X) = p(X) ,
Q(t, x) - IS a new unknown function to be determined.
To define the function, it is necessary to substitute (13) in (11). For this purpose,

taking into account (13), we successively calculate the following relations. We get:

U (%) = —a(u—c)+ [ sin(x— p)QLt, P)d (14)
U, +a(U, —C, ) =G, + [ cos(x— p)Qt,p)d p; (15)
Uy + (U, =€ ) = Cooe + Q(1,X) = [ sin(x— p)Q(t,p)dp.  (16)

From relations (14) and (16) we obtain
u,, +au, +U, +au=c, +ac, +C, +ac+Q(t,x). (17)

Then, instead of the original equation (11), we have a nonlinear integral
equation for Q(t,x):

Q(t,x) = f (t, x,c+j I e **") cos(x — p)Q(s, p)dpdsj+ H(t,c) (18)
where H(t,c)=—(c, +ac, +C +ac).

We will solve the nonlinear integral equation (18) by the method of squeezed
mappings [1].
Let be
H(t.c)eC(D) (19)
those
[H(t.c)| < M, =const.
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Let us consider the right-hand side of (18) as an operator A[Q] acting on a
functionQ(t, x) . We have
|AlR] <] f t.xw+H ) <M
where M =M, +M, =const .

We will estimate the difference

|A[Q0]-A[QEX)] < f [t, X,C +_[ JX. e 0" cos(x — p)Q(s, p)d pdsj -

—f [t, X,C +jf .Xf e 0" cos(x — p)Q(s, p)dpdsj <

0

= L{f f e cos(x ~ p)|Q,(p,5) - Qy(p,5)|d pds} <

0

< LR~ Q0] <R 0 - Qe 0]

where « - are chosen such that

trr .t (20)
a 2

By the principle of squeezed mappings, it follows that the nonlinear integral
equation (18) has a unique solution.

Next, we prove the boundedness of solutions to the Cauchy problem (11), (12).

From (13), for all, we have the inequality

=M, =const .

R |=Z

Jut. )] <[lett, )]+ [ [ e cos(t—s)|Q(s, p)]|d pds < ¢, +

So it is proven
Theorem 2. Let conditions (12), (19), and (20) be satisfied. Then the nonlinear
third-order partial differential equation (11) with initial data (12) has a unique
solution
u(t,x) eC*? (R, xR).
Note that this work uses the approach developed in the works of the authors
[2,3].
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ON THE SOLVABILITY OF THE CAUCHY PROBLEM FOR
HOMOGENEOUS SUM-DIFFERENCE EQUATIONS IN THE STRUCTURE
OF THE CHARACTERISTIC POLYNOMIAL

Sharshenbekov M.M.
Institute of Mathematics, National Academy of Sciences of the Kyrgyz Republic
mir_83 25@list.ru

This paper deals with the problem of solvability of the Cauchy problem for the homogeneous
summary-difference equations with constant coefficients. The method of calculating operating a
criterion for the solvability of the initial problem.

Keywords: Cauchy problem, differential equation, sum-difference equations, operational
calculus, the entire function.

Byn smrek TypakTyy KO3(QQHUIHEHTTYY OUp TEKTYy CyMMallyy-alblpMaiyy TeHIeMeJIepAuH
Komm macenecMHMH 4edyy MacelleCHHE apHAaJIraH. bamrankbl MaceleHWH 4YednyY4dYyJyT'YHYH
KPUTEPUIHN ONEpaTOPAY ICENTOO BIKMAChl MEHEH aJIbIHAT.

Ypynarryy cesnep: Komm macenecu, ailbipMallyy TEHAEME, CyMMalyy-alblpManyy TEHIEME,
OIepaTOPAYK ICenToe, OYTYH (PyHKIIHS.

JlanHas paboTa MoCBsIleHa MpoOiieMe pa3pemuMocTH 3anaud Komm ams oJHOPOAHBIX
CYMMapHO-Pa3HOCTHBIX YpaBHEHUN C MOCTOSHHBIMU KOd(pduiueHTaMu. MeToioM OnepaTropHOro
UCYMCIIEHUS TIOJIY4YEH KPUTEPHUI pa3peliMMOCTH Ha4aJIbHOM 3a1auu.

KiroueBsle cioBa: 3agada Komm, pa3sHOCTHOE ypaBHEHHE, CYMMapHO-Pa3HOCTHOE YPABHEHHUE,
OIIepaTOPHOE UCUUCIICHHE, 1IeNast PYHKIUS.
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Consider a homogeneous sum-difference equation with constant coefficients of

the form

LN

n—.

K.(n-1- ju(j+i), n=0, (1)

Zm:aiu(nJri):

|
i=0 j

I
o

where u(n) is the required function; a, - constant coefficients; a, =1, K;(n) is a given

function and has the form
K,(M=>"Qu40, Q4 =const, )

u@i)=u, =0, u-L g=max{m, I} (3)
initial condition of problem (1).

To study problem (1), (3), we use the operator calculus of the form [4]:

D{f(n)}=is‘(”+1)f(n), where s is a complex parameter. For the D -transformation,

n=0

the following formulas are valid [5]:
D{f(n+0}=s'D{f (M}-2 s () D{(n™/myA""} =Y (s-)™;  (4)

where n™ =n(n-1)-...-(n—m+1),n” =1 is a generalized degree of order m, number n.

Applying the operator D to both sides of (1), we obtain

AOUE) =p,(5). (5)
where U(s) =DM} 1A= > as (i)=Y Y s K (i
@ (s) = iaisi _ZI:SiKi (s); Ki(s)=D{K;(n)}= i S?iil . (6)

We denote by h(s) the least common denominator of the fractions

1(s—4,); i=0,1, v=1, m . In particular, if there are no coinciding among 4,,, then
h(s)=T1(s-4,); i=0,1, v=Lm . (7)
Next, we introduce the notation
b =Y asi  BE=hOY K =Y >QnSs', h() =0
i=0 i=0 i=0 v=1 iv (8)

bj(s):h(s)zm:aisi’l’j, j=0, m-1; Bj(s):h(s)zl:s"l*jlzi(s), j=0, -1

i=j+1 i=j+1

75



According to [1], multiplying both sides of (5) by the polynomial h(s), we obtain

P(s)U(s) =w(s), )
where (s) =h(s)gi(s) =b(s) ~ B(s); (10)
w(s) =h(s)y,(s) = rib,- (S)U(J’)—ZB,- (s)u(j) - (11)
From (9) we find the image of the desired solution
U(s) =y (s)/e(s), (12)
as the ratio of two polynomials. If in (12) cm. w(s) <cm. o(s) (13)

then you can go directly to the original. Everywhere we will assume that m<I. In this
case, as can be seen from (11), (13)

0<cm. p(s) <M +1-1. (14)
For definiteness, put cm. o(s) =M +1-k. (15)

By virtue of (14) 1<k<M +1.

The following three cases are distinguished: 1. r=1-m>k; 2. r<k<lI; 3. I <k,
where k is some natural number under which (15) holds. The first case (r>k) was
considered in [7]. In this paper, we will consider the second case.

To derive the conditions under which (15) is satisfied, we need to transform

B(s). From formula (4) we have

SD{K, (M} = DEK, (n+0}+ 57K, (t— ]). (16)
Multiplying both sides of (16) by h®(0)/t! and summing over t from0to M, we
obtain
M ® M
55 T 0o =3 " O og 03+ 25K (). (17)

Taking into account the linearity of the operator D and the form (2) of the kernel
h“’(O)

ZQ.Vh,V(i)D{A“} 0, because 2, is by

v

K,(n), we have s, _ZQ,VD{/%,C}Z

virtue of (7) the roots of the polynomial h(s). Then (17) can be written as

3 VIR0
hK (5)=> 1O (O)ZsHK t—j).

t=0 ! -1
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Introducing the substitution j =j-1 j,—j, and changing the order of

summation, we have
M-1 M

(t)
R ) =3 Y 2 SK (t-1- ). (18)

j=0t=j+1

By virtue of (18), the polynomial B(s) takes the form

B(s) = _ZI:“_AZlbijs‘*" , (19)
_ <~ h"(0)
where b (s) = Z 0 K (t-1-j). (20)
From (8) we have ", (s) =b(s)—zj“ai s'h(s), (21)
1B, (5) = B(s) =Y. Qu s, (5) (22)
For 0< j<m-1 we have
s'[b; (s) - B;(s)] = ¢o(s) - Za Sh(S)+ZZQ.VShw(S)- (23)

i=0 v=1

From (23), taking into account (15), by virtue of r >k, we obtain

max _cm. [b;(s)—B,(s)]<M +I1-k-1. (24)

0<j<m-1

Now let us estimate the magnitude of the degree B;(s) for m< j<I-1. Since, in
view of (15), from (22), taking into account (24), we find
cm.B;(s)+ j+1<max{M +I—-k, M -1+ j}, whence, in view of 1-k>0

max cm. B;(s) <M +1-k-m-1<M +1—-k-1. (25)

m<ij<i-1

From (24) and (25), taking into account the structure of the polynomial w(s), we
conclude that cm. w(s)<M +1-k-1, i.e. the validity of inequality (13) for r>k. By

virtue of (13) in (12), we can go directly to the original.
CASE II. r<k<l,. (26)
Let, for definiteness, M <k and r>k-M. We represent the characteristic

polynomial ¢(s) in the form

<

-1

p©=>a -3 S, s 27)

i=0 j=0 i=0 j

X
o
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where a; = h(j)_(o)
]!
We draw the domain of definition of the coefficients of the polynomial ¢(s) on
the plane i0j. By virtue of (15), (26), we have

a. 27)

| M-1

> > bys"=0; (28)
i=l+2-r j=M +l-r—i+1
|-r M M-1 | M +l—r—i o
D st z D b s” Z b, s’ =0; (29)
i=l-M j=l-i i=l+1-M j=l-i =l+1-r  j=l-i
1-r M +1—k+1+y -
ai,M+I—k+l—i+y_ Z bl,M+I—k+1—i+y :01 y:01 k-2-M ; (30)
i=l+1-k+y i=l+2—k+y
|—r I-k+M
ai,M+I—k—i - Z bl,M+I—k—i #0. (31)
i=l-k i=l-k
In (28) and (29), making substitutions i=1-5, i+ j=M +1-x and changing the order
of summation, we obtain
r-1 x—1
ZSM+I_X b|—a‘,|v|—x+(5 =0, (281)
x=1 0=0
M M- - M- <
ZS ' XZ -8, M—x+6 ZS " Zb, S8, M=x+68 Z o bl—é‘,M—x+()‘ =0. (291)
X=r X=r+1 X=r 6=0
From (28,), by virtue of the assumption r <M, we have
o-1 -
D K ;(c-1-8)=0, o=1, r-1. (32)
0=0

In (29,), equating to zero, the coefficients at the same powers of s, we find
X x—1
Za|—5, M—x+8 _Zbl—o‘, M-x+8 — 0, x=r, M. (292)
S=r =0

By virtue of (20) and (27 ), expression (29,) takes the form

X h(M—x+a)(O) X h(M—x+a)(0)
;(M—x+a)!a"5 Ul(M—x+a)'§Z;‘K'5( 0-1-0)=0, x=r M, (29)

where the order of summation is rearranged in the second sum. Substituting
t—M +x=c from the latter, we have

X h(M —X+0) (0) o-1 33
GZ:;CXO'yO':O' X=r, M, CXO_Em, Y., Eal—rY_ZKI—J(G_l_é)' ( )
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Since the matrix of system (33) is triangular, and its diagonal elements are nonzero:

c,=C =c,, =1#0, this system has only a zero solution. So,

r r+l,r+1 —

_5—§K|_5(0'—1—5)=0, o=r, M. (34)

Now we transform (30) and (31). Further, replacing i=1-s from (30) and (31),

we have
k-1-y k—2-y
Z al—()‘, M—k+1+y+8 Z bl—&, M—k+1lty+Ss — 01 y= O’ k-2-M ; (301)
s=r S=k—1-M-y
k k
231—5, M—k+s — Z b|—5, Mis-k = 0. (311)
S=r 5=k-M

By virtue of (20) and (27 '), relations (30,) and (31,) take the form

k—1-y h(M—k+l+y+cr) O M h(t) o t-M+k—y-2
© 8y~ # Ki_s(t—M+k-y-2-5)=0,
o (M —k+1+y+o)! e § S v VI (302)
y=0k-2-M;
k h(M k+cr)(0) M h(t)(o) ~M+k-1
t—M+k-1-5) =0, 31
UZ:;(M k+0‘)' a_s tzﬂ‘, ey |75( ) ( 2)

where the orders of summation are replaced in the second sum. In (30,) and (31,),

respectively, making another change of t-M +k-1-y=0c and t—M +k =&, We obtain

k-1-y (M —k+1+y+o) k—1-y (M —k+1l+y+0o) o-1
Z " 9 & 5~ h © K, ;(c-1-9) =0,
=~ M -k+1+y+o0)! oy (M =Kk+1+y+0o) 50Ty (305)
y=0,k—-2-M;
k (M—k+0o) k (M —k+0o) o-1
IO, oy W08 K (e-1-0)20. (315)
o= (M -k +0o)! o1 (M =K +0) 55
We transform relations (303) and (313) in the following form
k-1-y (M —k+1+y+0) k-1-y (M —k+1+y+0)
i O _, - " O _$k, (o-1-6)=0,
~ (M -k+1+y+o)! ok Ty (M =K +1+y+0)153 (304)
y=0k-2-M;
k (M—k+0) K (M—k+0)
y—r h © > h © < ZK, ;(oc—-1-6)=0. (314)

ZM —k+o) (M ko)1
Since by assumption k—-M <r-1, by virtue of (32) from (304) and (31,4), we have

k—1-y h(M —k+1+y+o) (0) o-1 k 30
a.—> K -1-0) |=0, y=0,k—-2-M;
< (M —k+l+y+0')!{ -5 ; s(o )} y (305)
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Zk: L) { |—5‘§K|-5(0'_1_5)}¢0- (31s)

ZM-k+o)!

From (30s), taking into account (33), (34), we obtain
a_, —iKlﬂs(o——l—é) =0, o=M+1, k-1. (35)
6=0

Combining equalities (34) and (35) into one and replacing o =r+x, we find

—i K_s(r-1+x-8)=0, x=0, k—-1-r. (36)

0=0

From (325), by virtue of (35), (315), and (36), we obtain
a k—kiK,fﬁ(k—l—é);ﬁO. (37)
5=0

The previous reasoning was carried out under the assumption M <k. A similar
method is used to study the question for M >k. In both cases, conditions (32), (36),
and (37) have the same form, but the calculations are different.

So, it is fair

Theorem 1. If r <k <I, then for the degree of the polynomial ¢(s) to be equal to
M +1—k, it is necessary and sufficient that k conditions (32), (36), and (37) hold.

Further, it is true
Theorem 2. If k <I, then cm.o(s) >cm.y(s) Whatever u,,i=0, -1
Proof. By virtue of 1-k>0, (24) holds for j=0, m-1. Now let us estimate the
value of B,(s) at m< j<I-1. Since I >m,r<k, then cm. B(s)=M +m=M +I-r. From
(22), taking into account (24), we find
cm. B;(s)+ j+1<max{M +m, M -1+ j}, j=m, I-1, (38)
whence, in view of 1-k >0

max cm. B;(s) <M —1<M +I -k 1. (39)

m<j<i-1

Therefore, based on (24) and (39)
w(s) <M +1-k-1, (40)

I.e. the theorem is proved.
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A CLASS OF SYSTEMS OF LINEAR FREDHOLM INTEGRAL
EQUATIONS OF THE THIRD KIND WITH THE DEGENERATE MATRIX
KERNELS

Asanov R.A.
Kyrgyz State Technical University named after I.Razzakov
ruhidin_asanov@yahoo.com

On the basis of the new approach it is shown that solutions for a class of systems of linear
integral equations of the third kind with degenerate kernels are equivalent to solving systems of
linear algebraic equations. The questions of existence and uniqueness of the solution for this system
are studied.

Keywords: Solutions, systems, linear, equations, integral, algebraic, Fredholm, the third kind, is
equivalent.
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JKaHpl BIKMaHBIH HETH3WHAC apTyMEHTTEpU OONYIITYpPYATreH sapony DpenroabMAyH YUYHUY
TYPAOTY CBI3BIKTYY HWHTETPANJIbIK TEHIEMEIEPUHUH CHUCTEMACBhIHBIH OHMp KJIACChIH 4YbIrapyy
CBI3BIKTYY aireOpajblk TEHAEMENEPAUH CHUCTEMAachlH 4Yblrapyyra SKBHBAJICHTTYY OSKCHIUTH
KOpCOTYITeH. byl cucTeMaHbIH YbIrapbUIbIIITAPBIHBIH KAIIAIlIbl )KaHa >KaJIrbI3AbITbl H3UJIICHTEH.

YpyHTyy ce3mep: UslrapbuibliTapbl, CUCTEMAJap, CBI3BIKTYY, TEHIEMENIEp, WHTErpajjibIK,
anredpanbik, Opearonbpm, yayHUY TYP, SKBUBAICHTTYY.

Ha ocHoBe HOBOro mojxoja rmokasaHo, 4TO peHIeHUs ISl OJJHOrO KJlacca CHCTEM JIMHEHHBIX
MHTErpaJIbHBIX ypaBHeHU DpearoabMa TPEThEro poja ¢ BIPOXKICHHBIMU SJIpaMU  SKBUBAJICHTHO
PEILICHUIO CUCTEM JIMHEHHBIX anreOpanyecKux ypaBHEHHU. M3ydeHbl BONPOCHI CYIIECTBOBAHUS U
€MHCTBEHHOCTH PELIEHUS 7151 TOM CUCTEMBI.

KitoueBbie  cnoBa:  Pemienus, cucreMm, JHMHEHHBIX, YypaBHEHUN, HWHTETPAIbHBIX,
anredpandeckux, @pearonbma, TPETbEro poja, SKBUBAIECHTHO.

Let consider the following systems

POOu(x) = AX7 4;(0) [ B;(0)u()dy + £(x), xe[a,b], (1)
where P(x) — a known continuous function on [a, b], 4;(x) and B;(x) - nXn —
dimensional known continuous matrix functions on [a,b] (j =1,..,m), f(x) =
(fi(x)) — n — a dimensional known continuous vector function on [a, b], u(x) =
(w;(x)) — n — dimensional unknown continuous vector function on [a, b], A — real
parameter, a < b,P(x;) = 0,x, € [a,b], l =1,2,..,k.

Many questions for integral equations have been investigated in [1 — 12]. In
particular, in [3], regularizing operators according to M.M. Lavrentiev are
constructed for solving linear integral Fredholm equations of the first kind. In [5-6],
for systems of nonlinear Volterra integral equations of the third kind and for systems
of linear Fredholm integral equations of the third kind, uniqueness theorems are
proved and regularizing operators according to M.M. Lavrentiev are constructed. In
this paper, we prove the uniqueness and existence theorems of the solution for
systems of integral equations (1). Denote by C,[a,b] — the space of all n-
dimensional vector functions with elements from C[a, b]. For vectors u =
(Ug, o, uy)?’, v=(vq,..,1,,)T€e R™ we define the scalar product by the formula

<u,v>= uyvy+ -+ uyv,.

