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The completeness of uniform spaces is an important part of the uniform topology. In the
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Keywords: maximal Cauchy filter, weakly sequentially complete spaces, weakly
sequentially Diedonne complete spaces.

TonykTyk TYHIYHYK OHp KaJbIlITyy TOMOJOTHSHBIH MaaHWIYy OemymyH Ty3eT. bup
KaJIBINTYy MEHKUHAMKTEP TEOPHUSCHIHAA OMp KaNbINTYy MEHMKUHIUKTEPIUH TOJNYKTYT'YHYH TYPIYY
tuntepu Oap. Mucanbl, TONYKTYK, CEKBEHUMANAYy TOJNYKTYK, Oup kKanbintyy Yex OoroHua
TONYKTYK k.0. Byn Makanmama Kyucy3 CEKBEHLHMAIIyy TOJNYKTYK *aHa Kydcy3 CEKBEHLMAJIAYY
Jpenonne 60r0OHYA TOMYKTYK MEHKHAUKTEP m3miaeHer. Kyucys cekBenunanayy Jsenonne 0oroHua
TOJYKTYK MEMKHIUKTUH KPUTEPUIHU Typry3yJraH.

Ypynmmyy ce3oep: KommHMH Makcumanayy QUIBTpH, KYUYCY3 CEKBEHIHAIIYY TOJIYK
MEHKUHUK, KYUCY3 ceKBeHIManayy JlbeJoHHe 00I0HYA TOIYKTYK MEHKUH/IUK.

[TostHOTa paBHOMEPHBIX MPOCTPAHCTB COCTABIISAET BAKHYIO YaCTh PABHOMEPHOM TOIIOJIOIHH.
B Teopun paBHOMEpHBIX MPOCTPAHCTB CYLIECTBYIOT Pa3IMYHbIE THUIBI MOJHOTHI PABHOMEPHBIX
npocTpancTB. Hampumep, MoiaHOTa, CEKBEHLIMANbHAs IIOJHOTA, PABHOMEpHAsl MOJHOTA mo Yexy
IPOCTPAaHCTB M.T.A. B Hacrosmeil crarbe M3ydaeTcsl cllad0 CEKBEHIUAIBHO IOJHBIE M CJ1a00
CEKBEHIIMAJIbHO MOJHbIE M0 J/IbeJOHHEe MPOCTpaHCTBAa. B 4acTHOCTH, yCTaHOBIIEH KPUTEPHd Ci1abo
CEKBEHLMAIbHO MOJHBIX M0 J[beTOHHE IPOCTPAHCTB.

Kniouesvie cnosa: makcumanbhblii  ¢unbTp Komm, cmabo CekBEHIMAIbHO MOJIHbIE
IIPOCTPAHCTBA, C11a00 CEKBEHLUAIBHO MOJIHBIE 10 J{beIOHHE IPOCTPAHCTBA.

A uniform space (X,U) is called weakly complete if every maximal Cauchy
filter converges in it [6].

Any complete uniformly space is weakly complete, and the converse is not true
in general.

A uniform space (X,U) is called weakly sequentially complete if every
maximal Cauchy filter with a countable base converges in it [6].

A mapping f: X —Y from a topological space x into a topological space Y is
called perfect if f isaclosed mapping and f 'y is compact for any yeY [5], [8].
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A mapping f:(X,U)—(Y,v) from a uniformly space (X,U) to a uniformly
space (Y,V) is called doubly uniformly continuous if for any « U there exists a
B eVsuchthat fa > g“, where g“ ={ug, : B, c - finite} [7].

A mapping f:(X,U)—(Y,v) from a uniformly space (X,U) to a uniformly
space (Y,V) is called a precompact mapping if for any « eU there are p<V and a
finite cover y cU suchthat '8 Ay = a [1], [2].

A mapping f:(X,U)—(Y,v) of a uniformly space (X,U) into a uniformly
space (Y,V) is called a uniformly perfect mapping if it is precompact and perfect in

the topological sense [3], [4].
Theorem 1. Let f:(X,U)—(Y,V) be a doubly uniformly continuous mapping.