Throughout this paper we assume that
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k
PG =| [P0, PG =0, P € Cla,b) @

Pi(x) #0 for xe[a,b] and x #x;, [ =1,..,k.
Assume that the following conditions hold:
a)Forall [=1,..,k and j =1,..,m A;;(x) —n X n— dimensional matrix

functions are continuous matrix functions on [a, b], where

AO,j(x) 4; (x), Al](x) [Az—1(x) - Al—l,j(xl)]' x € [a, b];

P()

o) Forall 1 =1,..,k F(x) — n— dimensional vector functions are continuous

vector functions on [a, b], where

i@ — Gl xefabl
Theorem. Let the conditions (2), (a) and (b) be satisfied. Then

1) if the system of linear algebraic equations

( AN Aj ()G + f(x1) = 0,

/12]: Ay (xz)C1 + Fi(x;) =0,

Fo(x) = f(x), Fi(x) =

{ AXTE1 Ak—1,j ()G + F_1 () = 0, (3)
G =A% |[) B Ay G +
\ + [ B0 F0dy, j=1,..,m

relative to unknown vectors C; = (Cjy, ..., Cj)",j = 1,...,m has a unique solution,

then systems of integral equations (1) in space C,[a, b] has a unique solution that

can be represented as

u(x) = AZAk,j(x)Cj + F(x), x € [a, b]; (4)

j=1
2) if the system of linear algebraic equations (3) are incompatible, then the system
of integral equations (1) in space C, [a, b] doesn't have a solution;
3) if the system of linear algebraic equations (3) has an infinite number of solutions

depending on q parameters, then the system of integral equations (1) in space
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C,la,b] has an infinite number of solutions depending on g parameters. In this
case, the total solution of the system (1) is determined by the formula (4).

Proof. First, let u(t) € C,[a,b] is the solutions of system (1). Then, setting

x = x; from (1) we have

m b
1Y 4 | B uGIdy + fr) =0, (5)
j=1 a

Subtracting (5) from (1) we get

[T PO u(x) = ATT4[4;(0) — A;(e)] [ B0 u()dy + F(x) — f ().

Hence, taking into account conditions a) and b) yields

k m b
[ [Peoum =2 4,60 [ B0 upIdy + B, xelabl. ©)
=2 j=1 a

If k=1, then
k
ﬂPl(x) =1, x € [a, b].
=2
In the case when k > 2 setting x = x, from (6) we have
m b
A Ay [ BOYuy + FGe) = 0 ™)
j=1 a
Subtracting (7) from (6) and taking into account conditions a) and b), yields

k m b
[ [r@ue = 2) 4,00 [ BOYueIy + 47,00, xelabl  ®
=3 j=1 a

If k= 2,then

k
HPl(x) =1, x € [a,b].
1=3

In the case when k > 3, continuing this process, we make sure that the solution of

the system (1) u(x) satisfies the condition (3) and is determined by the formula (4).
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Conversely, let u(x) € C,[a, b] satisfies the condition (3) and is determined by

the formula (4). Multiplying (4) by P, (x) and taking into account condition (3) we

get
P ()u(x) = AX521 Ag-1,j(x)C; + F—1(x), x € [a, D]. 9)
Further, multiplying (9) by P,_,(x) and taking into account (3) we have
Pi_1(x) Pr()u(x) = AzAk—Z,j(x)Cj + Fy_2(x), x € [a, b]. (10)
j=1

Continuing this process with respect to system (10) and taking into account condition
(3), we see that u(x) is a solution of the system (1). The theorem is proved.
Example. Consider the system
) () = AC DG ) () v+ (Fiias) xelon, an
where A, x;, X, ,%3, B;, [, [s arereal parameters. It is easy to verify that for
system (11) conditions (2), a) and b) are satisfied for
a=0b=1n=2m=1k=2,x,=0,x, =1,P(x) =x,P,(x) =x—1,

1 2 2.0
AO,l(x) =A,(x) = (x 3)» B;(y) = <?)] y>,

A1(x) = ((1) g>; Ayq1(x) = (g g),

Fo () = Fx) = (oc1 x? oy x +oc3>, Fy (x) = (0(1 x + ocz),

B1x3 + Brx + B3 p1x3 + B,
Fz(x)=< X1 ),xe[a,b].
Bi(x+1)

Then for system (11) conditions (3) are written in the following form:

ar\ [ oo (1)
€= <612) = OfB(y)< uz(y)) dy,
(26 D)+ (R)=0)
A6 D)+ (5% =0 )
x (22) = (gz ;) (Blgil)) dy = (g?ﬁl)-
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From (4) we have

(&) =R =( ,9,,) xelo1l (13)

Uz (x)

From conditions (12) we have that the system (11) has a unique solution in the

space C,[0,1], determined by formula (13) if and only if

OC1 5 OC1 5
=== = A(ShH2 Bu) Ba= = A By f= -5 fuA. (14)

If at least one of equalities (14) is violated, then system (11) has no solution in
the space C,[0,1].
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UNIQUENESS OF SOLUTIONS FOR CERTAIN LINEAR EQUATIONS OF
THE THIRD KIND WITH TWO VARIABLES
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Byn wmakamama Tepc o3Mec KBaAparThIK (opmanap yCyiayHYH, (GYHKIMOHAIJBIK aHATU3IWH
YCYJJapbIHBIH JKaplaMbl MEHEH YYYHYy TYPAOIY OKH ©3TepyJIMelNyy ChI3BIKTYY HHTErpasIbIK
TEHAEMENEPINH YeUMMICPUHUH JKaITbI3ABITbI TATHIIACH M.

Herusru cesmep: YYyHYYy Typlery O5KM €3repyJMeiyy ChI3BIKTYY HHTETPajIbIK TEHIeMelep,
KAITBI3]IBIK.

B nanHOi paboTe, ¢ TOMOIIBIO METOAOM HEOTPHLATEIbHBIX KBaJAPATHYHBIX (GOPM, METOJaM
(YHKIIMOHAIBHOTO aHATN3a JI0Ka3bIBaeTCs SMHCTBEHHOCTh PEICHUH JINHEWHBIX HHTETPATIbHBIX ypaBHEHUH
TPETHErO POJia C ABYMs HE3aBUCUMBIMU IIEPEMEHHBIMU.

KiroueBsle cioBa: JIMHENHBIE MHTETpalbHBIE YPAaBHEHUs, TPETHETO POJA, C JIByMsl HE3aBUCHUMBIMHU
[IEPEMEHHBIMH, €IUHCTBEHHOCT.

In the present article the theorem about uniqueness of the linear integral equations of the third kind

two independent variables, with method of nonnegative quadratic forms and functional analysis methods.
Key words: linear inteqral equations, third kind, two variables, unigueness.

The relevance of the problem is due to the needs in development of new
approaches for the regularization and uniqueness of the solution of linear integral
equations of the third kind with two independent variables. Integral and operator

equations of the first kind with two independent variables arise in theoretical and
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applied problems.Works of A.N. Tikhonov, M.M. Lavrentyev and B.K. Ivanov, in
which a new concept of correctness of setting such targets is given, different from the
classical, shown tool for research of ill-posed problems, which stimulated the interest
to the integral equations that are of great practical importance. At the present time has
been rapidly developing theory and applications of ill-posed problems. One of the
classes of such ill-posed problems are integral equations of the third kind with two
independent variables.As of approximate solutions of such problems, stable to small
variations of the initial data, we use the solutions derived by the method of
regularization. In this article we prove uniqueness theorem for such equations in
families of sets of correctness’s. For the decision of tasks of the used methods of
functional analysis and method of nonnegative quadratic forms. The results of the
work are new.

The integral equations of the first and thrid kind were studied in [1-8]. More
specifically, fundanental results for Fredholm integral equations of the first kind were
obtained in [6], where regularizing operators in the sense of M.M.Lavrentyev were
constructed for solutions of linear Fredholm integral equations of the first kind. For
linear Volterra integral equations of the first kind and third kinds with smooth
kernels, the existence of a multiparameter family of solution was proved in [7]. The
regularization and uniqueness of solutions to systems of nonlinear Volterra integral
equations of the first kind were investigated in [4].In this work we shall study the

problems of uniqueness and stability of solution of the integral equation
Ku= f(t,x),(tx)eG={(t,x) eR*:t, <t <T,a<x<b}, (1)

where

X

Ku=m(t,x)u(t, x)+JP(t, X,y)u(t,y)dy +jQ(t,x,s)u(s,x)ds +H"C(t,x,s, y)u(s,y)dyds, (2)

a

P(t,x,y) and Q(t, x,s) are given functions, respectively on the domains
G ={(t.x,y):t,<t<T,a<y<x<b},
G, :{(t,x,s):t0 <s<t<T, a3x£b},

C(t,x,s,y), m(t,x), f (t,x) are given functions.
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Assume that the following conditions are satisfied:
(i).P(t,b,a)>0 teft, T],P(t,b,a)eC[t,T],
m(t,x) >0for all (t,x)eG
P/(t,y,a)<0 for all(t,y)eG, P/(t,y,a)eC(G),
P/(s,b,z)>0 for all (s,z)eG, P/(s,b,z)eC(G),
Py (s,y,z)<0 for all (s,y,z) G, P;(s,y,2)eC(G,).

1 " zy

(ii).Q(T,y,t,) >0 for all ye[a,b], Q(T,y,t,)eCla,b],
Q.(s,y.t,)<0 for all (s,y)eG,Q.(s,y.t,)eC(G),
Q;(T,y,T)ZO for all (y,7) eG, Q(/’/(T)(T,y,’[)EC(G),
Q" (s,y,7)<0 for all (s,y,z)eG,, Q" (s,y,7)eC(G,).

). At least one of the following conditions holds:

(a)P,(s,y,a)<0 for almost all (s,y) €G;
(b)P/(s,b,z)>0 for almost all (s,z)€G;
(€)Q.(s,y.t,)<0 for almost all (s,y)eG;
(d)Q',(T,y,z)>0 for almost all (y,7)eG;

(e) Py(s,y,z)<0 for almost all (s,y,z)eG;;
(f)Q",(s,y,7)<0 for almost all (s,y,7)eG,;
(h) m(t, x) >0 for almost all (t,x) € G.

(iv). Clt.x.s.y)e L,(G*) and

—[Ctxsy)+Csytx] i Ao (6X) e (s, Y),

i=1

(txsy)zi A0t x)p(s,y), m<o, 0< A, i=12,..,m
1 3)

where {;(t,X)} is an orthonormal sequence of eigen functions from L,(G) and {4}

is the sequence of corresponding nonzero eigenvalues of the Fredholm integral

1
operator C generated by the kernel E[C (t.x,5,¥)+C(s,y.t,x) | with the elements
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{4} arranged in decreasing order of their absolute values. If C(t,x,s,y)=0 for all

(t,x,5,y)eG* we assume that 4, =4, =...= 4, =0.

Theorem 1. Let conditions (i)-(iv) be satisfied. Then the solution of the equation
(1) is unique in L,(G).

Proof. Taking the multiplication of both sides of the equation (1) with u(t, x),

integrating the results on G, we obtain

ﬂ m(s, y)u®(s, y)dyds+| | | P(s,y,z)u(s,z)u(s,y)dzdyds +

aty

bTs

+[[[Q(s.y.7)u(z.y)u(s,y)drdsdy +

& e
D ey T
D ey <

H[[[e(syrzu(zz)u(s y)ddedey=ﬁf(S,V)U(S,y)dsdy- (4)

at

Integrating by parts and using the Dirichlet formula

Tby

IHP s,¥,z)u(s,z)u(s,y)dzdyds =
:_:[j:l'P(s,y,z)%@u(s,v)dv]dz u(s,y)dyds =

:%]T{P(s,ya% Tu J]dyds+
ty & a
1Tbb a y
+EJ'” syz@_fu sv vagoydzds—
thaz z

lT b
:EJ'P(s,b a) Uu (s,v dvj ds —

y

——IIP s,y,a) ju(s,v)dv} dyds +

a

b

lT b 2
+§”PZ’(s,b,z) ju(s,v)dvj dzds -
t, a

z
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1Tby 2
_EJ'” P’ syzUu (s,v) va dzdyds. (5)

z

Similarly integrating by parts and using the Dirichlet formula analogically we

have
bTs
IHQ(S’ y,7)u(z,y)u(s,y)dvdsdy =

2

=%IQ(T,y,to) fu(g.y)de | dy-

2

_%”Qs'(s,y,to) J'u(g,y)dé dsdy +

+% :[Q;(T yiT )U;u(f Y)dcfj drdy -
Ts s 2 (6)
1oy (syr )[J U(é,y)dgj e,

= 'C(t,x,s, yu(s,y)u(t, x)dsdydtdx =
atyat
bT bT

= [C(t X,8,Y)+C(s,y,t,x) (s, y)u(t,x)dsdydtdx. (7)

at at

Taking into account (5), (6), (7) and (4) from (5) we obtain

”m(s y)u?(s, y)dyds + = IP s b, a Uu s 1% dv] ds —

tha

_%tjolpyf(s, y,a)uu(s,v)vazdde+
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]

f

}

+

N |-

P;(s,b,z)@u(s,v)dvjzdzds-

1
2

D ey T D ey T
D ey

2
Yy
Py (s yJ)UU(S,v)dv] dzdyds +

+%TQ(T,y,to){T'U((§, y)déJ dy -

_%”Qs’(s,y,to) j.u(g,y)d(fJ dsdy +

+%E]Q; (T,y,f)[?u(f,y)dfj drdy -

S

_%mQZS(s, Y,7) ju(g,y)dgj drdsdy +.

0l 4

*%TQ(T,y,tO)[TU(f,y)déj dy -

TS u<¢,y>d5j dsdy +

DY)
i=1

[,ﬂ% (s.y)u(s. Y)dey] -

aty

D e T
& —

f (s, yu(s, y)dsdy. (8)

We assume that f(s,y)=0. In this case, in the thoroughness of conditions (i)-

(iv)from uranium (8) it turns out that u(t,x)=0, (t,x) €G..
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APPROXIMATE SOLUTION OF NONLINEAR SECOND-ORDER
DIFFERENTIAL EQUATIONS OF A DERIVATIVE WITH RESPECT TO AN
INCREASING FUNCTION

Asanov A., Shadykanova A.Sh., Matanova K.B.
Department of Mathematics, Kyrgyz-Turkish Manas University
avyt.asanov@manas.edu.kg, 1951y03001@manas.edu.kg, kalys.matanova@manas.edu.kg

In this study, the approximate solution of a second-order nonlinear differential equation with
derivative with respect to an increasing function by using the generalized trapezoid method is established and
investigated. One example is solved employing the proposed method.

Keywords. Generalized trapezoid rule, nonlinear second-order differential equation, Volterra-Stieltjes
integral equation of the second kind, the derivative with respect to an increasing function.

Byn makamaga ecyyuy QyHKuus OOrOHYa  TYYHAYJIYY CBI3BIKTYY O3MEC OKHHUYH TapTHIITETH
¢ depeHInaNIbIK TEHAEMEHNH JKaKbIHAAThUITaH YbITapbUIBIIIGI JKAIMBUIAHTaH TpPaIenusl METOy MEHEH
YKAKBIHIAIITHIPBUTBI YBITapBUIAbI JKaHa m3miaeH 1. CyHyImTalrad MeTO/l MEHEH MUCAJT YbITapbUIIbL.

Aukbld ce3mep. Ocyyuy ¢yHKuus OOOHYA TyyHIY, CBI3BIKTYY 3MEC SKHHYM TapTHIITETH
muddepenumanapik Teaaeme, Bonpreppa-Ctunteectus 1l Typiery HHTErpaiIbplk TEHAEMECH, KallbUIaHT aH
Tpamnenus MeTOYy.
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B nmaHHOWT paboTe YCTaHOBIECHO W MCCIECNOBAHO MPUOIMKEHHOE PEIICHHE HETUHEHHBIX
mudpepeHIInaIbHBIX YpaBHEHUH BTOPOTO TOpSIKA C TPOW3BOAHOW IO BO3pacTaromied GYHKIUHA C
WCIIONIb30BaHUEM 00O0OIIeHHOTr0 MeToAa Tpaneruit. [lokasaHo pelieHHEe TpuUMepa ¢ HCIOJIB30BAHUEM
MPEJIOAKEHHOTO METO/IA.

KitoueBsie crmoBa. I[IpomsBomnas mo Bo3pacraromieid (yHKIMH, HeTuHeiHoe mudGepeHnrnatbaoe
ypaBHEHHE BTOPOTO MOPSAIKa, HHTETpaIbHOe ypaBHeHHE Bonbreppa-CTrnTheca BTOPOro poaa, 0000IIeHHBIH
METO]I TPANELHi.

The notion of derivative of a function by means of an increasing function was
given by Asanov in [1]. In the study [2], linear and nonlinear Volterra- Stieltjes
integral equations of the second kind are studies using the concept of the derivative
with respect to an increasing function. In the study [5] the numerical solution of
linear Volterra-Stieltjes integral equations of the second kind is investigated by using
the generalized trapezoid rule. The generalized trapezoid rule is established on the
basis of the derivative of function with respect to strictly increasing function defined
in [1].

Problem formulation. We study the Cauchy problem for a second-order

nonlinear differential equation with derivative with respect to an increasing function:
o0 (1) = PO, () + F(t,u(t)) +g(t), (t,u)e[to,T]xSuf, (1)
Ul =a,  u,t)=5 ot)=0, (2)

where ¢(t) is a given increasing continuous function on [t,,T], g(t), p(t), F(tu(t)) are

u

given continuous functions and u(t) is the sought function on [t,, T].
To solve the Cauchy problem (1)-(2), we first integrate the equation (1) from t,

to t by the function ¢(t) and taking into account the condition (2), we have
U, (t) = p(u(t) —jo P (S)u(s)dg(s) +jF(S,U(S))d (s) +jg(8)d os)+B-ap(ty) .  (3)
Now we integrate the integral equation (3) from t, to t by the function ¢(t):
u(t) =j p(s)u(s)de(s) +j[¢(t)—¢(5)][F(S,U(S))— P, (s)u(s) |de(s) + f (1), te[t, T], (4)
where

f () =[B-ap(,)]ot) +a+ [[p(t) - (s)la(s)de(s).

94



Thus, the Cauchy problem (1)-(2) is reduced to a nonlinear Volterra-Stieltjes
integral equation of the second kind (4). The integral equation of form (4) has been
solved numerically by the generalized trapezoid rule.

Numerical solution. The solution of the integral equation (4) will be the
approximate solution of the Cauchy problem (1)-(2). Now we get the approximate
solution of the integral equation (4) by using a generalized trapezoid rule. For this

divide the segment [t,,T] into n parts by the points t, <t <t, <..<t =T. Let

hel=h ¢ =t +kh, k=L12,..n, ner.
n

We substitute t=t, in the integral equation (4) and consider the following system of

equations:

u(to): f(to)v tE[tO,T],

: ; (5)
u(t,) = [ p(s)u(s)de(s) +[[e(t.) —p(s)][ F (s,u(s) = P,y (S)u(s) |dop(s) + f (t,),
where k=12,..,n.

We rewrite the integrals in (5) as the sum of the series [4]. For the first integral:

f p(s)u(s)de(s) = Z%[ p(t;)utt; )+ petu(t) |[ et) —et,) |+ X RPW),  (6)

=L i1

where

()],

RY @< 2[00t )], M= sup

sefty,T]

For the second integral:

t

[[2t)— (][ F(s.u(s)) — plu(s) Jde(s) =

f

= Z%{[Wk) = (t;2) ][ F(t0,u(t ) = Pl (8 )uct ) |+ (7)

=t

+ ot)—o(t) || Ft;,uct;) - p;(t,-)u(t,-)]}[w(t,-)—qo(t,-fl)]@ R{Y(u),

where

([0~ Fs.u) - o Sus) ]} |

n M 3
REY (W) < 2 [0t) -0t )], M, =sup

Substituting (6) and (7) in (5), we have
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u(t) = Z%[ p(t;_ Ju(t; )+ Pt )ut) | o) -t ) |+

=1

+ 3 {060 -0t ) ][ F G 10U 1) - Py (€ u )]+ (8)
o) -o) [ FEu) - p,@)ut) i o) -t 2) ]+ X (RP @ +RP W)+ f ¢
where k=1,2,..,n. Omitting the terms iRl(?)(u) and iRg?(u) appearing in each

equation of system (8) and u, ~u(t,), for k=12,..,n we obtain u, = f(t,), ¢(t,)=0,

U = i%[ Pt )u + p(t)u; | ot) - et ) |+

+Zk“% {[(D(tk) - (o(tj—l)] [ F (tj—l’ uj—l) - p,w(s) (ti—l)uH] + (9)

+ o) =) [ Ft;.u) - p(t)u; [} ot) — ot 1) ]+ F ().

Taking into account that ¢(t,) =0 for k=1 from (9) we get

[1-3 P06 | = 3 aPIote) 3 (000 [Fltw) -+ 1) (10)

and for k=2,3,....n
(1—% p(tk)[co(tk)—co(tk_l)]]uk - Z%[ Pt U+ Pty [[ o) -t ) |+

j=1

+2 Pl ) [06) —(p(tkl)]+§%{[¢(tk) RAR ) LACRIRELACR TN F

o) -ot) [ F;u) - pit)u; M ot) -t ) ]+
+%[<o(tk) —p(t )| F (b tyy) = P, (t)U [[ot) — ot )]+ f ().
Let us assume that
= sup 2 p(t)[o(t) -l )] <L

Then the system of equations (11) has a unique solution which is given by the
formulas
1

u, =1—{%a|o(to)(p<t1)+%(<o(t1))2[Fﬁmuo>—0uo;,<%)]+ f@}- (12)
12 Pt)o(t)
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u, = . {Z ;[p(t DU+ P [ o) -t ) |+
1—f pt)[o(t) -t ;)]

+;p(tk DUy [ot) -t )]+ {[co(t) o(ti) J[F(tu) - Py us [+ (13)
+Lot)—ot) [Ft,u)- p(p(t,-)u,- Ji[et) -0+

#2100 -0t DT [Ft0) - 6 u ]+ f(tk>},

where k=2,3,...,n.
Example. Solve the following Cauchy problem for a second-order nonlinear
differential equation with derivative with respect to an increasing function:

(1+t )u

u? () +tu, ) + =2+3t, te[0,1] (14)
o) =+, u(0)=0, u,(0)=0, (15)
It is easily seen that u(t)=t is the exact solution of the Cauchy problem (14)-

(15).
We find the approximate solution of this Cauchy problem using the proposed
method. For this problem 1t =0, T=1 «a=0, =0, pt)=—Vt, ot)=+k,

(1+t*)u

F(t,u)=- FIRTR g(t)= 2+ 3 and using the formula (4) it is reduced the following

Volterra-Stieltjes integral equation:

u(t)=—N§u(s)d(J§)+j[ﬁ—£]-(—%jd(d§)+ f0) (16)

where

f(t) :j.(\/t_—\/g)(2+38)d(\/§).

1-0

Let n=20, then h= >0 —— =0.05. The numeric solution of the integral equation (16)

by the generalized trapezoid method and its comparison with the exact solution are

shown in the table below:
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The nodes Real value at t, Approx. value at t, The error at t,
b u(t,) N |u(tk)_uk|
0.05 0.05000000000 0.04939024390 0.00060975610
0.1 0.1000000000 0.09929953941 0.00070046059
0.15 0.1500000000 0.1492544207 0.0007455793
0.2 0.2000000000 0.1992283133 0.0007716867
0.25 0.2500000000 0.2492126104 0.0007873896
0.3 0.3000000000 0.2992033895 0.0007966105
0.35 0.3500000000 0.3491985174 0.0008014826
0.4 0.4000000000 0.3991966968 0.0008033032
0.45 0.4500000000 0.4491970779 0.0008029221
0.5 0.5000000000 0.4991990730 0.0008009270
0.55 0.5500000000 0.5492022600 0.0007977400
0.6 0.6000000000 0.5992063249 0.0007936751
0.65 0.6500000000 0.6492110313 0.0007889687
0.7 0.7000000000 0.6992161960 0.0007838040
0.75 0.7500000000 0.7492216772 0.0007783228
0.8 0.8000000000 0.7992273622 0.0007726378
0.85 0.8500000000 0.8492331626 0.0007668374
0.9 0.9000000000 0.8992390073 0.0007609927
0.95 0.9500000000 0.9492448414 0.0007551586
1 1 0.9992506194 0.0007493806
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A CLASS OF INVERSE PROBLEMS FOR A PARTIAL INTEGRO-
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

Myrzapaiazova Z.K., 2Asanov A.
! Kyrghyz State Technical University,
2Kyrghyz-Turkish Manas University

In this paper, the inverse problem for a first-order integro-differential equation with private
derivatives is reduced by the method of an additional argument to a system of integral equations.
Further the existence and uniqueness theorem for the solution of the inverse problem is proved by
the method of the principle of contraction mappings.

Key words: inverse problems, integro-differential equations, partial derivatives, first order.

byn wmakanaga OWMpPUHYM TapTUITETH JKEKe4Ye TYYHIYIyy HHTErpo-audpdepeHnuaiibk
TEHJeMeJiepre KOIOJITraH TECKEpU Macelslie KOLIyMya apryMEHTTEp BIKMAachl MEHEH HWHTErpajibIK
TEHJeMellep CHCTeMachlHa KENTHPWIreH. AHJaH apbl, TECKEPU MAcEJIeHHMH JKallallbl >KaHa
JKaJITBI3/IbITbI )KOHYHJIOTY T€OPEMa, KbICHII YarblIAbIPYY NPUHIUI bIKMAChl MEHEH JaJIUJ/IEITEH.

YpyHTTYy ce3aep: TecKepu Macenesnep, MHTEerpo-auddepeHuuanibK TeHaeMenep, aipbiM
TyyHAyJap, OUpUHYM TapTHII.

B nanHO#l paboTe METOJOM AONOIHUTENBHOIO apryMeHTa oOpaTHas 3ajada il UHTErpo-
audQepeHINanbHOr0 ypaBHEHUsI C YacCTHBIMU IPOM3BOJHBIMU IIEPBOTO IOPSAJIKA CBOIUTCS K
CUCTEME MHTETPAJIbHBIX YpaBHEHUH. Jlanee, MeToI0M MIPHUHIIUIIA CKATHIX OTOOPAKEHUH JTOKa3aHBI
TeopeMa CyLIECTBOBaHMS U €IMHCTBEHHOCTH PEIIEHUs] 0OpaTHOH 3a/1auH.

KnroueBslie ciioBa: oOpaTHble 3a1adyu, MHTErpo-auddepeHaTbHble YpaBHEHUS, YacTHBIE
IIPOU3BOJIHBIE, IEPBBIN MOPSAAOK.

The integro-differential equation is considered

t

u, (t, X)+u(t, X)u, (t,x) = I KWu(t-v,x)dv,xeR,te[0,T], (1)
0
with the initial condition
u(0,x) =p(x),xeR, (2)
and with overriding
u(t,x,) =g(t),t<[0,T] (3)

where ¢(x), g(t)- where, u(t,x), K(t)- unknown functions. The matching conditions
@(Xo) = g(0) are satisfied.
In works [1] the method of additional argument is used to study partial

differential equations. Various inverse problems are investigated in [2-5]. In works
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[2-3] inverse problems of mathematical physics are investigated by the method of an
additional argument. Here, using the method of an additional argument and the
principle of contracted mappings, we prove existence and uniqueness theorems for
the solution of the inverse problem (1)-(3), the definition of u(t, x), K(t).
Let us introduce the following notation:
C_Vl'yz'y3""y”(ST) - is the space of functions having continuous and bounded
derivatives with respect to the i-argument up to order »# in the domain 9,
D={(s,t);0=s<t<T}, Gr={(t,x);0=t<T x eR}, Qr={(s,t,x);0=5=t<T xR},
SUPtepo,m /9(t) /=M, SUPteqo,1] /91t /=My, SUpteo,] /971 /=Ma, Supyr /p(X) /=
SUPxeR /(P/(X) /=y, SUPxer /(0”()() /=y, SUPxer /(0/”()() /:@3-
Suppose the following conditions are met:
a) p(9 eC (R), g(t)eC’[0,T],
0) g(0)>a>0.
In (1) replacing t by pand x by p(p,t,x), where

p(otX)=x-[ u(z p(r.t )z, PLEX=X, B (ALY =u(pp(pLX).  (5)

Further, integrating over p from 0 o s, we get:

t

K()u(p-v,x=[u(z, p(z.t,x)de)dvdp. (6)

p

u(s, p(s,t,x)) = p(x - f[u(r, p(z,t,x))d7) +

O ey 0
O —y

In (6), setting s=t, we have:

t

t
u(t,x) = p(x - IUT p(z,t,x))d7) +J
0

0

K()u(p—v,x— Ju(r, p(z,t,X))d7)dvdp. 7)

p

Oty

In (7), setting x=Xxo, we have:

ot—3

t t t

g(t):go(xo—ju 7, p(z,t,x,))d7) +j K(v)u(p—v,xo-ju(f, p(z.t,%,))dz)dvdp. (8)
0 0 P

From (8) we take the derivative with respect to t twice, and we have:

9't) =0/~ [u(z P, xo»dr){g(m Ju Pt X, xo)dr}+ [Kogt-v)dv-

0
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K000~ ut plet ) {00+ [ p(r,t,xo»mr,t,xo)dr}dvdp, 9)

p

9'(t) = ¢"(% - Ju(z, p(r.t, xo»dr){ga) S [NCA AR IACA? xo)dr} +K(1)p(x,) -

- 9'(% = [u(r, (.t %,))deHO (0 - U, (6 5)g (0 + [y (7, Pt X)) B (1, X, )d 7 +

+[u (. p(Et. ) ptt(r,t,xo)dr}—jK(v)ux(t—v,xo)g(t)dv+ [Kmg't-v)dv+

KU (p=v.% —ju(f, p(z.t, Xo))df){g(mjux(f, P LX) (7, Xo)df} dvdp—

KU (.4~ [ UGz, Pzt X)) DG M) ~u, (6 ) g (0) + (10)

0

From (7) we take the derivative with respect to x and setting x=x,, we have:

U, (taxo) = q)l(xo - j.u(r, p(fstaxo))df){l - jux (Ta p(Z’,t,Xo))px(T,t,Xo)dT} +

0 0

+HK(V)UX(/0—V, Xo —ju(r, D(T,LXO))dT){l—jUX(T’ p(7,t, %)) px(f,t,xo)dr}d wdp. (11)
In (5), (6), setting x = x,, we get:

pputx) =%~ ulr.p(rt.x )z, (12)

u(s, p(s,t,x,)) = o(x, - jur p(z,t,%,))d7) - ﬁK u(p—v,% - Ju(r, p(z,t,x,))dzr)dwvdp. (13)

From (12) we take the derivative with respect to t twice, we get:

P(s:1,%,) = =g() = [u (2, p(z,t,%))p, (7.1, %), (14)

Pu(s,8:%,) = =g/ () +u,(6,%,)2(0) = [, (7, p(z,,%,))p, (7,,5,)d7 = [u (7, p(7,1, %)) p, (7.1,%,)d7.(15)

From (12) we take the derivative with respect to x and setting x = xo, we obtain:
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t

Pus,t,x,) =1 [u (2, p(,t,%,) p.(7,,%,)d. (16)

From (6) we take the derivative with respect to x twice and setting x = X,, we have:

0,65, P(54%) = 9% - [u(e p(r,t,xo»df){l—jux(a P L X)P, (5.t 1)d7 -+

(17)
;

O C——y
O t—y

KW)u,(p—v,% - Jt.u(fi p(z.t, Xo))df){l_ jux(Ta p(z.t, %)) (7, Xo)df}d wdp.

U, (s, p(s,t,x,)) = (/’”(xo - j‘u(r,p(r,t,xo))dr){l - jux(f,p(f,t,xo))px(r,t,xo)dz'} -

0 0

- 0"(x, - | u(ap(r,t,xo»dr){ [u (. p(E.t,x)p, (7,05, )dr + | ux<r,p<r,t,xo»pxx<r,r,xo>dr} - (18)

0 0 0

J]ZK(V)MM (p=Vv,x, - ju(z‘,p(r,t,xo))df){l - jux (r,p(r,t,xo))px(r,t,xo)dr} dvdp +

p p

+ ITK WV (p-v,x, - ju(r, p(r.t, xo))df){j u_(r, p(z,t,x,)) pf(r, t,x,)dt +jux(r, p(T,t,%,)p.. (T, 1,%,)d T}d vdp

p p p

By virtue of condition b), solving (10) with respect to K{(t) we have:

t

K()=— {g"(t) ~¢"(% - Ju(z, p(r,t,xo»dr){g(n + U@ Pt X)), (r,t,xo)dr} +

0

= |u(7, p(z,t,x))d 79 (t) - u, (t. %) 9 (t) + tfuxx(f, P(r, X)) Py (7.t X )d7 +

+
S
—~~

<
S
[ ——

t t

U, (7, Pzt %)) Py (. ) d 3+ [K (), (= v, %) g (0)dv = [K(1)g'(t - v)dv -

0 0

+
[S) S

KWu, (p-v,%, —ju(r, p(f,t,XO))df){g(t)+jUX(T, p(r,t,xo))pt(r,t,xo)dr} dvdp +

p

+

cCt—T% o=

JTK@, (0 =v.% = Julz, p(e t o )AHG M) U, (. X)9 () + [, (7, PE LX) R (1, %,)d7 + (19)
+ju (z, p(7,1,%,)) Py (7.1, Xo)dr}dvdp}

System (11), (12), (13), (14), (15), (16), (17), (18), (19) define a closed-loop
system for finding the unknowns u,(t,Xo), P(S.t,Xo), U(S,p(S,t,X0)), Pt(S,t,X0), P(S,t,Xo),
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Px(S,t,X0), Ux(S,p(S,t,X0)), Uxk(S,p(S,t,%0)), K(t). Substituting the value of K(t) from
relations (19) into equation (6) and setting s=t we obtain the function u(t,x).

Thus, inverse problem (1) - (3) is equivalent to the following system:

V(s,t,X)=BV(s,t,x), (20)
Introduce space
Y = C[0,T]x C(D) x C(D)x C(D)x C(D)x C(D)x C(D)x C(D)xC[0,T].

For any V(s,t,x) €Y we introduce the norm:

IV (5,8, = Sup, 0.1 |, (6, %,)] + Sup,y| p(s,1,0) + Sup p|u(s, p(s,t,x,)| + Supp|p,(s,t,%,)| +
+Sup |, (5,1,%,)| + Supp| P, (5,8,%)| + Sup |, (s, p(s,1,x))| + Sup |, (5, p(5,8,%))| + Sup, 0.1 K @))-

Let's construct successive approximations:

) %)

P°(5.%) .

u’(s, p(s.t,x,) (po(xo)

P (5.t %) ~g(0)

VO(s.t,x) =| by’ (s, %) =1 -9(0) +¢'(x)9(0) , (21)

p, (5, %) 1

0. pstx) | |20

0l Gptston) | |7

K'() AR AU ORI

forn=1,2,... V'(s,t,X)=BV"(s,t,X).

Let R=/V°(s,t,x) /v, then we take a ball of radius 2R . i.e.
Usr={V(s,t,X) €Y: /V(s,t,x) /y<2R}.

There is T>0, such that for any V(s,t,x) € U,z the following inequality holds:
/BV(s,t,x) [v<2R.

There is T>0, such that for any V*(s,t,x),V(s,tx) € Uz, the following
inequalities hold: /BV*(s,t,x) -BV(s,t,x) /y<tq /V*(s,t,x) -V(s;tx) [y , 0<q<1l, where
g is a known positive constant depending on T,R.

It is seen that for any n, V"(s,t,x) €Uy, since V(s,t,x) eUr .

For the elements V°(s,t,x) eUg, V'(s,t,x) €U, the following inequality holds:

103



/BV(s,t,x) —BV°(s,t,x) [y=<C,,
where C,- is a known positive constant dependingon T, R.

We construct a functional series from the terms of sequence (21) as follows
VISEX)+ S (Vi(s, 69 - VI (s,1,%)) (22)
i
Estimating each term of series (22), we obtain a majorizing numerical series:
R+ Czq , 0<g<1. (23)

Passing to the limit in (21) for n—co, and using the continuity of the operator
V(s,t,X)=BV(s,t,x), we obtain that the element V(s,t,x) is a solution to the system of
nonlinear integral equations.

By virtue of contracting mappings, systems (11), (12), (13), (14), (15), (16),
(17), (18), (19) have a unique solution V(s,t,x)eUor .

Thus, the following is proved.

Lemma 1.There exists T>0 such that under conditions a), b), system (11), (12),
(13), (14), (15), (16), (17), (18), (19) has a unique solution V(s,t,x) eUy.

Lemma 2. If a vector function V(s,t,x) is a solution to system (11), (12), (13),
(14), (15), (16), (17), (18), (19), then the functions u(t,x), K(t) satisfy problem (1) -
(3) and vice versa.

The proof of Lemma 2 is similar to [3].

Theorem. If conditions a), b) are satisfied, then there is T>0 such that the
inverse problem, (1) - (3) has a unique solution {u(t,x), K(t)}, from the class ¢
L1([0, T]xR)xC* [0, T].

The proof follows from the proofs of Lemmas 1, 2.
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A PRIORI ESTIMATES OF SOLUTIONS OF THE CAUCHY PROBLEM
FOR A QUASI-LINEAR PARABOLIC EQUATION

Turkmanov J.
Bishkek state university named after K.Karasaev

In this article we have various assumptions on the modulus of continuity we investigate
properties and deduce interior a priori estimates of solutions of a multi-dimensional singularly
perturbed parabolic equation with several small parameters

Key words: Quasiliner, parabolic equation, degenerate problem, solution, several lines,
asymptotic expansion, function, continuous derivatives, point, generally speaking, standard
algorithms, hogt’s, estimetes.

byn makanmaga Ou3 Y3TYJNTYKCY3AYKTYH MOJYJIY JKOHYHI® ap KaHaail O00XOMOJIIOpAY
KacaiiObl3, KacHEeTTepHH WIMKTeHOU3 >kaHa Oup Hede KHUMHEKeW mapameTpiepu Oap Kem
OITYOMJIYY CHHTYIApAYY Oy3ydaran mapaOonaiblk TeHJAeMe OOIOHYAa YEYUMACPIWH HYKH
anpuopayk OaanapblH YbIrapaOsbI3.

YpyHTTYY co3nep: KBasuch3bIkTYyYy, mapaboianblk TeHAEME, KyOyarad TeHAeME, YeUnuM, Oup
HEYEe ChI3BIKTap, ACUMITOTUKAIBIK &KbIP0O, (YHKIUS, Y3TYJITYKCY3 TY30TYJIOp KaHa CTAHIAPTTHIK
aJIrTOPUTMIED, TYYHIY, YEKHUT.

B I[aHHOI\/'I CTaTb€ MbI ACJIACM PA3JIMYHBIC IMPCAIIOJIOXKCEHUA O MOAYJIC HEIPEPBIBHOCTH,
UCCJIEYEM CBOMCTBAa M BBIBOAMM BHYTPEHHHUE alPUOPHBIE OLEHKU PELIEHHMH MHOTOMEpPHOIO
CHUHTYJIIPHO  BO3MYIIEHHOTO  Mapa0OJIMYecCKOro YpPaBHEHHMS C  HECKOJIbKUMU  MajbIMU
napaMeTpamH.

KitoueBbie croBa: KBasminHeiiHoe, mapaboinyeckoe ypaBHEHME, BBIPDOXKICHHAs 3ajaya,
peleHe, HeCKOJIbKO JIMHUM, aCHMOTOTHYECKOE pasiiokKeHHne, (PyHKIHs, HEePEPhIBHBIE MONPABKU
" CTaHAAPTHBIC aJITOPUTMBI, XOT'TCOBCKHEC, 3CTUMENUTOBEIE.
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Consider the Cauchy problem

02 d 0
Lu= g7 @it xw) Pt x w5 =0, (1)
Uf=p = U (). (2)

Here x = (x4,X, ,.....Xy) IS @ point of space R", Il = (0,T] x R", the functions
¢;(t,x,u) and P (t,x,u) are defined and continuous for all (t,x,u) € [I x R* along
with their partial derivatives in the variables x, and u up to some order, g; €

(0,1], up(x) is some bounded measurable function,

d _ Jdopi(tx,u) . Jdei(txu) du
—@i(tx,u) = )L [ + —.
dx; @i ) 1=1 Ox;i ou Oxi

In the equation (1) and everywhere below if either term has two or more same
indices, then this means summation over all these indices from 1 to n.