Then if the uniform space (X,U) is weakly sequentially complete, then the uniformly
space (Y,V) is also weakly sequentially complete.

Proof. Let (X,U) be a weakly sequentially complete space. Let us show that the
space (Y,V)is weakly sequentially complete. Let F be an arbitrary maximal Cauchy
filter having a countable base. Denote by  the maximal filter in (X,U) containing
the family f*F ={f 'P: P e F}. Let show that the maximal filter  is a Cauchy filter.
Let « €U Dbe an arbitrary covering. By virtue of the doubly uniformly continuity of

the mapping f, there exists p<V suchthat f*g=a“ . Let E g be a set such that

EcF. Then f'Eecyw. In turn, for f'E there exists such A“ =_CJ1A, A ea, that

f‘lEcéAi. Since y is the maximum filter and _k_JlA,- ey , then there is a number

i, <n such that A_ ey . Hence, y is a Cauchy filter. Let show that a countable family

f *B is a base for . Let L ey be an arbitrary set. Since fy c F, then fLeF. There
isa NeB suchthat Nc fL,i.e. f*N cL . This meansthat f *B is a countable base
for v . Due to the weak x-completeness of the space (X,U), the maximal Cauchy
filter  having a countable base converges to the point x. Then the filter fy

converges to the point fx. Therefore, fF converges to the point fx . Hence the space



(Y,V)is weakly sequentially complete.

Corollary 1. Let f:(X,U)—(Y,V) be adoubly uniformly continuous mapping.
Then if the uniformly space (X,U) is weakly complete, then the uniformly space
(Y,V) is also weakly complete.

Corollary 2. Let f:(X,U)—(Y,V) be a doubly uniformly continuous mapping.
Then if the uniform space (X,U) is complete, then the uniformly space is also
complete (Y,V).

Theorem 2. Let f:(X,U)—(Y,V) be a perfect uniformly continuous mapping.
Then if the uniform space (Y,Vv) is weakly sequentially complete, then the uniformly
space (X,U) is also weakly sequentially complete.

Proof. Let (v,v) be a weakly sequentially complete space. Let us show that the
space (X,U) is weakly sequentially complete. Let F be an arbitrary maximal Cauchy
filter in (X,U), with a countable base B. Then the filter fF is the basis of some
maximal Cauchy filter and, due to the weakly sequential completeness of the space
(Y,V), has a point of contact with y <Y . Since the mapping f is perfect, the filter F
has a point of contact with xe f™'y. Therefore, the space (X,U) is weakly
sequentially complete.

Corollary 3. Let f:(X,U)—(Y,V)be a uniformly perfect mapping. Then if the
uniformly space (Y,v) is weakly sequentially complete, then the uniformly space
(X,U) is also weakly sequentially complete.

Corollary 4. Let f:(X,U)—(Y,V) be a uniformly perfect mapping. Then if the
uniformly space (Y,v) is weakly complete, then the uniformly space (X,U) is also
weakly complete.

Corollary 5. Let f:(X,U)—(Y,V) be a perfect mapping. Then if the uniformly
space (Y,Vv) is weakly complete, then the uniform space (X,U) is also weakly
complete. The following theorem follows from Theorems 1 and 2.

Theorem 3. Let f:(X,U)—(Y,v)be a perfect doubly uniformly continuous

mapping. If one of the uniformly spaces (X,U) and (Y,V) are weakly sequentially
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complete, then the other uniformly space is also weakly sequentially complete.

A Tychonoff space x is called a weakly sequentially complete in the sense of
Diedonne space if there exists a weakly sequentially complete uniformity on it [6].

In the following theorem, by means of universal uniform structures, the weakly
sequential Diedonne completeness of a space is characterized.

Theorem 4. A Tychonoff space X is weakly sequentially complete in the
sense of Diedonne if and only if the universal uniformity is weakly sequentially
complete.

Proof. Necessity. Diedonne space. Let us show that (x,u,) is a uniformly
space. Let a Tychonoff space X be weakly sequentially complete but with uniformity
U, Is weakly sequentially complete. Let F be an arbitrary maximal Cauchy filter in
(X,U,) with a countable base. By virtue of the weakly sequentially completeness in
the sense of Diedonne of the space X, there exists a weakly sequentially complete
uniformity of u. Since u, ou, then F is a Cauchy filter in (X,U). Then F
converges to some point x in (X,U). Therefore, the uniform space (x,U,) is weakly
sequentially complete.

Sufficiency. Let a uniform space (Xx,u,) be weakly sequentially complete.
Then, by the definition of weakly sequential Diedonne completeness of a space, the
Tychonoff space X is a weakly sequential Diedonne complete space.

Theorem 5. Let f: X —Y be a perfect mapping. Then if a topological space Y
Is weakly sequentially complete in the sense of Diedonne, then a topological space X
is also a weakly sequentially complete space in the sense of Diedonne.

Proof. Let Y be a weakly sequentially complete in the sense of Diedonne
space. Let show that the space x is weakly sequentially complete in the sense of
Diedonne space. Let (Y,v) be a uniformly space whose topology is consistent with

the topology of -, i.e. 7, =7z,. Then there is such a uniformity U on X that makes

the mapping f continuous. Let F be an arbitrary maximal Cauchy filter in (X,U),
with a countable base B, where U is a uniformity consistent with the topology r of

the space x . Then the filter fF is the basis of some maximal Cauchy filter and, due
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to the weakly sequential completeness of the space (Y,V), has a point of contact with
y €Y. Since the mapping f is perfect, then the filter F has a point of contact with
x e f 'y . Consequently, the space X is weakly sequentially complete in the sense of

Diedonne.
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byn mnumuii makanmajga THUXOHOBAYK MEWKUHIMKTEPAUH aWpbIM KOMIIAKTY TUIITEPUHUH
OMpPKaNBINTYy CTPYKTYpajapsl apKbULyy MYHO316MeJepy OepuiIeT.

Ypynmmyy cesoep: OWp KaJbINTYy CTPYKTYpa, KOMIIAKTYY MEUKUHIUK, CAHAKTYY
KOMIIAKTYYy MEHKMHAWK, JHUHACNEPTYK MEHKUHANK, CEKBEHIHUAIAYy TOJNYKTYYIyK, Npea-
JlnaaenédpTyk MEMKUHINK.

B nmaHHON cTaThe AAOTCS XapaKTEPUCTUKU HEKOTOPBIX CBOMCTB THUIIA KOMIAKTHOCTH
TUXOHOBCKHUX MPOCTPAHCTB MOCPEICTBOM PAaBHOMEPHBIX CTPYKTYP.

Kniouesvle cnoea: paBHOMEpHasi CTPYKTypa, KOMIIAKTHOE IPOCTPAHCTBO, CYETHO
KOMITAKTHOE TIPOCTPAHCTTBO, JHHACIE(POBO MPOCTPAHCTBO, CEKBEHIIMAJIbHAS IIOJIHOTA, IPEa-
JluanenédoBo MpoCTpaHCTBO.

In this paper, characterizes are given of the most important classes of the
compactness type of Tychonoff spaces with the help of uniform structures.
A uniform space (X,U) is called sequentially complete if every Cauchy filter

with a countable base converges in it [1].

A topological space H is called countably compact if each of its open countable
covers contains a finite subcover [4].

Lemma 1. If a Tychonoff space X is countably compact, then for every

uniform structure U , the uniform space (X,U) is sequentially complete.

Proof. Let the Tychonoff space (X,z) is countably compact and F be a Cauchy
filter in the space (X,U) with a countable base. Then the filter F has a point of
contact in the space (X,U).Since in a uniform space the concepts of a point of contact
and limit points are equivalent, this implies the convergence of the filter F in (X,U)
.Hence, the space (X,U) is sequentially complete.

Lemma 2. If for every uniform structure U the uniform space (X,U) is

sequentially complete, then the Tychonoff space X is countably compact.