Introduce the following notation: (x, t) are points of the space R";

X = X2 X2 4+ X
X(c,i):(Xla---:Xi—L Ci Xit1s-+- Xn) ; g(c,i)(t:X): gi(t»X(c,i));
b by b bn, :
J, g(x, 1) dX:fall fazz___ fan g(t, Xy Xg...,Xp) dxq dXy... dXp ;

fab g(t, x) dx (= (bj-a;) ™! ff It x)dx ;
e is a vector with the coordinates (g €, ..., £,), £g=Min;cjcp & ; € = €1e).... &) .

By M, M, k=1, 2, ... we denote independent of € constants, if the value of
these constant is unessential for our further reasoning.

In deducing estimates for the solution of the problem (1), (2), the solution will
be assumed to be bounded everywhere in Il by a constant m,. Moreover, we will
assume if needed that for (t,x) € II; and |v(t,x)| < m, the following estimates are
valid:

loi (6, %, V)| < my ;@ (6% V)| < my,; [0y (6% V)| < mygy;
|(p’ixk(t: x, V)| < pik; |(P"ixk xs (6X, V)| < Piks; |(p”ivxk (% V)| < Pixvi
WXV <15 W& x V)] <1y [U (6% V)| < 1.

Let f,(z) be an infinitely differentiable function of one variable, defined for

z €(-00,00) and satisfying fy(z) =1for |z—a| <1, f,(z) =0 for |[z—a| = 2,
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0<f.(2) £ 1.
Consider the function f(x)=f,,, (e7"x;) fp, (62'%2)... fy (€5 Xn), Where b is a
point of R".

The function v (t, x)=u (t, x) f(x) satisfies the equation

9%v  oav du of %t

d
Liv= Ei@—g=—2€iaa—€' o i eitxwHivxw)  (3)

and the initial condition
v (0, x)=vo (x)= f(x) uo(x). (4)
Consider the modulus of continuity of u (t,x) with respect to the spatial
variables. To this end it suffices to estimate as auxiliary, we will get the final

estimate the difference u(t,x) — u(t, x(y,;;) which will be done in two steps. First we

will obtain a preliminary estimate (see the inequality (5)) and then, using this

estimate as auxiliary, we will get the final estimate.
In obtaining the auxiliary estimate, the points x,y will be assumed to belong to
the cube b; —-& < x;,y; < bjtg;, 1 = 1, 2, ...., n. In this case v(t,x)= u(t,x),
v(t,y)=u(t,y), and therefore
b+2
u(t, x)- u(t, Xy,))= fb_JrZ:[G(t, x,2,0) — G(t,X(y,),2 0) ] vo(z) dz +
b+2¢ af
j fb G(t, X, Z,T)— G(t X(y,}), % r)] [(pl F — pr] dzdr +
b+2
+f dr f 8{ o [G(t, X,Z,T) — G(t,x(y,j),z, r)]} (1- 81,]-) [cpif+ 2U¢; a_zi] dz +

+J, fb+2 { i,- [G(t,x,2,7) — G(t,x(y jy,2,7) | }[cpif+ 2Ug; aa_zfi] dzdr =
= Aj+A,+ As+A,,
where G(t,x,z,1) = £ /2 [4n(t—1r)]™2exp {—(x; — z; )?/4[ & (t—1)]} is the
fundamental solution of the heat conductivity equation, 6;; is the Kronecker symbol:
8i;= 0 fori =#j, §;;= 1.

The integrals A; and A, are estimated directly:
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Xj b+2¢
|A1 | < my Id§b£ aiz]- G (t, X, 2, 0) |dz| = Mlmosj_l/zt_l/zlxi _Y1'| )
y, %

gty mot ) e 2 ..
|A2 | < M2(801m0+801m0+ r) 8]- t1/2|X]‘ — y1|l Where my= 1<i<n m;.

When estimating the integral A; we first assume that the inequality y; < x; is
fulfilled and represent it as a sum Az = Az +A3,+A33+A3,+A35+A3z¢ IN such a
way that the interval (b;-2¢;, b; +¢; ) of integration with respect to the variable x;
be partitioned by the points 2y; -x; ; yj; 271 (x; +¥;); Xj; 2% — y; into 6 segments.
Since for (b;-2¢; < z; <2y;-x; the inequalities 0 < x; —y; <y; — z; are fulfilled,
the estimate for the integral A5 ; can be obtained in the form

|Az1| < My(mgy+m,) |Xj —Yj|y fotd fb+2£ G(t, %, z, r)—

fbj+28]

(yj -
bj—2¢; i~z ) Yexp[ ; ]dzl < M5(1-y) "' (mgy+my)e, Y22 |X _Y1| ,

4€j(t-1)

0<y < 1. Theintegral A is estimated analogously.
The variable z; in the integral A;, satisfies the inequalities 2y;-x; < z; < y;
from which we obtain 0< y;- z; < x; —y;. Hence exp {- (x;-y;)%/[4g (t— )]} <

exp{—(y; — z;)?/[4¢ (t — r)|}, and therefore

fb+2£

|As,| < M6(m0+m0)f dr G(t,%,z,1) dz(X])f % — ;| %

Vi Yi—Zj _ —z)? 6% (xj =)
{ZYj—Xj{ 26 (1) P [ 155(t-1) eXp[ £ (t-1) ]} dZ}
From the equality x; — y;= (x; —y;)Y0Y"'[[6(x; — y;)]*~Y we have
_ b+2 1,y
|A3’2| < Mg(my+my) |x]- | f dr f 8G(t,x, z,1) dz(yj) fo gY-1 x

Vi —Zj
ny] -xj Zsl(t ]I‘)[ (X _Y])]l yexp

[_ vj—z)*® _ 0%(x -y ]d yi  [6(x-yp]*7Y exp

4gj(t-r) 4gj(t-r) 2y]'_x- 2¢gj(t-r)

[ 5 ~2) ]d exp[ —9 () 7 ]}de

4gj(t-1) 4gj(t-r)

< M, (my+mp)[ y(1 —y)]™* Y/Z 1/2'5(1 Y)/2|X Y|
108



The estimate for the integral A; 5 is analogous to that of the integral A; ,.

Fromy; < z; < (x]— + y]-)/2 there follow the inequalities 0< z;- y; < (x; - y;)/2
< x;-z; and from (xj + y]-)/2 < z; < xj the inequalities 0< x; < z; < (X]- + y]-) 2<
z; — y;. By virtue of these relations, the integrals A;; and A, are estimated just in
the same way as the integrals Az , andA; 5.

As for the integralA,, we partition it into 6 summands A, 1<k <6 and
estimate each summand by using the same techniques as for the corresponding part

of the integralA;. Thus we can consider that the intermediate estimate for the

modulus of continuity of the function u(t, x) is obtained:

~1/2, _ _ -
lu(t,x) —utxy;)| <M mye; /24 12|%; — yj| + (e5™mg + €51 Mg + 1) X
1

g *t” % —yi| + (1 - ) Wy (mo + Mo)e /2 e AtAV2(x —y)Y|. (5)

We use the estimate (5) for the determination of the estimate of the difference

u(t,x)- u(t, x(y,). The points x,y will now be assumed to belong to the cube b;-
271g; < x4,y < bi+271g;, 1< i < n. It can be easily seen that the estimates for the
integralsA;, A, can remain unchanged. We rewrite the sum A;+ A, as
b+2 0
f dr f Ny {a_zi [G(tx,21) — G(t, X(y), 2 T) ]} ((p1f+ 2uz»:la ) dz =
t b+2¢ bj—¢g; b+2¢ bj+2¢;
= fo drfb—z:; dz f ]( ) 07 f f : dZxj) f ]( .)dz;+
t b+2¢ bj—¢;
fO dr fb—ZS dZ(X,j) fbj]_sj](m) dZ] = B1+B2+B3.

In the integral B4, the inequalities

1_1_1(961'—Z]'i)22 £j ' (Yj—Zj)z_l_zht_(yj—zj)z2 g
=1 4ei(t-r) — 16(t-1)"  4gi(t-1) J 4gi(t-r) T 16(t-r)

Are fulfilled, and therefore

t b+2¢
|B1| < Mg(mo + rT10)|X] - y]|f dl"] dZ(Z,j)
0 b-2¢
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|Xi_Zi | |Xj—Z]'|
4gigj(t-1)2 Zs(t r)

bi+2¢;
fb] 2 ]] G(t, X, Z(X+£/2,j), I‘) [ ] dZ Mlo(mo +

— -1/2, — -3/2 -1/2 —-1/2
+Mp)|x; —y]-|(s]. /2t V2+e /2¢1/2 g g / ) exp{—¢;/(16t)}.
It is obvious that the same estimate is valid for the integral B, as well. Let us

now pass to the estimation of the integral B;. We write it as

b+2 b; ]
B3:f0t dr b_+2: dZ(Z])f 1+£1 {a_zi [G(t, X,Z,1) — G(t, X(y,j) Z, r)]}((pif+

b+2¢ b]+£] 9
b-2¢ dZ(Z]) fb i—¢; {E [G(t, X,Z,T) —

b+2 b d
—G(t X, 2 r)]}@idzi’“fot dr 7,5 2y f) j: {d—zi [G(txz1) -

+2ug; aa_zfi) dzj=f0tdr

_G(t, X(y']) Z, I‘)]} X Zuelaa_zfl dZ] = B3‘1+B3'2.
Since
¢i(r,z,ur,2) = ¢; (r» z¢g, u(r, Z(E.i))) + [0i(r, 2, u(r, 2. ))) —

=@ (r, 25 ), u(r, 2 ) |+ @i (v, 2, ur, 2)) — @iz, u(r )],
the integral B;; can be represented in the form of three summands denoted by
Bs 1,1, B3 and Bsqz respectively. For the inequality b; 271 < x5, y; <bj+

2_181-, the integral Bs, 4 is estimated directly:

b+2¢
| j dr j dg; jb [9i(r, 2y ,u(r, zg))E(2) + 2gufy ] dzgj) X

bj+¢; -1/2 _-1/2_1/2
Xt o Gty Tzl Mu ol — yjleg e /7012 exp {61160}

Using the inequality
|pi(r, 2, u(r, Z(E,j))) - @i(T, Z(E,j)ru(r»Z(E,j))) | < Pi,j |§j - Zj|-
For the summand B; ; 5, we have

b+2¢
Jg—ZS

t b +&; |&i—2;
B3,1,2IM14Po; J, dr dZ(Z])f ' dz; f G(t X))z t) X [ i =%l 81] N
18 =2 1% [xi —2i+8i, (§—xj

gjgj(t-1)?

)l -1/2
+ ] d&§; < Myspo &, / tY2|x; — yjl,

where pox = max;<;<, Pix- 10 the integral B3,; we apply the intermediate

estimate (5).
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Since
|(Pi(r' z, u(r, Z)) | i (r Z, u(r Z(EJ))) | < M16m1u{[m05 V2124
+(my + My +7) ej_l/zealtl/z]
& — ;] +y71(1 — V) "H(mg + + Mo, V2ey At CIV/2 | — g},
the integral B; ; 3 is estimated as

b+2¢ bj+g; Xj -1/2_ _
|B3,1,3|S M17m0,u Z?:l dr fb—ZE dz(z])f J dz]lfy]]{[mo S] / r 1/2+

+@ynm+%%ﬁo+ns;”%“ﬂa—zm+
_ — — -v/2 —1/2 — "
YL (1Y) 7T (Mo + M) & /ey VArAV/2g — 2VYGy, (6 X ZNd §
where mg ,=max,;<, m;,. Evidently, without any difficulties we can obtain

dz

b+2 b+
Jyredr [ sd(znf g |§1—le| - G(t X, 1)

t b+2¢ bj+¢; , |Xi_zi”zi_zi|2 Si'jlzj_Zjl] .
Jor®dr fy e Az fy e Glox@pa) S T+ < ey ] 9% <

b+2¢ |Xi_Zi||Ej_Zj|1+y 8i185—

t bi+¢€; Z]
fO r®dr b—2¢ dZ(z,j) fb].l_sj] G(t,X(E’]‘)’Z; r)[ £i£j(t—l‘)2 + S](t r) ]d

M21851/2 Ej(Y—l)/ztoHy/Z_

Consequently, for the integral Bs, ; we have the estimate
B3 13| < MmOu[moaal/za._l/2 + (m, + M) 86181_—1/2,(1/2 + (my + my +
1/2
+T) &5 e, 2] Ix) — .
The integral B, can be estimated in the same manner as the integral Bz 5.
Combining all the obtained inequalities, we can write out the estimate for the

modulus of continuity of the function u(t, x) with respect the variable x;:

14 1

|u(t,x) —u <t,x(y,j))| < M{mosj_zt_E + moeggej?[mo,u(mo + m,) X

1 1
X ggte, 2 + (g5 my + g5 m0+r)£ >+
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-1/29,1/2 -1 —1= -1/2 _-1/2
+Po,0o |t/ +mg (€5 'mo+eg Mo +) € g

t}x; — ;1.
From the last inequality, in particular, it follows that one can weaken the
requirements imposed on the initial data of the problem as follows:
|Pix & X V)| < Pox < & Poxs WX V)| ST<g5"T.
Then the latter inequality can be written as

-1/2, — -1/2  _
|u(t,x) — u(t,x(y,]-))| < M{mo(g]. 12¢-1/2 + g, / g; 1/2)4
— -1/2 — —~ —1/2,— —-1/24 _
+[ mgy, (mo+imy) & /2 +(mg+fiy + T) g / +Pojjg; /2] g51t1/2+
— - —3/2 —-1/2
+Mou(mo+M, + F) £, 2, 2t} |x; — yjl. (6)
Thus we have proved the following assertion.
Theorem 1. Let uy(x) be a bounded measurable function. If the functions

@;(t,x,u) are bounded for all
(t,x) € Iy, | u(t, x)|< my, g| Pt x, WIS T, (p’ixj(t,x, w| < Pojs
|@;u (t,x,u)| < mg, Where the constant T, py;, mg, are independent of €, then for

the modulus of continuity of the function u(t, x) with respect to the variable x; the

estimate (6) is fulfilled. If t € [0, T], then this estimate can be written in form

1 1 3

—_= 1 —_= 1 —=
Ju(t, ) — ult x| < Mg *(t77 +¢,” + &5't2 + £,D)|x; — jl, (7)
while if t €(0, g,], then
-1/2 ,, -1/2
uex) = ultxgyl < Mg 22+ I -yl (8)

The constants M depend only on the upper bounds of the functions
[uC® %) L] @it % Wl gol Wt x Wl gl @'y (&%, W], @ (6x W] in  the cylinder
Np={(t,x)[0< t < T,b; — 2 < x; < b; + 2¢;}.

Remark 1. Theorem 1 remains valid if instead of the differentiability of the
functions @; (t, x, u) with respect to the variables x; we require the fulfillment of the

Lipschitz condition with respect to those variables. Moreover,our reasoning is also

true if the functions ;(t, x, u)satisfy the Holder condition with respect to the
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variables x;,u, respectively with the exponents A;, A,, 0 <24, A, <1; not that
naturally the right-hand sides of the inequalities(7), and (8) somehow change.

In the previous subsection we have required that the functions «;(t,x,u)
possess the bounded first order derivatives with respect to the variables x;, u. If,
however, these functions and the function Y(t, x, u) are more smooth with respect to
the above-mentioned variables, then the estimate (7) may be essentially improved.

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Let, moreover, the
functions ;(t,x,u) have the second derivatives with respect to the variables x;,u
and the function yi(t, x, u)has the first derivatives with respect to the same variables.
If everywhere in the strip {(t,x)| gy <t <T,—00 <x; < oo} these derivatives
satisfy the conditions |cp”ixjxk(t,x,u)| < & e Pojko |cp”ixju(t,x,u)| < £7'qy),
0" (EX WIS Moy | WG W] < &7 < g5'rg, | Wyt x WIS g5'ry, where
the constants pg;jx, do,j Mouu o, Ty remain unchanged when echanges, then
everywhere in the strip I1, the estimate (8) is valid for the function u(t, x), and the
constant M does not depend on the values of the functions u(t, x), @;(t, x,u), and
P(t, x,u) outside the cylinder Ny,.

Proof. Let the function f,(z), defined by us in the first section, satisfy the
condition [f,(2)]*[f,(z)]7* < M for all a—2<z<a+2; obviously, such

functions do exist. Consider the function v, (t, x)= f(x) [uz(t,x)+Bju’X].(t,x)],
where the constant f; is chosen from the condition ;= min {,/g;e; &Moyy }. Let

the function v,(t,x) at some point P,(t,, x,) of the strip ¢, <t < Treach the

greatest positive value. If t = g,, then the assertion of Theorem 2 follows from
Theorem 1. Suppose t, > g,. For t =t,, x = x, the equality f(u? + Bju’xj)’xk=

= - fy (U + Bju’xj) is fulfilled, and therefore at the above-mentioned point we have

the relation.
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DETERMINING THE SIZE OF THE LOAN AND THE COMPOSITION OF
THE BREEDS OF ANIMALS WITH AN INDICATIVE PLAN OF
PRODUCTION

Jusupbaev A., Iskandarova G.S., Jusupbaev N.A.
Institute of Mathematics NAS KR

In this article, a mathematical model has been developed for the problem of determining the
optimal loan size and the composition of productive breeds of animals on the farm with an
indicative plan for the production of livestock products according to the criterion of the minimum
total costs. An algorithm for its solution is presented. The performance of the model is shown in a
numerical example.

Key words: mathematical model, optimal size, credit, economy, indicative plan, production,
algorithm, example.

Byn makasiaa HaChITHBIH ONTUMAJIYy ©146MYH aHa MaJ/IbIH IPOAYKTYJIapblH OHAYPYYHYH
MH/IMKATUBIMK TUIaHBI MEHEeH yap0asa eHIYPYMAYY MOpoAajapAblH KypaMblH aHBIKTOO Macejecu
OOIOHYa MaTeMaTHUKAJbIK MOJEIb MINTEIUN YbIThII, MHHUMAJAYY JKajllbl YbITBIMIApPbIH
KPUTEPUHHHE bUIAMBIK KEATHUPWIT€H. AHBI YEUYYYHYH QITOPUTMHM KEINTHUPWITeH. MoaenauH
KOPCOTKYUYTOPY CaHJIbIK MUCAJAA KEATUPHUIITEH.

YpyHTTYy ce31ep. MareMaTHKaJblK MOJEIb, ONTUMAJIAYY ©J46M, KpPEIUT, 3KOHOMHMKA,
VWHJMKATUBIUK IJIaH, OHTYpYLI, AITOPUTM, MUCAJL.
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B a70if crathe pa3paboTaHa maremaThyeckas MOJENb 3a/a4d ONpeeNCHHEe ONTHMAIbHOTO
pa3Mepa KpeauTa U coCcTaBa MPOAYKTHUBHBIX IOPOJI )KUBOTHBIX B XO3SHCTBE MPHU WHAUKATUBHOM
IUTaHE MIPOM3BOJICTBA MPOJYKIUHU )KUBOTHOBOJICTBA [10 KPUTEPUI0O MUHUMYMa CyMMAapHBIX 3aTpar.
Uznoxxen anroputum ee pemeHusi. PaboTocrnocoOHOCTs MOJIeNH MOKa3aHa Ha YHCIOBOM IIPUMeEpeE.

KiroueBple cioBa: MareMarudeckass MOJEIb, ONTHUMAJIBHBIM pa3Mep, KpeAuT, XO35iHCTBO,
WHAUKATUBHBIN IJ1aH, TPOU3BOJICTBO, AITOPUTM, IIPUMED.

Formulation of the problem. Let a farm with sown areas of various categories
(irrigated, rainfed, etc.) in the amount s,, keK planned to receive a loan at a% per
annum for 7 years and produce livestock products in an amount not less than b" he
H by optimizing animal breeds in the farm, where h - the type of livestock products
produced on the farm.

It is assumed that for each type of animal breed, the productivity and the
corresponding daily ration are known, as well as the additional consumption per head

in the amount of g, 1L, he H, depending on the breed.

Also known is the yield and consumption for growing crops for each category

of the sown area used by the farm in the ration of animal feeding.

It is required to determine the optimal composition of animals y,h on the farm

and the size of the received credit z, allowing to ensure the production of livestock
products in the planned volume, with minimal total costs.

The mathematical model of the problem can be presented in the form.

Zaijkj = ZZO!.TM“, jedy, (1)

keK heH leL
> 'y =b", heH, (2)
leL

ZZQPMh =220, (3)
leL heH

xg >0, keK, jelg, (4)
y/ >0, lel, heH - integer, (5)

where x={ x>0, keK, jel}, y={y; =20-integer, he H, lelL},
J — index of the type of agricultural products crop production used in the daily ration

of animal feeding, jelJo={1,2,...,n};
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Jo- many types of crop production aimed at animal feed, j €Jo;
k — index of the type of the category of cultivated areas on the farm, kekK;
K- many types of crop area categories, K={1,2, ...,p};
h — index of the type of livestock products produced on the farm, he H;
H — many types of livestock products, H={1,2,..., H};
| — index of the type of breed of animal on the farm, | L;
L- many types of animal breeds, L={1,2,..., L };
The parameters are known:
sy— the size of the cultivated area of the k-th category on the farm, keK;
a, — the yield of the j -th type of crop on the k-th category of the sown area of the

farm, keK, jeJo;
a,'} - the annual need for the j-th type of crop production in accordance with the daily

feeding ration per one animal of the I-th breed in the production of the h-th type of

product, where

al?:ﬂﬂy?,, j€d,, lel, heH; (6)

ﬂjh. - the share of the j-th crop production in the daily ration per one animal of the I-th
breed on the farm for the production of the h-type of product, j€Jo, | €L, he H;

7/?. - the number of days in the ration of feeding the j-th type of crop production for
the I-th breed of animal in the production of the h-th type of product, j€Jo, | eL,h e H;
6" - the volume of production of the h -th type received by the farm from one

animal of the I-th breed, l L, he H;

b"— the planned volume of production of the h type of animal husbandry produced by
the farm, he H;

Cy— costs per unit of size of the k-th category of the sown area for the j-th type of
crop, jedo, kek;

¢'- annual consumption per one animal of the I-th breed in the production of the h-th
type of livestock products, he H, I L
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g, - one-time consumption per one animal of the I-th breed, depending on the type of

product h, leL, he H;
A - payback period of the loan;
a - interest rate of the loan.
Variables sought:
X - the size of the k-th category of the sown area allocated for the j-th type of
culture, jedo, keK;

y; - - the number of animals of the I-th breed in the farm for the production of the h-th

type of product, he H, l L;
Z — the size of the loan received by the farm.

Obijective function (1) determines the minimum total consumption of the farm
for growing fodder crops, for keeping an animal for the production of products in the
planned volume and for an annual payment for a loan;

Constraints (2) determine that the total size of the cultivated area of the farm
allocated for fodder crops in each category should not exceed the size of the
cultivated area of this category;

Constraint (3) shows that the volume of agricultural production products of each
type for feed should be equal to the volume of needs of the farm for domestic needs
(for feed);

Constraint (4) requires that the volume of livestock production for each species
must not be less than the planned volume of production of these products;

Equality (5) determines the amount of credit received by the farm;

Constraint (6) requires that the variables are not negative;

Constraint (7) requires that the value of variables must be an integer.

Algorithm for solving the problem. Calculations start with determining a,?,
jedo, lel, he H according to equality (8).

Using known data ay;, Cy, Sk, keK, jedo u 6, ¢, b", he H, l<L, a numerical

model of the form (1)-(7) is formulated and solved. The solution algorithm ends.
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From the solution of the problem, the quantitative composition of animals
y={y,, he H, I L} is determined on the farm for the production of livestock products
in each direction and the size of sown areas for each type of agricultural crop for feed
X={ X, keK, je&Jo} at minimum total costs.

Let's check the performance of the mathematical model and the algorithm for
solving the problem using a numerical example.

Example. Let the farm has sown areas of S = 366 ha, of which irrigated s; = =
280 ha, and rainfed s, = 86 ha.

The main activity of the farm is the production of livestock products: milk and
beef meat and plans to produce 125 tons of milk and 25 tons of beef meat.

The farm has the opportunity to choose the production composition of animals
from two breeds of dairy production and from two breeds of meat production.

The following are known: - the daily ration for feeding dairy cows of the first
type of breed with a milk yield of 3600 kg (Table 1), i.e. (65" = 3600 xr);
- daily ration for feeding dairy cows of the second type of breed with a milk yield of
4500 kg (Table 2), i.e. (65 = 4500 kr);
- the daily ration for feeding cows with a live weight of 300 kg - the first type of
breed for meat (Table 3), i.e. (63" = 300 kr);
- the daily ration for feeding cows with a live weight of 450 kg - the first type of
breed for meat (Table 3), i.e. (65 = 450 xr):

Table 1
The ration of feeding dairy cows of the first type of breed with a milk yield of 3600 kg of milk
Feed name Daily ration kg (1 | Fodder Total | Total for Number of

head) units units 1 head gty days

1 | Lucerne (hay) 4 0,5 2,0 720,0 180

wheat 1 0,2 0,6 180.0 180
2 straw barley 3 2 360.0

3 haylage 6 0,3 18 1080,0 180
wheat 0,3 109,5

4 | The conc. barley 2,4 15 1 2,4 547.,5 365

118



feed corn 0,6 219,0
Siloge (corn) 10 0,3 3,0 1800,0 180
Mineral feed 0,010 - - - 365
salt 0,030 - - - 365
Grazing feed 40 - - 7200,0 180
Green feed
Total - - 9,8 - -
Table 2
The ration of feeding dairy milk cows of the second breed
with milk yield 4500 kg of milk
Daily ration Per year
The name of feed ) Days Qty ]
(1 animal) (1 animal)
1. Lucerne (hay) 10 kg 180 1800 kg
Wheat 1kg 180 kg
2. | Straw 3 kg 180
Barley 2 kg 360 kg
3. Hay 8 kg 180 1440 kg
The Barley 2 kg 730 kg
4, concentrate on Wheat 3 kg 0,5 kg 365 182,5 kg
of the feed Grain (corn) 0,5kg 182,5 kg
5. | Siloge (corn) 12 kg 180 2160 kg
6. Mineral. feed - 365 3,6 kg
7. | salt - 365 10,8 kg
Grain (corn)
8. 50 kg 180 9000 kg
Green feed
Table 3
Daily ration for feeding cattle (bulls, heifers) with live weight 300 kg
N ¢ foed Daily ration Feed General | Total per Days
ame ofr 1ee . .
kg (1 nimal), unit unit 1 animal qty
1. | Lucerne (hay) 3 0,5 15 540,0 180
Wheat 0,5 0,4 90,0 180
2. | Straw 2 0,2
Barley 15 270,0
3. Hay 6 0,3 1,8 1080,0 180
Conc. Barley 0,5 1825
4 1,5 1
feed Wheat 0,5 15 182,5 365
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Grain 0,5 182,5
5. | Siloge (corn) 50 0,3 15 900,0 180
6. | Mineral feed 0,010 - - - 365
7. | Salt 0,030 - - - 365
Grazing feed - 5400,0
8. 30 - 180
Green feed
Total - - 6,7 - -
Table 4
Daily ration for feeding cattle (bulls, heifers) for meat
with a live weight of 450 kg
Name of feed Daily ration Days qty | Per year (1 head)
(1 head)
1. | Lucerne (hay) 5 kg 365 1825 kg
2. | Straw (Barley) 1 kg 365 365 kg
3. | Hay 10 kg 180 1800 kg
The Barley 1kg 365 kg
" cc())rr\]cgm;‘aete Grain (corn) 3 kg 1 kg 365 365 kg
feed Wheat 1kg 365 kg
5. | Siloge (corn) 10 kg 180 1800 kg
6. | Mineral feed - 365
7. | Salt - 365
Grazing feed
8. Green feed 30 kg 180 5400 kg

- productivity of agricultural crops on irrigated fields (1) and rainfed (Il), included
in the feeding ration, aq, k=1,2, j=1,2,...,7, Table5.

Table 5
wheat barley Hay (Lucerne) | Hay Green feed | Siloge (corn) | Grain (corn)
1 2 3 4 5 6 7
| [2070.0 |1962.2 |2380.0 6281.0 | 5730.0 12340.0 20280.0
11| 1500.0 |0 1700.0 0 0 0 0
- costs of growing crops per unit of size (1) and (I1) fields, |c|, 7 Table 6.
Table 6
1 2 3 4 5 6 7
| 2279.0 | 1096.0 [2618.0 |5071.0 |9225.0 135740 | 7743.0
I 2000.0 [1000.0 |2000.0 |5000.0 | 9000.0 13000.0 | 7000.0
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In addition, the consumption for the maintenance of one animal of each breed is

known for the production of milk and meat, respectively ¢'3' = 50040.0 soms, ¢ =

55080.0 soms, ¢/'3°= 18030.0 soms, ¢/ = 25020.0 soms.
Also known: - additional costs for one cattle, depending on the breed, i.e.
q' =(o, gi, @7, g7)=(45000.0, 50000.0, 15000.0, 15000.0);
- loan term = 10 years;
- loan interest rate o = 6% per annum.
It is required to determine the optimal composition of dairy and meat animals on
the farm and the size of the loan that ensures the planned volume of milk and meat
production at the lowest total cost.

For the mathematical formalization of the problem, we determine the annual
feed requirement a,? for one animal of each breed in production, jeJo, lL, he H.

Using the daily feeding ration, we will determine the annual need for each type
of agricultural product included in the feed for one dairy cow with a milk yield of
3600 kg of milk and one dairy cow with a milk yield of 4500 kg. We will also
determine the annual need for each type of agricultural products for fodder for one
cow of the first and second types of breed for meat (see Table 7).

Table 7

Annual feed requirement per animal, depending on
on breed and productivity

Feed requirement per dairy cow Feed requirement per cow for meat
1 breed with 3600 | 2 breed with 3600 | 1 breed with a live | 2 species of live
Name stern kg milk yield kg milk yield weight of 300 kg weight breed 450 kg

1.wheat 289,5 362,5 272,5 365,0
2.barley 907,5 1090,0 4525 730,0

3. perennial grass

3.1. hay (alfalfa) 720,0 1800,0 540,0 1825,0
3.2. haylage 1080,0 1440,0 1080,0 1800,0
3.3. Green feed 7200,0 9000,0 5400,0 5400,0

4. Corn

4.1. silage 1800,0 2160,0 900,0 1800,0
4.2.grain 219,0 182,5 182,5 365,0
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We formulate a numerical model of the problem.

Find a minimum

L(X,y):2279.0X11+1096.0X12+26 18.0X13+5071.0X14+9225.0X15+13574.0X1+7743.0X17t+
+2000.0x,;,+1000.0%2,+2000.0x53+ 5000.0X24+9000.0%25+13000.0%26+7000.0%,7+

+50040.0 y: +55080.0 y: +18030.0 y2 +25020.0 y2 +

with conditions of

D %, =% <280,

7

j=L

(1+0,06x10)z

10

(7)

(8)

2070,0x,,+1500,0%,,=289,5y; +362,5 y; +272,5 y> +365,0 y?,

1962,0%;,+0X2,=907,5 y: +1090,0 y: +452,5 y2 +730,0 y?,

2380,0x,3+1700,0%,3=720,0 y; +1800,0 y; +540,0 y; +1825,0 y?,

6281,0x,4+0X2,=1080,0 y; +1440,0 y; +1080,0 y/ +1800,0 y: ,
5730,0x,5+0x,5=7200,0 y; +9000,0 y; +5400,0 y? +5400,0 y;,
12340,0x,6+0x,6=1800,0 y; +2160,0 y; +900,0 y/ +1800,0 y ,

20280,0%17+0X,=219,0 y:+182,5 y: +182,5 y2 +265,0 yZ,

45000,0 y:+50000,0 y: +15000,0 y2 +15000,0 y2 =20,

3600 y!+4500 y: >125000,

300y; +450 y7 >25000,

Xj=0,

Y|h 20,

k=1,2,
1=1,2,

j=12,...

h=1,2.

17’

9)

(10)
(11)
(12)
(13)

Let us write down the numerical model of problem (9)-(15) in the form of a table 8.

Table 8

Representation of the condition of problem (3.9)-(3.15) in the form of a table

X11

X12

X13

X14

X15

X16

X17

X21

X22

X23

X24

1

1

1

1

1

1

1

2070.0

1500.0

1962.0

2380.0

1700.0

6281.0
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5730.0

12340.0

20280.0

2279.0 1096.0 | 2618.0 | 5071.0 | 9225.0 | 13574.0 | 7743.0 | 2000.0 | 1000.0 | 2000.0 | 5000.0

Continuation of Table 8

X25 X26 Xo7 Y Y; yi A z
< 280
1 1 1 < 86
-289,5 -362,5 -272,5 -365,0 = 0
-907,5 -1090,0 | -452,5 -730,0 = 0
-720'0 1ann n _BEAN N 19926 N = O
_1080'0 1440 N0 1N0Qn N 1ann n = O
0 -7200,0 -9000,0 | -5400,0 -5400,0 = 0
0 _1800’0 21680 N (oTaTa N2 1200 N = O
0 -219,0 -182,5 -182,5 -265,0 = 0
3600,0 eonn > 125000
300,0 450,0 > 25000
45000,0 50000,0 | 15000,0 15000,0 | -1 = 0
9000,0 | 13000,0 | 7000,0 | 50040,0 55080,0 | 18030,0 25020,0 | 0,16 | — min

Having solved the problem (7)-(13), by the method in [1], we determine the
optimal plan for the production of livestock products (milk in the amount of 125100
kg, meat - 25050 kg), the distribution of acreage for fodder crops

X={ x11=14,7; X1,=36,2; X13=63,1; Xx14=22,3; X15= 96,4; X14=13,0; x.7=1,0}
and the composition of animals in the dairy and meat sector
y={yi =1L y;=27, y;=1 y;=55}.

The loan received by the farm is 2235000.0 soms, and the annual payment for

the loan is 357600.0 soms. With such a plan, the total costs are equal
L(x,y) =4713653.0 soms.
Output. From the optimal solution, it follows that for the production of the

planned volume of products in the amount of 125 tons of milk and 25 tons of meat,
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the farm must have 27 cows of the 2 type and in the amount of one cow of the 1 type
for milk production. For meat production, the farm must have 55 cows of the 2 breed
and one cow of the 1 breed.

At the same time, out of 280 hectares of irrigated and 86 hectares of rainfed
sown areas, the farm uses only 246.7 hectares of irrigated sown areas for agricultural
crops for fodder, i.e. 14.7 hectares for wheat; 36.2 hectares for barley; only 181.8
hectares for perennial grass, of which 63.1 hectares for hay (alfalfa); 22.3 hectares for
haylage; 96.4 ha is used as green forage; 14.0 hectares are used for corn, of which
13.0 hectares are used for silage and 1 hectare for corn grain.

The total expenses for growing crops for feed and caring for animals to obtain
125.1 tons of milk, 25.05 tons of meat, including the annual loan payment in the
amount of 357600 soms, amounted to 4713653.0 soms.
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THE PROBLEM OF DETERMINING THE SIZE OF THE LOAN AND THE
SELECTION OF PRODUCTIVE BREEDS OF ANIMALS
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The work developed a two-level mathematical model of the problem of optimizing the choice
of a productive breed of animals, which allows to ensure the planned volume of production and the
size of the loan, as well as to distribute the unused sown area of the farm for vegetable growing.
The algorithm for solving the problem is illustrated with a numerical example.
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OHAYPYUITYH IUJIAHJALITHIPHUITaH KOJIOMYH j>KaHa HACBISIHBIH KOJOMYH KaMChI3 KbUIyyra,
OLIOHION 3Je MaijanaHbUI0all *KaTkaH ai00 asHTBIH OOIYLITYPYYr® MYMKYHUYJIYK OepreH,
OHIIYPYMAYY JKaHbIOApiapAblH TYKYMYH TaH/IOOHY ONTHUMAJAAIITHIPYY MAaCEIECUHUH JKHU
JEHID3J1/1yY MaTeMaTUKaIbIK MOJEIM MINTENUN YbIKKaH. JKamburya ectypyydy dapOa. Macenenu
Yeyyy aJITOPUTMU CaHJIbIK MUCaJl MEHEH YarbULIbIPbUITaH.

YpyHTTYy ce34ep: MaTeMaTHKaJblK MOJENb, ail00 asHTbl, OHAYPYLI, TYLMIYMIYYJIYK,
KEepeKTeeo, Kupele, KpeIuT.
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B pabotre pa3paboraHa NBYXypOBHEBas MaTeMaTH4yecKas MOJENb 3aJaud ONTUMHU3ALUU
BbIOOpA MPOTYKTUBHOM MOPO/IbI )KUBOTHBIX, O3BOJIAIOMINX 00ECIIEUNTh 3alUIaHUPOBAHHBIN 00beM
MPOAYKLIMH U pa3Mepa KpeauTa, a TaKKe paclpelesuTh HEUCIOIb30BAaHHYIO MOCEBHYIO IUIOLIAAb
X03s1iicTBa 1MOJ KYJIbTYPY OBOLIEBOJICTBA. AJIFOPUTM pELICHUS 3a/1a4 NPOMIIIIOCTPUPOBAH Ha
YUCJIIOBOM IIPUMEDPE.

KitoueBble ciioBa: mMaremaruyeckass MOJENb, [IOCEBHAs IUIOLIA/b, POU3BOJACTBO, YpOXKai,
norpebiieHue, 10X0A, KPEauT.

Problem statement. For the production of planned livestock products in volume
a", he H the household needs a loan in the amount z<D mox «% for r years
(where D - maximum loan amount) to renew the composition of animals with more
productive breeds.
To create working conditions depending on the breed of animals and the
corresponding daily ration for one animal, a one-time financial expense is required in
the amount of &",1eL,heH.

The farm has irrigated sowing areas of sy ha. xo ha of them the household uses it
to grow crops for feed, (So-xo) ha - uses for vegetable crops sold on the sales market,
where x,- sought quantity.

Also known: the yield of agricultural crops for animal feed and vegetable crops,
as well as the costs of growing them.

It is required to determine the optimal composition of animals y,leL,heH,

that allows to ensure the production of products in the planned volume and the size of

the financial loan z, as well as the volumes of vegetable products sold v;, jeJ,,

delivering maximum net income to the farm.
The mathematical model of the problem can be presented in the form.

To find the maximum

G(X,V) =2 (dyv; = ¢,x)) +{D, > .c"q'yy —min L(x, y)} (1)
jed heH leL '
under conditions
z X; =Sy — %o (2)
jed
axj=Vvj, je J, (3)
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x>0, v,20, jed, (4)
where

X={x: jed} v={y;:jed},

Xy v - optimal solution to the problem:

LG, Y) =D ¢X;+ 2. ¢y +(1+ad)z/ A — min (5)

jedy heH leL

under conditions

DX =X <5, (6)
i€do
ax; =Y > N, ied, (7)
heH leL
> gy =a", heH, (8)
leL
Zzglhy|h =2<D, 9)
leL heH
X; =0, jel,, (10)
y >0, lel, heH - integer, (11)
Xo=>0, z2>0, (12)

where
x={xj: jedo}, y={y':heH, lel}.
J — is the set of types of crop and vegetable products produced in the household,
J=JoUd;, JoNJ;1=0;
Jo— 1s the set of types of crop products for feed  j&Jo;
J1 —is the set of types of vegetable products, je Ji;
h —is index of the type of livestock products produced on the farm, he H;
H — is the set of types of livestock products, H={1,2,..., H};
| —is an animal breed index, | €L;
L — is the set of types of animal breeds, L={1,2,..., L };
Jj — is index of the type of crop and vegetable production produced on the farm, j e J;

So— IS the size of the cultivated area on the farm;
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a; —Is yield of j-type of culture on the farm, je&J;
a?. — is an annual demand for j type crop products, in accordance with the daily feed
ration for one animal | breeds in production of h type of product, where

a?,:ﬂﬂy?,, jedy, lel, heH; (13)

ﬂ,-h. — is the share of the j-th crop production in the daily ration for one animal the I-th
breed on the farm for the production of the h-th type of product, j€Jo, | €L, he H;

}/?. — is the number of days in the ration of feeding the j-th type of crop production
for the I-th breed of animal in the production of the h-th type of product, j&Jo, | €L,
he H;

0" — is the volume of production of the h-type received by the farm from one animal
I-th breed, 1L, he H;

a"— is the planned volume of production of the h-type of livestock products produced
by the farm, he H;

d; — is realizable price of the j-th type of vegetable production, je J;;

c"— the realizable price per unit volume of the h -th type of animal husbandry
product, he H;

cj— are costs per unit of sown area for the j-th type of crop, j&Jo;

¢ — is an annual consumption per one animal of the I-th breed in the production of
the h-th type of livestock products, he H, | L;

& — is one-time financial expense to create production conditions for one animal of

the I-th breed in the production of the h-type of product, leL, he H;
A — payback period of the loan; a — interest rate of the loan.
Variables sought:
X;j— is the size of the cultivated area allotted for the j-th type of crop, je&Jo;

v; — is the volume of production of vegetable products of the j-th type, j €Ji;

127



y,— IS the number of animals of the I-th breed on the farm for the production of the h-

th type of product, he H, | L;

Xo — IS the number of animals of the I-th breed on the farm for the production of the h-
th type of product,

Z — is the size of the loan received by the farm.