Proof. Let F be an arbitrary ultrafilter having a countable prebase and (X,U) is

any uniform space, such that z, =z. Then there exists a precompact uniform structure
U, such that 7, =7, =z. The filter F is a Cauchy filter in (X,U;). Then it converges

to some point in the space (X,U;). Consequently, the ultrafilter F, which has a



countable prebase, converges to some point in the space (X,z). Hence, the space
(X,U) is countably compact.

A uniform space (X,U) is called uniformly paracompact, if for any open cover
4 of the space (X,U) there is a sequence of covers {8, :ie N}cU that satisfies the
condition:

(BP) for each point x € X there are numbers neN and LeA such that
B,(x)cL [2].

Various types of uniformly paracompact and uniformly Lindelof spaces were
studied in [1], [2], [6].

A uniform space (X,U) is called pre-Lindelof (N,-bounded) if it has a base
consisting of countable covers [5]. A uniform space (X,U) is called uniformly

paracompact if it is pre-Lindelof and uniformly paracompact [1].

The following theorem characterizes Lindelof spaces with the help of uniform
structures.

Theorem 1. A Tychonoff space X is Lindelof if and only if, for every pre-

Lindel6f uniform structure U , the uniform space (X,U)is uniformly Lindel6f.

Proof. Necessity. Let (X,7r)be a Lindel6f space.Let us show that the uniform
space (X,U) is uniformly Lindelof. Let « be an arbitrary open cover of the space
(X,U). For every point xe X , there are Aca and g e Usuch A e athat g(x) c A.ltis
clear that for the covering peU there exists y eU such that ,«>-p .Let
A={B(x):xe X}. Since the space X is Lindelof, the open cover of 1 contains a
countable subcover of 2, ={B,(x):neN}. We form a sequence of uniform covers
{r, :ne N} . Then for each point x € X there is a number ne N such that x ey, (x).Itis
clear that y,(x) c 8,(x) = A.Thus, the uniform paracompactness of the space (X,U) is
proved. (X,U) is uniformly Lindel6f since it is pre-Lindel6f and uniformly

paracompact.

Sufficiency. Let (X,U) be obtained such a pre-Lindel6f uniform space that
7, =7. Let « Is an arbitrary open cover of (X,z,). For an open cover « of a space
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(X,U), there exists a normal sequence of countable covers {8,:neN}cU that

satisfies the condition (BP). Then there exists a separable pseudometricd on X such

1
2n+1

that g ., (x)c{y:d(x,y)<—3}cpB.(x), for any xeX and for each neN.

Consequently, the interior <a‘> ={(A):Aca“} of o is an open cover of a separable

pseudometric space (X,d). Since any separably pseudometrizable space is Lindelof,
there exists a countable open cover 4 of the space (X,z,) inscribed in the cover « . It
follows from the inclusion 7, c 7, that the cover of 4 is an open cover of the space
(X,7y).

Therefore, (X,z,) is uniformly Lindel6f.

Consequence 1. A Tychonoff space X is Lindelof if and only if, for every
precompact uniform structure U , the uniform space (X,U) is uniformly Lindelof.

Theorem 2. A Tychonoff space X is Lindelof if and only if, for a universal

uniform structure U, , the uniform space (X,U,) is uniformly Lindelof.

Proof. Necessity. Let the Tychonoff space (X,r) is Lindelof. Let us show that
the uniform space (X,U,) is uniformly Lindelof. Let « be an arbitrary open covering
of the space (X,U).Then for each point xe X there are Aca and geU such that
B(x) < A. For peU thereisan y eU such that y+> g. Let 1 ={B(x): x e X}. Since the
Tychonoff space X is Lindel6f, the open cover 4 contains a countable subcover
A ={B,(x):ne N} .We form a sequence of uniform coverings {y,:neN} . Then for
each point xe X there is such a number neN that xey,(x). It is clear that
7.(X) < B,(x) = A. This implies that (X,U) is uniformly paracompact.Since (X,z) is
Lindelof, then (X,U,) is pre-Lindelof. Therefore, (X,U,) is uniformly Lindelof.