Obijective function (1) determines the maximum net consumption of the farm
from the production and sale of livestock and vegetable products;

Equality (2) determines that the total size of the sown area allotted for each type
of vegetable growing should be equal to the size of the sown area of the farm not
occupied by fodder crops;

Equality (3) determines the volume of vegetable production received from the
sown area of farms not occupied by fodder crops;

Constraint (4) does not require the sought variables to be negative;
Objective function (5) determines the minimum total costs of a farm for growing
forage crops and keeping animals, as well as payment for a loan. Constraint (6)
requires that the total sown area allotted for fodder crops should not exceed the size
of the available sown area of the farm;

Constraint (7) requires that the volume of products produced for each type of
feed should be equal to the volume of animal needs contained in the farm;

Condition (8) requires that the volume of livestock production for each species must
not be less than the planned volume of production of this product;

Equality (9) determines the size of the loan received by the economy, should not
exceed its maximum size of issue;

Constraint (10), (12) does not require the variables to be negative, but condition
(11) requires that the value of the variables must be an integer.

Algorithm for solving the problem. Calculations begin with determining the

values of the parameters a;‘, , ]€Jo, €L, he H according to equality (13).

Further, using the known data a;, ¢j, j&Jo, 6’.h, C.h, E.h, " heH, leLusy, D,

o, A a partially integer model of the problem of the form (5) - (12) is constructed.
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In what follows, a numerical model of the problem of the form (1) - (4) is formulated

using known data a;, ¢;, d;, jeJ;, 6", ", leL, he H and data minL(x,y), (s,-%,) ,
X,y

y", l €L, he H from the optimal solution to problem (5) - (12).
Problem (5) - (12) and (1) - (4) are solved sequentially. The solution method

ends.
From the solution of these problems, the quantitative composition of animals is

determined y={y/', he H, l&L} on the farm providing the volume of production of

livestock products according to the planned volume, the size of the sown area for
each type of crop for feed x={ X;, j<Jo} and vegetable crops X ={ x;, j&€Ji}, sold in
the sales market, as well as the size of the financial loan received by the farm,
delivering the maximum net income z<D. Let's check the performance of the
mathematical model of the problem using a numerical example.

Example. Let the farm has a sown area of S = 600 hectares and has planned to
produce livestock products: 125 tons of milk and 25 tons of meat, and the farm plans
to allocate the sown area not occupied by fodder crops for vegetable crops (onions,
potatoes). To meet this volume of production, the farm planned to update its
production composition of productive animals with more efficient breeds. For this
purpose, the farm needs a financial loan of the maximum size, which is no more than
50 million soms for 10 years at 6% per annum.

The farm is faced with the choice of the best breeds from the following two
breeds of animals for the production of milk and meat in the corresponding known
daily ration of feeding in [1].

Known for the dairy direction: the first type of breed is dairy cows with a milk

yield of 3600 kg, i.e. (6= 3600 kg);

the second type of breed is dairy cows with a milk yield of 4500 kg, ie. (6?,":21=
4500 kg);

- In the direction of meat: the first type of breed is bulls (heifers) with a live
weight of 300 kg, i.e. (8'5° =300 kg);
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- In the direction of meat: the first type of breed is bulls (heifers) with a live
weight of 300 kg, i. (65 = 450 kg)
In addition, the following are known: - the yield of agricultural crops for feed,

vegetable crops and the costs of their cultivation, as well as the selling price
(Table 1).

Table 1
wheat | barley | hay Green | Silage Grain onion | Potatoes
(alfalfa) | haylag | feed (corn) (kukur.)

e
1 2 3 4 5 6 7 8 9

a; (kg) 2070.0 | 1962.2 | 2380.0 | 6281.0 | 5730.0 | 12340.0 20280.0 | 4500.0 | 7000.0
cj (som) 2279.0 | 1096.0 | 2618.0 | 5071.0 | 9225.0 | 13574.0 7743.0 | 25000 | 20000
d; (som) | 14.0 12.0 5.0 - - - 8.0 15.0 20.0

- expenses for the maintenance of one animal of each breed in the production of milk

and meat, respectively ¢5'=50040.0 soms, ¢/, =55080.0 soms, Cc';’=18030.0

soms, ¢/ =25020.0 soms and the selling price of milk ¢"=25 som/kg and meat

¢"*=130 som/kg.

- one-off costs per animal depending on the breed, i.e.
g =(g, &, &2, &) =(45000.0, 50000.0, 15000.0, 15000.0);

- loan term 4 = 10 year;
- loan interest rate o = 6 % per year.

It is required to determine the optimal composition of animals for dairy and
meat production, allowing to ensure the planned volume of milk and meat production
and the size of the loan, as well as the plan for the production of vegetable products
so that the net income of the farm would be maximum.

Let us formulate a numerical model of the problem. Using a daily feeding ration
for the listed breeds in the dairy and meat direction given in work [1], we will

determine by the formula (13) the annual need for each type of agricultural products
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included in the composition of feed for one dairy cow with a milk yield of 3600 kg of

milk and one dairy cow with a milk yield of 4500 kg (Table 2).

Table 2
Annual feed requirement per animal, depending on
on breed and productivity

Name of Feed requirement for one dairy | Feed requirement per cow for meat
stern cow

1 Buma mopoxsl | 2 Buaa moponsl | 1 BHaa TOpoabl ¢ | 2 BHAA MOPOIBI C

c ynoem 3600 kr | ¢ ymoem 4500 xr | >kuBbiM BecoM 300 | KUBBIM BECOM

KT 450 xr

1. wheat 289,5 362,5 272,5 365,0
2. barley 907,5 1090,0 452,5 730,0
3. perennial herbs
3.1. hay (alfalfa) 720,0 1800,0 540,0 1825,0
3.2. haylage 1080,0 1440,0 1080,0 1800,0
3.3. Green feed 7200,0 9000,0 5400,0 5400,0
4.corn
4.1. silage 1800,0 2160,0 900,0 1800,0
4.2.grain 219,0 182,5 182,5 365,0

Next, we will determine the net income of the farm from the production of
vegetable and livestock products.
Then the numerical model of the problem according to (1) - (4) and (5) - (12)
will be written in the form.
To find the maximum
G(x,v) = 15.0v,+20.0v,- 25000.0xg - 20000.0xg + 25(3600 v +

+4500y;) +130(300y;? +4507?) - ”x"y” L(x,Y) (14)
under conditions
> x, =600-%,, J,={8,9} (15)
ied
4500.0xg=vg, 7000.0Xg = Vq, (16)
XjZO, Vj =0, jEJl, (17)

where
X={x:j&eh}, v={v:jeh}, a %, 9y, leL={12}) heH= {12} - optimal
solution to the problem:

To find the maximum

131



L(x,y) = 2279.0X,+1096.0x,+2618.0x3+ 5071.0X,+9225.0X5+13574.0Xg+
+7743.0%,+50040.0 y: + 55080.0 y: +18030.0 y? +25020.0 y2 + 0,16z  (18)

under conditions

DX =% <600, J,={12,..,7} (19)

iedo

2070.0x; = 289.5y!+362.5 y: +272.5 y2 +365.0y?,
1962.0x, = 907.5y:+1090.0 y: +452.5 y2 +730.0 y?,
2380.0x5 = 720.0 y:+1800.0 y: +540.0 y2 +1825.0 y?,
6281.0x, = 1080.0y!+1440.0 y: +1080.0 y2 +1800.0 y?,
5730.0xs = 7200.0 y*+9000.0 y: +5400.0 y2 +5400.0 y?,
12340.0xs = 1800.0 y:+2160.0 y: +900.0 y2+1800.0 y2,
20280.0x; = 219.0y!+182.5y} +182.5 y? +265.0 yZ, (20)
3600.0 y*+4500.0 y: > 125000.0,
300.0 y? +450.0 y2 > 25000.0, (1)
45000.0 y+50000.0 y: +15000.0 y2 +15000.0 y? =z<50000000.0, (22)

y' >0, leL={1,2}, heH={12} (24)
7>0, Xo > 0. (25)

We solve problem (18) - (25) by the method described in [2].

We will obtain an optimal plan for the production of livestock products (milk -
125100 kg, meat -25050 kg), a plan for the distribution of sown areas for fodder
crops (ha) x={ x,=14.7; x,=36.2; x3=63.1; X;=22.3; Xs= 96.4; x,=13.0; x,=1.0},
plan - vegetable culture ¥ = {x,=0; x,=353.3}, the composition of the animals kept
in the dairy and meat farmy = {y; =1, vy;=27; y’=1 y>=55}, the size of the
loan received by the household is z = 2235000.0 soms for ten years at 6% per annum.

From the optimal solution, it follows that the following products were produced:
milk in the amount of 125100 kg, meat - in 25050 kg.
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The composition of the breeds of animals kept - in the dairy direction in the
amount of 1 cows of the 1st breed and in the amount of 27 cows of the 2nd breed, and
in the meat direction in the amount of 1 cow of the 1st breed, and in the amount of 55
cows of the 2nd breed. Of the available 600 hectares of sown area, 246.7 hectares are
used for agricultural crops for fodder, the remaining 353.3 hectares for potatoes.

Taking into account all income and expenses, as well as the annual payment for
a loan in the amount of 357600.0 soms, the net income of the farm is 44066347.0

soms.
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OPTIMIZATION OF PRODUCTION OF AN AGRICULTURAL
COOPERATIVEWITH FULFILLMENT OF THE COMMITMENT PLAN

'Zhusupbaev A., *Asankulova M., 'Zhusupbaeva G.A., Barganalieva Zh.
YInstitute of Mathematics NAS KR,
2KGU named after I. Arabaeva

The paper formulates a mathematical model for determining the optimal size of the cultivated
area of farms of the cooperative for each type of culture and the amount of financial credit when
fulfilling the plan of the obligation.

Keywords: mathematical model, sown area, financial credit, cooperative, optimal size.

Byn sxymymiTa MUIZIETTEHMEHHUH TUIAHBIH aTKapyyJa eCyMIYKTOpAyH ap Oup Typy OoroHua
KOOMEpaTUBANH 4YapOalapblHBIH ai/I00 asHTTAPBIHBIH ONTHMAJAYy ©J4YOMYH >KaHa Kap>KbUIbIK
HACBISHBIH KOJIOMYH aHBIKTOOHYH MaT€MAaTHUKAJIBIK MOJEJIN NIITEIUI YbIKKAH.

YpyHTYyy ce3lep: MaTeMaTHKalblK MOJEINb, aiilo0 asHThI, Kap>KbUIBIK HACBIS, KOOIEpPaTHB,
ONTUMAJIIYy ©JTYOM.

B pabote cdopmynupoBaHa mareMaTudeckas MOJEIb ONPeAeTIeHUs ONTUMAIBLHOTO pa3Mepa
MTOCEBHOM TIJIOMIAN XO3SIMCTB KOOMEpaThuBa Mo KaKAbId BUJT KYJIbTYphl M o0beMa (DUHAHCOBOTO

KpCauTa Mpu BBIIIOJIHCHUU T1JIaHa 00s13aTeNbCTBA.
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KiroueBble ciioBa: mMaTeMaTHYecKas MOJCJIb, IIOCCBHasd ILIOIIAAb, q)HHaHCOBOFO KpCOuT,
KOOIIEPATUB, ONTHMAaJIBHOTO pa3Mep.

Formulation of the problem. Let an agricultural cooperative consisting of p
farms with sown areas sy, keK = {1,2, ..., p} planned to grow je Jo= {1,2, ..., n}
types of agricultural products for a processing enterprise Ao under a contract and the
wholesale purchase price of a unit of volume of each type of product is established.

It is assumed that the yield of each type of crop in each farm is known, the rate
of consumption of mineral fertilizers per unit area for each type of crop and the
wholesale price of their purchase, as well as the interest rate of the loan.

It is required to determine the optimal size of the sown area for each type of
crop, as well as the amount of financial credit for a year so that the volume of
agricultural production produced by the cooperative under the contract is fully
fulfilled and the profit of the agricultural cooperative is maximum.

The mathematical model of the problem can be written as.

Find the maximum

D(x,2) = TexlZjes, Gobuxij — (1 + @)z ) (2)
under conditions

Yicjo Xkj = Sk k € K, (2)
Ykek bkjXij = o, J € Jo, (3)
i€l (CEj + Xrer Ck aZj)xkj =2z, k€K, (4)
YkekZk < 0, (5)
Xj=0, keK, j€/ (6)

zx=>0,  keK, (7)

where cy; =cxjo+ckj, k€K, j€J,, cp=C+c;’, k€K, r €ER,
x={X: j€Jo, kK€K, z={z: k€K}.
Here j- is the index of the type of agricultural product, j € J, = {1,2, ...,n};
Jo- many indices of the type of agricultural products;
r - the index of the type of mineral fertilizers used by the farm for growing

agricultural crops, r € R={1,2,...,R™};
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R- many types of mineral fertilizers used by the farm;
k- cooperative farms index, k € K = {1,2, ...,p};
K- many indices of farms in the cooperative.

The known parameters are:

Cjo- the purchase price of a unit of weight for the j-th type of agricultural product

under the contract, j € J,;
Ckjo- transportation costs for the transportation of crops from a unit of the sown area
of agricultural crops of the j-th type from the k-th farm to the processing enterprise,
keK, je],
c.- consumption for the purchase and transportation of a unit volume of r-type
mineral fertilizers, where c,=c"+c¢;", r€R, k € K;
¢y | - transportation costs for the transportation of a unit of weight of the r-type of
mineral fertilizers in the k-th farm, ¢" - purchase price;
Sk - the size of the sown area of the k-th farm, keK;
ajo - the volume of agricultural products of the j-th type produced by the cooperative
for the processing enterprise according to the contract, j € J;
aj ;- the consumption rate of the r-type of mineral fertilizer per unit of sown area for
the j-type of crop in the k-th farm, r € R, j € J,, k € K;
by ;- the yield of the j-th type of agricultural crop per unit of sown area in the k-th
farm of the cooperative, j € J,, k € K;
Cyj - the costs of growing the j-th type of agricultural crop per unit of sown area in the
k-th farm of the cooperative, j € J,, k € K;
« - loan interest rate;
Q - the maximum allowable amount of a loan.

Variables sought:
xy; - the size of the sown area for the j-th type of crop in the k-th farm, j € J,, k € K;
7~ the size of the loan received by the k-th farm at an interest rate for growing crops.

Obijective function (1) determines the maximum net income of the farms of the
cooperative;
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Constraint (2) requires that the total sown area for each type of crop on the farm
should not exceed the available sown area;

Equality (3) determines that the volume of products of each type produced by
the cooperative must correspond to the planned volume under the contract;

Equality (4) determines the size of the financial credit received by the farm;

Constraint (5) requires that the total amount of financial credit received by farms
should not exceed the maximum possibility of issuing;

Constraint (6), (7) requires the non-negativity of the variables.

Model (1) - (7) can be represented in the form of Table 1.

Table 1
Xig | X2 | oo | Xan | Xon | Xo2 | oo | Xon | -oo | Xp1 | Xp2 | oo | Xp1 | 22 Zy | Zp
1 1 1 < |s,
1 1 1 < | S
1 |1 1 < |s
b b4 bp1 = | ap
b12 b22 bpz = Ay
bin b2n bpn = ano
Ou | Q2 | -~ | Omn -1 = |0
Oo1 | Q22 | --- | O2n -1 = 1|0
qpl qp2 qpn -1 = 0
dll d12 dln d21 d22 d2n dpl dp2 dpl '(1+(1) '(1+(1) '(1+(1) — | Mmax
where

dy = Cjobrj — ckj» K €K, j € Jo, Q4= Cxj + XrerCk Akjy kK €K, j €],
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C,zj=ckj0+ckj, kEK, ]E]O
Algorithm for solving the problem. We start the calculations by determining

the values of the parameters dy;, Oy, cx;, k € K, j € Jo. Using known data S,
k €K, aj, j€]Jo bxj, k€K, j€]Jy we construct a numerical model of the
problem according to (1) - (7). Next, we will use the PPP LP developed in the EMM
laboratory [1] and solve the problem. The calculation algorithm ends.

From the solution of the formulated numerical model (1) - (7), we determine the
optimal plan for the distribution of sown areas for each type of crop, the amount of
financial credit received by each farm and the amount of the cooperative's net income
when fulfilling the plan of the obligation.

Let's give a numerical example. Let the agricultural cooperative in the region
consist of 3 farms with sown areas (ga) Sx= (S1, S,, S3) = (2000, 1500, 1500).

An agreement "on the production of agricultural products” was concluded
between the processing enterprise and the agricultural cooperative of the region for
the current year for three types of agricultural products in the following amount: for
the first type of agricultural products 10000.0 tons, for the second type of agricultural
products 10000.0 tons, for the third type of agricultural products 10000.0 tons and set
the wholesale purchase price of the processing company per unit of weight for each

type of product mpomykuuu cjo = (c10,C20,€30) = (15 som/kg, 12 som/kg, 10

som/kg).
Known: yield for each type of crop of each farm, Table 2.
Table 2.
Name Name of crops
Farms Agricultural Agricultural Agricultural
Ne 1 Ne 2 No 3

Farms Ne 1 | 10 tons / ga 15tons/ga 6 tons/ ga
Farms Ne 2 | 8 tons / ga 12 tons / ga 6 tons/ ga
Farms Ne 3 | 12 tons / ga 15tons/ga 10 tons / ga
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- the costs of mineral fertilizers and resources, as well as their purchase prices (Table
2), used for a unit of sown area;

- costs of cultivation, the rate (costs) of mineral fertilizers and resources used per unit
of sown area, as well as their purchase prices, Table 2;

-the interest rate of the loan o = 6% per annum;

- the maximum amount of a loan is Q = 450000000.0 soms.

It is required to determine the optimal size of the sown area for each type of crop
of each farm and the corresponding size of the financial loan so that the volume of
the cooperative's production according to the contract is fulfilled, while the profit is
maximized.

Based on the above data, the mathematical model of the problem according to
(1) - (7) is presented in the following form.

It is required to maximize the function

D(x,z) = 150000x;; + 180000x;, + 60000x,5 + 120000x,, +
+144000x,, + 60000x,; + 120000x5; + 180000x5, +
4+ 100000x35 — 1,06(z; + z, + 2z3) (8)
under conditions
3_1%y; <2000, Y3 x,; <1500, 3_1x3; < 1500, (9)
10000x,; + 8000x,, + 12000x5, = 10000000,
15000x;, 4+ 12000x,, + 15000x3, = 10000000,
6000x;5 4+ 6000x,5 + 10000x3; = 10000000, (10)
43150x,1 + 45150x,, + 12300x3; = 74,
47150x,; + 52150x,, + 17300x,3 = z,,

451505, + 47150x5, + 17300x33 = z, (11)
Y3 _. 7, < 450000000, (12)
x>0, k=123, j=1,2,3, (13)
z,>0, k=1,2,3. (14)

where x={x: k=123, j=123, z={z: kk=12,3}.
Mathematical model (8) - (14) can be presented in the form of table 3.
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Table 3.

X11 X12 X13 X21 X22 X23 X31 X32 X33 Z1 73 73
1 1 1 < 2000
1 1 1 < 1500
1 1 1 < 1500
10000 8000 12000 = 10000000
15000 12000 15000 = 10000000
6000 6000 12000 = 10000000
43150 | 45150 | 12300 -1 = 0
47150 | 52150 | 17300 -1 = 0
45150 | 47150 | 17300 -1 = 0
1 1 1 < 450000000
o o o o o o o
] S 8 ] s ] ] ] S © © © — | max
S S S S S S S S S S S S
] e} S I < S I i) S o - -
— — o — — [{e] — — — 1

From the solution of problem (8)-(14), we will determine the optimal plan for the
distribution of the sown areas of each farm for each type of crop No.1, No. 2 and
No.3 x={x;; = 1000.0, x;, = 666.7, x;3 = 1000.0, z; = 73250000.0, z, = 0,
z3 = 173000000.03}, the volume of a financial loan for a year at o = 6%, as well as
the profit of the cooperative, i.e. Dx, z = 274 million soms.

From this optimal solution, it follows that in order to fulfill the plan of the
obligation, the cooperative should allocate 1000.0 hectares from the first farm for the
first type of crop, 666.7 ha for the second type of agricultural crop, and 1000.0
hectares of sown area for the third type of crop from the third farm. At the same time,
the cooperative receives 90550000.0 soms of a loan at a = 6% per annum. Of these
amounts, 73250000 soms corresponds to the first farm, and 17300000.0 soms to the
second farm of the cooperative. For the fulfillment of the plan of the obligation of the
cooperative, the participation of the second farm was ineffective. With this plan, the

maximum profit of the cooperative is 274.0 million soms.
REFERENCES

1. Eshenkulov P., Jusupbaev A., Kultaev T.Ch. The Method of solving the
problem of linear programming on a computer, Osh: OshSU, 2004 y,60 p.

139



MSC 49M37

DETERMINATION OF THE OPTIMAL COMPOSITION OF
PRODUCTIVE ANIMALS AND THE SIZE OF THE RECEIVED LOAN BY
THE CRITERION OF THE MAXIMUM OF NET INCOME

!Asankulova M., *Nurlanbekov A.N., 2Zholborsova A.
YInstitute of Mathematics NAS KR,
2KGU named after I. Arabaeva

In this article, a mathematical model and an algorithm for solving the problem of choosing the
optimal breed of animals in the farm have been developed, allowing to produce the planned volume
of production and the size of the financial loan received, as well as the volumes of vegetable
products sold, at which the maximum net income would be achieved. The performance of the model
is shown with a numerical example.

Key words: mathematical model, algorithm, volume, credit, vegetable growing, products, net
income.

byn makanmajma eHIYypYLITYH IUIaHJAJITaH KOJIOMYH JKaHA aJbIHTaH Kap>KbUIBIK HACBISIHBIH
KOJOMYH, OIIOHIOW 3Ji€ KOJIeMYH 4Yblrapyyra MYMKYHAYK OepreH udapOana »xaHblOapiap.bIH
ONTUMAJLYy TYKYMYH TaHJ00 MAacCeJIeCHH YEYYYHYH QJITOPUTMU HIITENUI YBbIKKAaH. CAThUITaH
KalllbUTya-)keMumrep, Oya  ydypJa MakKCHUMalAyy Ta3za Kupemie anblHMak. MojaenauH
KOPCOTKYUTOPY CaH/IbIK MUCAJIJ]a KOPCOTYIINOH.

YpyHTTYy ce3aep: MaTeMaTUKaJbIK MOJIEIb, AITOPUTM, KOJIOM, HAChIs, JKalllbllya 6CTYPYY,
MPOIYKIIUSI, Ta3a KUPEIIIE.

B a710it ctaTthe paspabotaHa MaTeMaTHYecKast MOJIENb U alTOPUTM pElIeHUs 3a7aud BeIOOpa
ONTUMAIBHOM TOPOJIBI )KUBOTHBIX B XO3SHMCTBE MO3BOJISIONIMX MPOU3BOAUTH 3allJIaHUPOBAHHBIN
00BEM MPOAYKILIUU U pa3Mep MoTydaeMoro (MHaHCOBOTO KPeInTa, a Takke O00BEMBI pealn3yeMoit
MPOJYKIIMM OBOIIEBOJCTBA, MPU KOTOPOM  JIOCTUTAIO OBl MaKCUMAaJIbHBIM YUCTBIA JOXOJ.
PaGoTocnocoOHOCTH MOJIENTM TTOKa3aHa Ha YUCIOBOM MPUMEpE.

KiroueBrie crmoBa: MareMmaruueckass MOJIENb, aITOPUTM, OO0BEM, KPEAHUT, OBOIIEBOJCTBO,
MPOYKLIHSI, YACTBIN TOXO/I.

Formulation of the problem. To fulfill the indicative plan for the production of
livestock products in the amount of a", he H, the farm has the opportunity to obtain
a financial loan z<D at a rate of interest per annum for years (where D is the
maximum loan amount) and to update the composition of animals with more
productive breeds.

It is assumed that for each type of animal breed, productivity and the
corresponding daily feeding ration are known, as well as a one-time consumption per

animal in the amount q/,leL,heH depending on the breed and the type of product

obtained.
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In addition, the farm has irrigated areas of s ha. Of these, the farm uses x
hectares for growing agricultural crops for animal feed, and (s-x) hectares for
vegetable crops sold on the market.

Also known: the yield and costs of growing crops for animal feed, and the costs
of growing vegetables sold on the market.

It is required to determine the optimal composition of animals y',1eL,heH,

allowing to ensure the production of products in the planned volume and the size of

the financial loan z, as well as the volumes of vegetable products sold v;, jeJ,,

delivering the maximum net income to the farm.
The mathematical model of the problem can be presented in the form.

Find the maximum

L, V)= c"X"+ D Ev, = X, = > o'y —(+ad)z/ A (1)

heH jed; jed heH leL

P YCIIOBUSX

ij =S5, (2)
jed
ax; = >y, jedy, (3)
heH leL
aXj=Vj, jed;, (4)
>y =x">a", heH, (5)
leL
2. 2.ay=2<D, (6)
leL heH
X >0, v,>0, jel,ul, (7)
X" >0, heH, (8)
y' 20, leL, heH -integer, 9
z >0, (10)

where x={x" >0, he H},v={Vv; >0, je J;}, J= J,ud;,, J,NJ, =0,
J — many types of crop and vegetable products produced on the farm;
Jo— many types of crop production for feed, j&Jo;

J1 - many types of vegetable products, je Ji;
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h — index of the type of livestock products produced on the farm, he H;

H — many types of livestock products, H={1,2,..., H};

| — index of the species of animal breeds, |e<L;

L- many types of animal breeds, L={1,2,..., L };

J — index of the type of crop and vegetable production produced on the farm
jed;

s— the size of the cultivated area on the farm;

a;— the yield of the j -th type of crop on the farm, j&J;
a,'j‘ - the annual need for the j-th type of crop production, in accordance with the

daily feeding ration for one animal of the I-th breed in the production of the h-type of

products, where

ah=phh, jedy, lel, heH; (11)

jl
ﬂ,-h. - the share of the j-th crop production in the daily ration per one animal of

the I-th breed on the farm for the production of the h-th type of product, je&Jo, | €L,
he H;

7?. - the number of days in the ration of feeding the j-th type of crop production
for the I-th breed of animal in the production of the h-th type of product,
jedo, lel, he H;

8" - the volume of production of the h -th type received by the farm from one
animal of the I-th breed, l&L, he H;

a" — indicative production plan of the h -th type of livestock products produced
by the farm, he H;

¢, - the realizable price of the j-th type of vegetable production, je Ji;

c"- realizable price per unit volume of the h -th type of livestock product,

he H:;

cj — costs per unit of sown area for the j-th type of crop, jeJo;
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¢'- annual consumption per one animal of the I-th breed in the production of
the h-th type of livestock products, he H, | L;
& - one-time consumption per one animal of the I-th breed in the production of

the h-th type of product, leL, he H; 12 - payback period of the loan;
a - interest rate of the loan.

Variables sought:

X; — the size of the sown area allotted for the j-th type of culture, j&Jy;

y/ - the number of animals of the I-th breed on the farm for the production of
the h-th type of product, he H, lL;

x" - the volume of production of animal husbandry of the h -th type, he H;

z — the size of the loan received by the farm.

Objective function (1) determines the maximum net consumption of the farm
from the production and sale of livestock and vegetable products;

Equality (2) determines that the total size of the sown area allotted for fodder
crops and vegetable crops should be equal to the size of the sown area available on
the farm;

Equality (3) requires that the volume of production for each species, produced
for feed, must be equal to the volume of needs of the animals kept on the farm;

Equality (4) determines the volume of products sold for each type of vegetable
growing;

Condition (5) requires that the volume of livestock products produced for each
species must be no less than the volume of the indicative plan for the production of
these products;

Equality (6) determines the size of the loan received by the household, which
should not exceed its maximum size of issue;

Constraint (7, 8, 10) does not require the variables to be negative, but condition

(9) requires that the value of the variables must be an integer.
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Solution method. Calculations begin with determining the values a;‘,, J €Jo,

| L, heH according to equality ) =87}, jeJ,, lelL, heH,

h

Further, using the known data aj, ¢j, jeJo, T, jeJl,H.h, ¢, " &' " heH,

leL and s, D, a, A anumerical model is formulated in accordance with (1)-(10)
and the problem is solved by the standard method. The solution method ends.

From the solution of the problem, the quantitative composition of animals on the
farm is determined y={y", he H, leL} ensuring the volume of production of
livestock products according to a given indicative plan, the size of sown areas for
each type of crop for feed x={ x;, jeJo} and vegetable growing sold to the market
X={ xj, jeJi}, as well as the size of the financial loan received by the farm that
provides the maximum net income. Let's check the performance of the mathematical
model of the problem using a numerical example.

Example. Let the farm have a sown area of S = 600 hectares and planned to
produce livestock products: 125 tons of milk and 25 tons of meat. For this purpose,
the farm needs a financial loan with a maximum amount of up to 50 million soms for
10 years at 6% per annum.

The farm is faced with the selection of the best breeds of animals from the
following two known breeds for the production of milk and meat with an appropriate
daily ration.

Known for the dairy direction: the first type of breed is dairy cows with a milk
yield of 3600 kg (Table 1), i.e. (65" = 3600 kr);

the second type of breed is dairy cows with a milk yield of 4500 kg (Table 2),
i.e. (675 = 4500 kr);

- In the direction of meat: the first type of breed is bulls (heifers) with a live
weight of 300 kg (Table 3), i.e. (65> = 300 kr);

- the second type of breed - bulls (heifers) with a live weight of 450 kg (Table

4),ie. (65 =450 kr).
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The ration of feeding dairy cows of the first type of breed

with a milk yield of 3600 kg of milk

Table 1

Feed name Daily ration kg (1 | Fodder Total | Total for Number of
head) units units 1 head gty days
Lucerne (hay) 4 0,5 2,0 720,0 180
wheat 1 0,2 0,6 180.0 180
straw barley 3 2 360.0
haylage 6 0,3 1,8 1080,0 180
wheat 0,3 109,5
The conc. barley 2,4 15 1 2,4 5475 365
feed corn 0,6 219,0
Silo (corn) 10 0,3 3,0 1800,0 180
Mineral feed 0,010 - - - 365
salt 0,030 - - - 365
Grazing feed 40 - - 7200,0 180
Green feed
Total - - 9,8 - -
Table 2
The ration of feeding dairy milk cows of the second breed
with milk yield 4500 kg of milk
Daily ration Per year
The name of feed (1 animal) Days Qty (1 animal)
1. | Lucerne (hay) 10 kg 180 1800 kg
Wheat 1kg 180 kg
2. | Straw Barley 3 kg 2 kg 180 360 kg
3. Hay 8 kg 180 1440 kg
The Barley 2 kg 730 kg
4. concentrate on Wheat 3 kg 0,5 kg 365 182,5 kg
of the feed Grain (corn) 0,5 kg 182,5 kg
5. | Siloge (corn) 12 kg 180 2160 kg
6. Mineral. feed - 365 3,6 kg
7. | salt - 365 10,8 kg
Grain (corn)
8. Green feed 50 kg 180 9000 kg
Table 3
Daily ration for feeding cattle (bulls, heifers) with live weight 300 kg
Daily ration | Feed | General | Total per [ Days
Name of feed kg (1 nimal), unit unit | 1animal qty
1. | Lucerne (hay) 3 0,5 15 540,0 180
Wheat 0,5 0,4 90,0 180
2. | Straw Barley 2 1,5 0.2 270,0
3. Hay 6 0,3 18 1080,0 180
conc Barley 0,5 182,5
4, feed ' Wheat 15 0,5 1 1,5 182,5 365
Grain 0,5 1825
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5. | Siloge (corn) 5,0 0,3 15 900,0 180
6. | Mineral feed 0,010 - - - 365
7. | Salt 0,030 - - - 365
8. Grazing feed 30 i - 5400,0 180
Green feed
Total - - 6,7 - -
Table 4
Daily ration for feeding cattle (bulls, heifers) for meat
with a live weight of 450 kg
Daily ration
Name of feed (1 head) Days gty Per year (1 head)
1. | Lucerne (hay) 5 kg 365 1825 kg
2. | Straw (Barley) 1 kg 365 365 kg
3. | Hay 10 kg 180 1800 kg
Barley 1 kg 365 kg
4, T:ne concenal® [Grain (con) | 3kg | 1kg 365 365 kg
Wheat 1 kg 365 kg
5. | Siloge (corn) 10 kg 180 1800 kg
6. | Mineral feed - 365 -
7. | Salt - 365 -
Grazing feed
8. Green feed 30 kg 180 5400 kg

In addition, the following are known: - the yield of agricultural crops for fodder, for

vegetable crops and the costs of growing them, as well as the selling price (Table 5).

Table 5
wheat | barley | alfalfa | haylage | Green | Silo Grain (corn) | onion | potatoes
hay feed (corn)
1 2 3 4 5 6 7 8 9
a; (kg) 2070.0 | 1962.2 | 2380.0 | 6281.0 | 5730.0 | 12340.0 | 20280.0 4500.0 | 7000.0
Cj (soms) 2279.0 | 1096.0 | 2618.0 | 5071.0 | 9225.0 | 13574.0 | 7743.0 25000 | 20000
(soms) 14.0 12.0 5.0 - - - 8.0 15.0 20.0

- expenses for the maintenance of one animal of each breed in the production of

milk and meat, respectively C

h=1
1=1

= 50040.0 soms, ¢ = 55080.0 soms, ¢/'3°

18030.0 soms, ¢>= 25020.0 soms and the selling price of milk ¢"= 25 soms / kg

and meat ¢"*= 130 soms / kg.

- additional costs per animal depending on the breed, i.e.

&'=(g, &, &, &)=(45000.0, 50000.0, 15000.0, 15000.0);

- loan term 4 =10 years;
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- loan interest rate o = 6% per annum.

It is required to determine the optimal composition of animals for dairy and
meat production, allowing to ensure the planned volume of milk and meat production
and the size of the loan, as well as the plan for the production of vegetable products
so that the net income of the farm would be maximum.

For the mathematical formalization of the problem, we determine the annual
feed requirement a,'; for one animal of each breed in the production of milk and meat

products, j&do, leL, he H.

Using the daily feeding ration, we will determine the annual need for each type
of agricultural product included in the feed for one dairy cow with a milk yield of
3600 kg of milk and one dairy cow with a milk yield of 4500 kg. We will also
determine the annual need for each type of agricultural products for fodder for one

cow of the first and second types of breed for meat (see Table 6).

Table 6
Annual feed requirement per animal, depending from breed and productivity
Feed requirement per dairy cow Feed requirement per cow for meat
1 breed with 3600 | 2 breed with 3600 | 1 breed with a live | 2 species of live
Name stern kg milk yield kg milk yield weight of 300 kg weight breed 450 kg

1.wheat 289,5 362,5 272,5 365,0
2.barley 907,5 1090,0 452,5 730,0
3. perennial grass
3.1. hay (alfalfa) 720,0 1800,0 540,0 1825,0
3.2. haylage 1080,0 1440,0 1080,0 1800,0
3.3. Green feed 7200,0 9000,0 5400,0 5400,0
4. Corn
4.1. silage 1800,0 2160,0 900,0 1800,0
4.2.grain 219,0 182,5 182,5 365,0

We formulate a numerical model of the problem.

Find a minimum
L(x,v) = 25.0 X" +130.0 x* +15.0v, +20.0v, -{2279.0x,+1096.0x,+2618.0x5+
+5071.0X4+9225.0X5+13574.0Xg+7743.0X7+25000.0x5+20000.0%9+50040.0 y; +
+55080.0 y: +18030.0 y2 +25020.0 y2 +0,167 (12)

with conditions of
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D x, =600, J=J,ud;, J,={1,2,...7} J,={8,9}, (13)
jed

2070,0x, = 289,5 y:+362,5 y: +272,5y2+365,0 y2,
1962,0x, = 907,5y:+1090,0 y: +452,5 y2 +730,0 2,
2380,0x; = 720,0 y:+1800,0 y: +540,0 y2 +1825,0 y?,
6281,0x, = 1080,0y:+1440,0 y: +1080,0 y? +1800,0 y2,
5730,0xs = 7200,0 y:+9000,0 y: +5400,0 y2 +5400,0 y2,
12340,0xs = 1800,0y:+2160,0 y:+900,0 y2 +1800,0 y2,
20280,0x; = 219,0y:+182,5y: +182,5 2 +265,0y2,

(14)
45003 = vy,  7000.0%¢ = V,, (15)
3600y:+4500 y: = x' > 125000,
300 y2 +450 y2 = X2 > 25000, (16)
45000,0 y:+50000,0 y: +15000,0 y2 +15000,0 y2 =z<50000000, (17)
x>0, j€Jo, Vj 20, j€l, (18)
X" >0, heH={1,2}, (19)
y'>0, leL ={1,2}, heH - whole, (20)
z>0. (21)

Let us write down the numerical model of problem (12) - (21) in the form of a
table. 7 and solve it by the method given in [1].

Table 7
Condition of problem (12)-(21) in tabular form
%"=t =2 | Vg Vs X1 Xo X3 X4 Xs Xe X7
1 1 1 1 1 1 1
2070,0
1962,0
2380,0
6281,0
5730,0
12340,0
20280.0
-1
-1
-1
-1
1
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25.0 |130.0]15.0|20.0 | -2279.0 | -1096.0 | -2618.0 | -5071.0 | -9225.0 | -13574.0 | -7743.0

Continuation of Table 7

Xg X9 Y Y Vy Y Z
1 1 = 600
-289,5 -362,5 -272,5 -365,0 = 0
-907,5 -1090.0 | -452.5 -730.0 = 0
-720.0 -1800.0 | -540.0 -1825.0 = 0
-1080.0 | -1440.0 | -1080.0 | -1800.0 = 0
-7200,0 | -9000.0 | -5400.0 | -5400.0 = 0
-1800.0 | -2160.0 | -900.0 -1800.0 = 0
-219.0 -182.5 -182.5 -265.0 = 0
4500.0 = 0
7000.0 = 0
3600.0 4500.0 = 0
300.0 450.0 = 0
> 125000.0
> 25000.0
45000.0 | 50000.0 | 15000.0 | 15000.0 | -1 = 0
1 < 50000000
-25000.0 | -20000.0 | -50040.0 | -55080.0 | -18030.0 | -25020.0 | -0,16 - max

We will obtain an optimal plan for the production of livestock products (milk -
126900 kg, meat -25200 kg), a plan for the distribution of sown areas for fodder
crops x={ x,=16,0; x,=35,7; x3= 30,1; x4=20,5; xs= 123,5; x,=11,3; x;=1,1},
vegetable crops x= {x,=0; x,=3619}, the composition of the animals kept in the
dairy and meat farm y={y, =34; y,=1 y/=84; y2=0}, the size of the loan
received by the household is z = 2840000.0 soms for ten years at 6% per annum.