Sufficiency. Let (X,U,) is a uniformly Lindel6f space. Let « be an arbitrary
open covering of the space (X,z, ). Then «euU,. By virtue of the uniform
Lindelofspace (X,U), the covering « contains a countable subcover «,eU,.
Consequently, « contains a countable subcover of «,. Hence, the space (X,z) is

uniformly Lindelof, where =7, .
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Theorem 3. A Tychonoff space X is compact if and only if, for every pre-
Lindel6f uniform structure U , the uniform space (X,U) is sequentially complete and
uniformly Lindelof.

The proof follows from Lemma 1 and Theorems 1.

Consequence 2. A Tychonoff space X is compact if and only if, for every
precompact uniform structure U, the uniform space (X,U) is sequentially complete
and uniformly Lindelof.

Theorem 4. A Tychonoff space X is compact if and only if, for the universal
uniform structure U , the uniform space (X,U) is sequentially complete and uniformly
Lindel6f.

Consequence 3. A Tychonoff space X is compact if and only if for every
uniform structure U the uniform space (X,U) is complete.

Consequence 4. A Tychonoff space X is compact if and only if, for a
universal uniform structure U , the uniform space (X,U) is complete.

Recall that a topological space X is countably paracompact if and only if each
of its finitely additive countable open covers can be a refinement of the locally finite
open cover [4].

The following theorem establishes a characterization of countably paracompact
spaces with the help of universal uniform structures.

Theorem 5. A Tychonoff space X is countably paracompact if and only if the
uniform space (X,U,), where U, is a universal uniform structure, is countably
uniformly paracompact.

Proof. Necessity. Let X be countably paracompact. The set of all open
coverings forms the basis of universal uniformity. It is easy to see that the uniform
space (X,U,) is countably uniformly paracompact.

Sufficiency. If the uniform space (X,U,) is countably uniformly paracompact.
Then by Proposition 1 [8, p. 320], the Tychonoff space X is countably paracompact.

Theorem 6. For a Tychonoff space x the following statements are equivalent:

1. X is countably paracompactness;
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2. The uniform space (X,U,), where U, is a universal uniform structure, is
countably uniformly paracompact.

3. There is a uniform structure U on the space x such that the uniform space
(X,U) is countably uniformly paracompact.
The proof with minor modifications is similar to the proof of Theorem 5.

A uniform space (X,U) is called uniformly locally Lindelof if it contains a
uniform covering consisting of compact subsets [3].

Theorem 7. For a Tychonoff space x the following statements are equivalent:

1. X i1slocally Lindel6f and paracompactness;

2. The universal uniform structure U, of the space X contains a covering
consisting of Lindelof subsets;

3. There is a uniform structure U on the space X containing a covering
consisting of Lindelof subsets.

Proof.1. = 2. Let the space X be locally Lindelof and paracompact. Then for

each point xe X there exists a neighborhood of O, such that the closure of [O,] is
Lindelof. Let « ={[0,]: x e X}. It is clear that the coverage {O,:xe X} belongs to the
uniform structure U, . Since the open cover of {O, : x e X} is a refinement in the cover

of «, then from a €U, .
2.= 3.0bviously.
3.=1.Let the uniform structure U contains a covering « consisting of

Lindelof subsets. Since the interior () of the coveringe is a uniform covering, i.e.

belongs to the uniform structure U, then the space X is locally Lindelof. The
uniform space (X,U) is uniformly locally Lindel6f, since (X,U) contains a covering
consisting of subsets whose closure is Lindelof, and any uniformly Lindel6f space is
uniformly paracompact. Thus, the local Lindelof and paracompactness of the space
X is proved.

Consequence 5. A Tychonoff space X is locally compact and paracompact if
and only if the universal uniform structure U, contains a covering consisting of

compact subsets [3].
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Consequence 6. For a Tychonoff space Xx the following statements are
equivalent:

1. X is locally compact and paracompact;

2. The universal uniform structure U, of the space X contains a covering
consisting of compact subsets;

3. There is a uniform structure U on the space X containing a cover consisting
of compact subsets.

Consequence 7. For a Tychonoff space Xx the following statements are
equivalent:

1. X 1s Lindelof;

2. The universal uniform structure U, of the space X contains a countable
cover consisting of Lindelof subsets;

3. There is a uniform structure U on the space X containing a countable cover
consisting of Lindelof subsets.

Consequence 8. For a Tychonoff space X the following statements are
equivalent:

1. X is compactness;

2. The universal uniform structure U, of the space X contains a finite
covering consisting of compact subsets;

3. There is a uniform structure U on the space X containing a finite cover
consisting of compact subsets.

A uniform space (X,U) is called uniformly locally Lindelof if it contains a
uniform covering consisting of subsets whose closure is Lindelof [5].

Theorem 8. For precompact uniform spaces (X,U) the following conditions
are equivalent:

1. (X,U) is uniformly locally Lindelof;

2. (X,7,) - Lindelof.

Proof. 1.=2.Let (X,U) is a uniform locally Lindelofspace and «is an

arbitrary finitely additive open cover of the space (x,s). Then, by virtue of being

13



precompact and uniformly locally Lindelof, there exists a finite uniform covering of

S consisting of subsets whose closure is Lindelof. It is clear that B> a“, where

a“ ={ua, o <X }. It is easy to see that the covering « contains a countable

subcover. Then from the fact that the space (X,r) is Lindelof if and only if every

finitely additive open cover can be a refinement with a countable open cover, it

follows that the space (X,z,) is Lindelof.

2.=1.Conversely, let the topological space (X,z,) is Lindel6f. Then the space

(X,U) is uniformly paracompact, i.e. uniformly Lindel6f.

N o g bk~ o

Therefore, the space (X,U) is uniformly locally Lindelof.
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In this article, maps are extended to uniformly paracompact and strongly uniformly
paracompact spaces. In particular, it is established that under such mappings the uniformly
paracompact and strongly uniformly paracompact properties are preserved towards the inverse
image.

Keywords: Uniformly continuous mapping, finitely additive open cover, uniformly locally
finite cover, uniform paracompact space, uniform R-paracompact space, complete mapping.

Byn mMakanana Oup KanublTyy NapakKOMIIAKTYy jKaHa KydTyy OHMp KaJbIITYy ITapaKOMIIAKTyy
MEWKMHAMKTED YarbULABIpYyyJapra >kailbuiThbuIraH. MBIHIal 4YarbULAbIpyyidapaa Oup KalbIITyy
MapakOMITAKTYy jKaHa KY4TYy OHp KaJIbINTYyy NapaKOMIIAaKTyy MEWKHHIUKTEPAHH KacHETTepH
Kaipa 3Jec jKarblHa CaKTaaT.

Ypynmmyy ce306p. bup KanbInrtyy y3TYJITYKCY3 YarbUIABIPYYJIap, YEKTYY aIIUTUBIYY a4bIK
#abyy, OMp KaJbINTyy JOKAJIBIK YEKTYY jKa0ayy, Oup KalbINTyy MapakoMIaKT, OMp Kanenryy R-
MapaKOMITaKT, TOJIYK YarbUIIBIPYY.

B HacToselt craTbe Ha 0TOOpaXXeHHsI pacCIpOCTPAHSAETCS PAaBHOMEPHO MMapaKOMIAKTHBIE U
CHWJIBHO PaBHOMEPHO ITapaKOMIIAKTHBIE MPOCTPAHCTBA. B 4aCTHOCTH, yCTaHABIMBAIOTCA, YTO NPU
TaKMX OTOOPaKEHUSX PAaBHOMEPHO MApaKOMIIAKTHbIE M CHUJIBHO PAaBHOMEPHO MapaKOMIAKTHBIE
CBOWCTBA COXPAHAIOTCS B CTOPOHY Mpoodpasa.