From the optimal solution it follows that for the planned volume of production,
I.e. milk in the amount of 126,900 kg, meat - 25,200 kg, the farm should contain 34
cows of the 1st breed in the dairy direction and in the amount of one cow of the 2nd

breed, and in the meat direction it is enough to contain 84 cows of the 1st breed. Of
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the available 600 hectares of sown area, 238.1 hectares are used for agriculture for
fodder, the remaining 361, 9 hectares for potatoes.

Taking into account all income and expenses, including the annual loan payment
in the amount of 454400.0 soms, the net income of the farm is 44590892.0 soms.

REFERENCES
1. Eshenkulov P., Jusupbaev A., Kultaev T.Ch. The Method of solving the
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MODELING ECONOMIC DEVELOPMENT USING PRODUCTION
FUNCTIONS

Choroev K., Kydyrmaeva S.S., Suynalieva N.K.

The work is devoted to the study of the problems of modeling the domestic economy in the
transition period. It is shown that the construction of production functions in a transition economy is
in principle possible, but it is necessary to take into account that the use of a standard set of factors
(funds and labor) does not allow us to obtain any acceptable results, since official statistics do not
provide a market assessment of capital and the actual labor used.

An algorithm for constructing a two-factor production function in a three-sector economy is
proposed. The developed algorithm for constructing the production function by sector was tested.

Keywords: production function, elasticity, three-sector model, transition economy.

Byn xyMmym eTkees Me3rwigeru ara MEKEHIUK 3KOHOMHUKAHBI MOJIEJ/166 KeHIreHIepyH
U3WIJIe6re apHaJIraH. OTKeesl HKOHOMHKA IMIApTTapblHJIA OHAYPYIITYK (QYHKUUSIAPABI TY3YY
MYMKYH 5KeHH, OUpOK Oyn cTaHmapTThik (axTopiopay (GoHamop xKaHa 3IMIeK) NalgalaHyy
KaHJaWaplp OUp aNrbUIBIKTYY HAThIMKalapblH adyyra MYMKYHIYK OepOeHT 3KeHHMH 3cKe aiyy
3apbpll, aHTKEHM pPACMUH CTaTHCTHKA PBIHOKTYK KalMTAJABIH JKaHAa peajayy KOJJAOHYIyydy
HMIeKTUH 0aachiH OepOeHT.

Y4 ceKkTopiryy SKOHOMHKA/Ia IKU (PaKTOPAYK OHAYPYIITYK (GYHKIUSHBI KYPYYHYH aITOPUTMHA
cynymranrad. Cekrtopiop OOOHYa OHAYPYWITYK (YHKIMSHB KYpYYHYH HIITEIUI YbIKKaH
QJIITOPUTMH CHIHOOJIOH OTKOPYJIAY.

VYpyHTTYY ce3nep: OHAYPYIITYK (QYHKIMS, HHKEMAYYIYK, Y4 J0JI000pAYK MOJEIb, 6TKOeN
ME3THJIJINH YKOHOMHUKACHI.

Pabota mnocBsileHa WccIEOOBaHUIO MPOOJIEM MOAEIMPOBAHMS OTEUYECTBEHHONW SKOHOMHKH B
nepexoaHoM nepuoge. Ilokasano, 4yTo mocTpoeHre MPOU3BOACTBEHHBIX (DYHKUUH B YCIOBHAX MEPEXOJHON
SKOHOMHKH B MIPUHITUIIE BO3MOXHO, HO HEOOXOMMO YUUTHIBATh, YTO MCIIOIH30BaHUE CTAHIAPTHOTO Habopa
¢dakTopoB (PoHABI M TPYA) HE MO3BOJSIOT IONYYUTH CKOJIBKO-HUOYAb TPHEMJIEMBIX PE3yJIbTaToB,
MOCKOJIBKY JaHHble O(UIMAaTbHOM CTAaTUCTUKUA HE MAal0T DPHIHOYHOM OIEHKH KalWuTalla W PeanbHo
UCIIOJIb3YEMOI'0 TPYAa.
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[IpenaoxeH aJropuT™M MOCTPOCHHUSA ABYX(GAKTOPHOM MPOU3BOJACTBCHHON (YHKIIMH B TPEXCEKTOPHOMH
skoHOMUKe. [IpoBenena anpobarus pa3pabOTAaHHOTO aNTOPUTMA MOCTPOSHHS MPOU3BOJACTBEHHON (PYHKIIUN
10 CEKTOpaM.

Kitouerwie cioBa: [IpousBoacTBeHHas (YHKIUS, 3JIACTHYHOCTD, TPEXCEKTOPHAS MOJIENb, YJKOHOMUKA
MEPEXOTHOTO MTEPHOAA.

1. Introduction. The most important component of the aggregated single-sector
model of economic growth is the production function, which relates output to the
volume of fixed assets, labor costs, and possibly other factors of production. The
aggregated production function can be considered as a tool for both forecasting and
retrospective analysis.

The purpose of this study is to study the problems of building production
dependencies for the transition economy of the country. The task is to find out the
possibility of using the apparatus of production functions for an adequate description
of the processes in the domestic economy.

Solving these problems would allow us to conclude that it is possible to use the
apparatus of production functions for forecasting in a transition economy.

The apparatus of production functions is quite well developed for developed
market economies. At the same time, the conditions of the transition economy bring
significant specifics to the problems associated with the construction of production
functions. Thus, in a transition economy, it is problematic even to obtain any reliable
data on the costs of factors of production - funds and labor. The fact is that in a
transition economy, it is difficult, and often impossible, to give a market assessment
of production assets.

2. Materials and methods of research. Attempts to construct an aggregated
production function for the transition economy encounter serious difficulties due to
the specifics of the transition economy as an object of research. There is a need for
adequate consideration of this specificity at the level of the analysis methodology
used.

The specifics of the transition economy are that the principles of its functioning

may differ from the principles of the functioning of the market economy. The
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absence of effective mechanisms that bring the economy into balance can lead to
long-term and significant deviations from the equilibrium.

In the transition economy, it is difficult to use data on the shares of capital and
labor as direct (i.e., obtained on the basis of relevant statistical information, rather
than through econometric calculations) estimates of factor elasticities. This narrows
down the arsenal of adequate methods and makes it particularly difficult to analyze
aggregate factor productivity.

All the problems considered lead to a deterioration in the quality of econometric
estimates and force us to pay more attention to the preliminary analysis of the data.

The complexity of economic systems, for the description of the functioning of
which neoclassical production functions of the CES-function type are used, does not
always allow us to assert that the values of the elasticity of labor replacement by
capital o in the considered systems are constant, since this situation is not so common
in the real conditions of the functioning of economic systems. Therefore, to model the
economic processes of the transition period, we use the Cobb-Douglas production
function. For practical modeling, we use a three-sector model.

First, the exogenous and initial endogenous parameters of the model are
calculated. These include:

1) The coefficients of elasticity of the Cobb-Douglas functions, as well as the
functions themselves, taking into account the coefficients of neutral technological
progress.

2) Coefficients of direct material costs.

3) The initial shares of investment and labor resources are determined from the
currently available time as parameters of the industry structure in investment
resources and data on the labor supply by sector.

4) Initial and stationary values of the stock-to-weight ratio. If the initial values
are known to us from the statistics of labor and investment resources in the sectors,
the optimal values are on the basis previously found optimal distribution of labor and

investment resources through so-called stationary equations of motion:
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ar —Aik; + 9_(1 +v1)0:1f1(ky), =012 (D
l

where k; — the stock-weight ratio of the i-sector; A;, s;, 8; — the parameters of the
equation.

Then, based on the study of the behavior of the conjugate variables, as well as at
the expense of some additional ones, the total time of the transition process is
determined, and the moment of the first switching over investment resources is also
found.

To construct the Cobb-Douglas functions, we first need to numerically
determine the exogenous components of our model. The calculations are based on
available statistical data. First of all, you need to know the production functions of
the three sectors of the economy, without which it makes no sense to perform
numerical modeling. We will consider the year 2000 as the initial or basic year for
constructing production functions (PF). Statistical data of the NSC KR were used in
the calculation [1].

The production functions of the three-sector model of the economy have the

form

Fi = AKSL i =0,1,.2. 2)

The calculation uses the assumption that the total factor productivity does not
change over time. Therefore, the coefficient A; — is clearly independent of time. Next,
we denote by Fy;, Ky;, Ly; — the corresponding values of output, funds and labor of the

I-th sector in the base year. Then the formula (2) can be represented as:

a; 1-a;

F; Ai<Ki) (Li) 012 3)
= =7\ T y0=VU,1,..
Foi Ao \Ko; Ly;

Hence, in particular, it turns out that the coefficient of neutral economic progress
:—i = 1. Indeed, in our assumptions, A; does not depend on time.
0i

In order to calculate the estimates «; of the elasticity coefficients of the
production functions «;, we will build a series of index values based on the data

obtained from the aggregation of statistical information of the NSC KR. We will
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denote the indices as the corresponding variable with a wave, i.e. they will take the

form:

P Fi(t) Fa K;(t) - L;()

l ) l ) 1 )
Fo; Ko; Ly;

here t — is the time period (in our case, a year) for which the corresponding value is
measured. Further assume the existence of statistical data in certain error - &; random
variable taking positive values, zero logarithm of the mathematical expectation and

unit variance, i.e.:
M(In(¢;)) =0, D(In(¢;)) =1, i=0,1,2. (4)

Taking into account the introduced notation and the proposed assumptions,
equality (3) is written as:

F=RUL 7% +¢&i=012 (5)

Since the indices F;(t), K;(t),L,(t) and the random variable &; have positive
values, we have the right to take the natural logarithm of both parts of equality (5).

As a result, after simple transformations, we get the following expression:

InF, — InL, = a;(InK; — InL}) + &, i=10,12, (6)

The series of the indices F;(t), K;(t),L,(t) are determined from the available
statistical data. So, based on the indices of the physical volume of investments in
fixed assets and the index of funds, K; is obtained as the geometric mean, weighted
by the index of investments and the index of fixed assets. For each sector, the
weighting is performed with the parameters 0.95 and 0.05.

Using statistical data, the coefficients of the elasticities of the Cobb-Douglas

production functions were calculated using regression models in relative terms,

fi=A; k., where k; = % Is the ratio of capital investment to the available labor

resources in the sector (if both series are in indices, then their ratio is also in indices).

154



Then, based on the data on the stock ratios of the sectors in absolute terms and
the production capabilities of the sectors (output) in absolute terms, the coefficients
of A; — neutral technological progress were found.

We present the final result of both stages of identification of the Cobb-Douglas
coefficients obtained on the basis of data analysis for the period 2000-2019:

as for the financial sector: —X, = 1,727 - K>*” LY*3,

for the fund-creating sector —X; = 0,48 - Kf’674 L‘1"326 7

consumer —X, = 0,628 - K*°7 L>°°,

Table 1. Main characteristics of the parameters of the production function

Kpurepun [lokazaremm
X | K | L
I IpOMBIIIUIEHHOCTD U CTPOUTEILCTBO
R? 0,96 0,82 0,76
F 43,21 62,32 9.87
t, —0,13 3.2 0,97
t, 1,24 0,28 -
CenbCKoe X035HCTBO
1 TOOBIBAKOIIASI IPOMBIIUIEHHOCTD
R? 0,87 0,93 0.45
F 41,32 59,25 4,23
t, —0,13 3.2 0,97
t, 1,24 0,23 -
Toprosis u yeliyru
R? 0,78 0,92 0,98
F 37,42 40,32 7,51
t, —1,17 728 —-1,43
t, 1,64 0,93 2,01
Conclusion

The market mechanism in the transition period cannot provide a desirable
scheme for the intersectoral distribution of society's resources, since it operates on the
basis of profit - the only important factor in its behavior. The decision to prioritize

investments in different sectors may not coincide with the optimal value required for
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overall socio-economic benefits or costs. Any deviation from this optimum is
corrected by the state both through regulatory methods and through direct
participation in the economic process.

The government should not ignore the existence of macroeconomic imbalances
and in the future it is necessary to coordinate at the state level and implement a
number of reforms in the field of managing economic imbalances. Measures should
aim to identify economic imbalances at an early stage and take measures to address

them in a timely manner.
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USING IMITATION MODEL IN BUSINESS

'Eshenkulov P., 2Zhusupbaev A., *Urmambetov B., “Mamatkadyrova G.T.
1L34Kyrgyz-Russian Slavic University
?Institute of Mathematics NAS KR,

If the time of sale of the goods is known, then the article shows what profit the businessman
will receive for the specified time, if the goods are fully sold. It is considered that the time of sale of
the goods is under the normal distribution. Here, the 2-program calculates the time of sale of a
given quantity of goods, and the profit of a businessman, if the total volume of goods is known.

Key words: profit, random variables, normal distribution, businessman, average value.

Byn xymymira srepae ToBap caryy MeeHOTYy Oenrmiayy Oosco, aHaa OW3HECMEH, TOBPBI
caTblll OYTKOH/IOH KMWMH KaH4Ya Maiija TamkaHblH KepceTeT. KapnanmapIslH TOBap caThll alyy
yOaKTBICBI HOPMAJJIBIK 3aKOHTO Oar uileT aen scentennHer. OMIOHAOMN 3J€ 3repiae carbulia Typral
TOBapAbIH KejeMmy Oenrmiyy 0ojico aHia, ToBap KaH4ya yOakKbITTa CaThUIBI OyTe TypraHblH
OWJIIMpET KaHa aHJaH TYIIKOH Naiiia KaHya OO0JITOHYH KepCeTeT.

YpyHTTYY co3/1ep: KamnbICTaH 0OJTOH YOHAYK, HOPMAJABIK 3aKOH, OPTOYO YOHIYK, coojarep,
TarKaH Imanaa.
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PaboTta mokasbIBaeT, eciid M3BECTHO BpEMs peaju3allii TOBapa, TO OM3HECMEH IOJIydaeT
KaKoM IpuOBbLIb 3a YK3aHHOE BpEMs €ClIM TOBap MOJHOCThIO peanusyercd.. IIpu 3ToMm cumraercs,
YTO BpeMsl IMPOJAXH TOBapa IOAUYMHAETCS K HOPMAJbHOMY 3aKOHY. 3J€Ch k€ 2-IIporpaMma
IIOJICUBITHIBAET €CIIM U3BECTHO 0OLIMII 00BEM TOBapa, TO 32 KAKOE€ BPEeMsl IIOHHOCTbIO peasin3yeTcs
JTAHHOE KOJIMYECTBO TOBapa, .U OM3HECMEH MOJIy4YaeT KaKoil MpuoObLIb.

KitoueBble cioBa: mpuObLIb, CllyyailHble BEIMYUHBI, HOPMAJIbHBIA 3aKOH paclpeaeeHus,
Ou3HEecMeH, Cpe/iHee 3HaUeHHUE.

Today, trade in Kyrgyzstan is one of the developing sectors of the country's
economy and covers all types of activities that are directly related to the purchase and
sale, exchange of goods for money, money for goods or goods for goods. There are
many business entities involved in the trade industry. Officially, commercial
entrepreneurship is carried out through - shops, stock exchanges, markets, exhibitions
- sales, auctions, trading houses, trading bases. But trade in Kyrgyzstan is carried out
mainly in the sphere of small business by economic entities. The basis of commodity-
money transactions of purchase - sale or exchange

The shopping centers (malls) and traders buy consumer goods in the market for
various purposes and sell them to the customers in order to make a certain profit. This
Is a normal phenomenon in a market economy.

For shopping centers the profit is usually calculated after the end of the sale
using, an automated AIS system.

The purpose of this work is to find out in advance which goods the owner (street
vendor or the owner of the shopping center) should buy to make the maximum profit.
The article does not include the factors affecting the mark-ups of the goods sold, such
as transportation costs, the cost of manufacturing them, and so on. On the other hand,
we assume that the goods are fully sold for a certain period and the purchasing time
of a certain type of goods is under the normal distribution (i = 1,n), where n is the
name of the goods sold.

Problem 1. The time T of the sale of this type of product is known and the
amount of the product K sold during this time is unknown. First, we start to solve this
problem.

A businessman buys ice cream in bulk at m,; soms per item and sells it for m,

soms. The customers come to him at random At;, i = 1,n time, get in the line and
157



buy one ice cream. We believe that the buyer can make another additional purchase
k; (O, if there is no additional purchase), and also within the specified time the goods
are fully sold. A businessman works T hours a day. The arrival times of buyers and
additional amount of purchase are random numbers that follow the normal
distribution.

Question. If the above conditions are satisfied, determine the businessman's
profit in T hours and find the volume of purchased ice cream at the beginning of the
day for its sale.

Suppose after the start of work during the time At, = {4-10} the 1st customer
comes and buys additionally k; = {0-2} ice cream. The next customer comes after
the first customer in At, time, etc. businessman works until condition (1) is satisfied

nAt;=Th 1)
If condition (1) is satisfied, it is easy to calculate the profit and the morning volume
of buying ice cream for sale:

n is the number of buyers in T hours;

Yi=1 ki -the sum of additionally purchased ice cream.

The volume of the morning purchase of ice cream for sale is

(n+ X7 ky). 2

The profit is:

(n+ T, k;) * (my —my) soms. (3)
where m, is the purchasing price of an ice cream unit, m, is the selling price of a unit
of ice cream.

To implement formulas (1-3), we have compiled a program on PascalABC.net.

Numerical example 1.

Input data (parameters: 7, m,, my, t;, t,, At;, kq).
Let: T = 8 hours or 480 minutes;
m, = 22; m; = 16;
t,=4; t,=10; At; = {4+ 10}; i = 1,n;
k, = {0+ 2}.
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Output.

After entering the data, the program gave the following output:

The number of ice cream purchased by customers is 127,

The profit is 762 soms.

Note: At the same start of the program with the same data, the program may
produce the different results, because At; and k; are the random numbers that are
under the normal distribution. To get the average results, the program should be run

several times with the same data. You can change the values of the input parameters.

Pascal program 1

// BusHec
var a,b,i: integer;
var kl,k2,p, pl: integer;
begin
a:=16;b:= 20;
writeln ('noxynka a=',a);
writeln ('npomaxa b="',b);
k1:=0; k2:=0;
while k1<=480 do

begin
p := Random(3,7);
i:=1i+1;
kl:=kl+p;
pl:=Random (0, 3) ;
k2:=k2+p1;
writeln(i:5, p:5, k1:5, pl:5, k2:5);
//  i:i=pti;
end;
i:=14+k2;
writeln ('lOpubemb="',1* (b-a))
writeln ('KoanuecTBO MNOKynku : ',1i);
end.

In this example, if the selling time T (8 hours) of the given product (ice cream)
Is known, then the businessman should buy K = 127 pieces in the morning. ice cream.
Problem 2. If the volume of a given type of product K is known, then find the

time T when amount of ice-cream is fully realized

n
i=1
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In order to solve the problem 2, Pascal program 1 can be easily transformed. In

this case, we replace T by K, but other parameters remain the same. In this case,
program 1 will be written as follows.

Pascal program 2

// BusHec
var a,b,i: integer;
var kl1,k2,p, pl: integer;

begin
a:=16;b:= 20;
writeln ('noxkynka a=',a);
writeln ('nmpomaxa b="',Db);
k1:=0; k2:=0;
while k1<=100 do
begin
p := Random(3,7);
i:=i+1;
kl:=kl+p;
pl:=Random (0, 3) ;
k2:=k2+p1;
writeln(i:5, p:5, k1:5, pl:5, k2:5);
//  1:=p+i;
end;

i:=1+k2;
writeln ('llpubemib=",1i* (b-a));

writeln ('3aTpaueHHOe BpeMsa Ha opomaxy : ',1);
end.

If you run the program when cost a = 16 and selling price b = 20 soms, then K =
100 pcs. The goods are sold in 49 minutes. The profit will be 196 soms.
A businessman can sell more than one type of goods, but the number of types is

known. If a businessman has several types of the goods, we can modify program for
solving a new problem.
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