Kniouesvie cnosa: PaBHOMEpPHO HENPEPHIBHOE OTOOpa)K€HHWE, KOHEYHO aJAUTHUBHOE

OTKPBITOE IOKPBITHE, PABHOMEPHO JIOKAJIbHO KOHEUHBIM IOKPBITUE, PABHOMEPHBIM IapaKOMIIAKT,
paBHOMEpHBIM R-mapakoMmakT, MojiHoe 0TOOpaKeHUeE.

Let f:(X,U)—(Y,V) - uniformly continuous mapping of a uniform space
(X,U) to a uniform space (Y,V).

Definition 1. Uniformly continuous mapping f :(X,U) —(Y,V) uniform space
(X,U) to a uniform space (Y,V) is called uniformly paracompact, if for any finite
additive open cover « uniform space (X,U) there exists a finitely additive open
cover g uniform space (Y,Vv) and a uniformly locally finite open cover » such that
f*ry=a.

Proposition 1. If a f:(X,U)—(Y,v) uniformly continuous uniform space
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(X,U) uniformly R - paracompact, then the mapping f uniformly paracompact.

Proof. Let o be an arbitrary finitely additive open cover of the uniform space

(X,U). Due to the uniform R -paracompactness (X,U) we have « €U . There exists a
uniformly locally finite open cover y U, what y - «. Choose any open cover g
space (Y,V). Then f*B“ Ay =a, hence the mapping f is a uniformly paracompact.

Lemma 1. If a « and g - uniformly locally finite covers of the space (X,U),
then o A g is also a uniformly locally finite cover of the space (X,U).

Proof. Let «, g be a uniformly local finite covers (X,U). Then there are such

n k
uniform covers A,neU, that for any LeA, Een we have LcUA and EcUB,,
j=1

i=1

where Aca, B, ef, i=12,...n, j=12,...k, consequently,
n k n k

LNEc(UA)N(UB,)cUU(A nB;). It's clear that Aan - even cover and
i=1 j=1 i=1j=1

LNEeian. So each LnMeAan intersects only with a finite number of cover
elements o A 5, means, a A A is a uniformly locally finite cover of the space (X,U).
Lemma 2. Let f:(X,U)—(Y,V) - uniformly continuous mapping. If a g -
uniformly local finite cover of uniform space (Y,v), then f 4 is a uniformly local
finite cover of the uniform space (X,U).
Proof. Let g - uniformly local finite cover (Y,v). Let us show that the cover
f 4 is a uniformly locally finite cover of the space (X,U), because the g uniformly

locally finite, then there exists a uniform cover 1<V, that each element of which

intersects only a finite number of elements of the cover g, that is for everybody

Lea there are B,B,..B, from g, what LcuB, consequently,

flLc f*l(_k;lBi)zgjlf*l(Bi), where f*(B,)e S, i=12,...n. It's obvious that f*1eU,

then f2 - the desired cover, hence the cover f*g is a uniformly locally finite
cover of the space (X,U).
Lemma 3. If a « and g - uniformly star finite covers of space (X,U), then

a ~ B is also a uniformly star finite cover of the space (X,U).
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The proof follows from Lemma 1 and from the fact that the intersection of any
two star finite covers is a star finite cover.

Lemma 4. Let f:(X,U)—(Y,V) - uniformly continuous mapping. If a g -
uniformly star finite cover of the uniform space (Y,v), then f 23 is a uniformly star
finite cover of the uniform space (X,U).

The proof follows from Lemma 2 and from the fact that the inverse image of
any star finite cover is a star finite cover.

Proposition 2. If a f:(X,U)—(Y,V) - uniformly paracompact mapping and
uniform space (Y,v) Iis compact, then the uniform space (X,U) uniformly

paracompact.

Proof. f:(X,U)—(Y,V) - uniformly paracompact mapping and « - arbitrary
finitely additive open cover of the uniform space (X,U), then there is a finitely
additive open cover g uniform space (Y,V) and a uniformly locally finite open cover
y such that f*g Ay >a. Without loss of generality, we will assume that g final open
coating. Let's put A=f"BAy, then according to Lemma 1. the cover 1 is a
uniformly locally finite open cover of the space (X,U), means, space (X,U) is

uniformly R -paracompact.

Proposition 3. If a f:(X,U)—(Y,V) - a uniformly paracompact uniformly
continuous mapping, and Y ={y}, then the uniform space (X,U) uniformly R-

paracompact.

Proof. f:(X,U)—(Y,V) - uniformly paracompact mapping and « - arbitrary
finitely additive open cover of the uniform space (X,U), then there are finitely
additive open coverings g uniform space (Y,V) and a uniformly locally finite open
cover y, what f*Bay>a, notice, that f'BAry=y, Consequently, (X,U) is
uniformly R -paracompact.

Proposition 4. If a f:(X,U)—(Y,V) - uniformly paracompact mapping and
M < X - closed subset, then its restriction f|,:(M,U,,) —(Y,V) is also a uniformly

paracompact mapping.

17



Proof. «,, - arbitrary finitely additive open space cover (M,U,,), and 2 - finite
additive open space family (X,U) such that A A{M}=g«,,, it is clear that the family
a={A,X\M} is a finitely additive open cover of the space (X,U), then there is a
finitely additive open cover g uniform space (Y,v) and a uniformly locally finite
open cover y such that f By >a, itis easy to see that (f |,,)"BAy, =a,, hence
the mapping f|,, uniformly paracompact.

Theorem 1. Let f:(X,U)—(Y,V) - uniformly paracompact mapping of
uniform space (X,U) onto a uniformly R -paracompact space (Y,V). Then (X,U) is
also uniformly R -paracompact.

Proof. f - a uniformly paracompact mapping, and (Y,v) - uniformlyRr -
paracompact. Consider « - arbitrary finitely additive open cover of the uniform space
(X,U), then there are finitely additive open coverings £ uniform space (Y,V) and a
uniformly locally finite open cover », what f *gAy>«. In a finitely additive open
cover g uniform space (Y,v) we inscribe uniformly locally a finite open cover 2
space (Y,V). By Lemma 2. the cover f 3, and by Lemma 1. the cover f *AAy are
uniformly locally finite open covers, hence the uniform space (X,U) uniformly R-
paracompact.

Proposition 5. The composition of two uniformly paracompact mappings is a
uniformly paracompact mapping.

Proof. f:(X,U)—(Y,v) and g:(Y,V)—>(Z,wW) - uniformly paracompact
mappings and « - any finitely additive open covering of uniform spacesa (X,U),
then there is a finitely additive open cover g space (Y,v) and a uniformly locally
finite open cover y, what f*BAy>=a. In turn, for open coverage g space (Y,V)
there exists a finitely additive open cover s space (z,w) and a uniformly locally
finite open cover A, what g oA B, notice, that
(o ) SA(f*"Any) = "BAry=a, that is (gof)'dAan=a and neU, where

n=f"2Ay. According to Lemma 2, the cover f*2 is a uniformly locally finite
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cover, and by Lemma 1. the cover n=f Ay is uniformly locally finite, hence the
composition (go f):(X,U) = (Z,w) uniformly paracompact.

Theorem 2. Every uniformly paracompact mapping f :(X,U) —(Y,V) uniform
space (X,U) to a uniform space (Y,V) is a complete mapping.

Proof. Consider the uniformly paracompact mapping f:(X,U)—(Y,V). We
choose such a Cauchy filter F in uniform space (X,U), what fF converges to some
point (Y,v), let's pretend that F does not converge at any point x space (X,U), then
for each point xe X there is a neighborhood O, and element @, from F such that
@ N0, =0. Let a={0, :xe X}, then, due to the uniform paracompactness of the
mapping f there exists a finitely additive open cover g space (Y,V) and a uniformly
locally finite open cover , that, f *BAy>a“, because the fF converges to yeY,
then for any B e g such that B>y Be fF, hence it follows that f *Be f *#nF, note

that there is I"ey, what reF, then f'Bn I =J, because the f*BAy>=a”, then

there is UO, ea” such that f"BnI"cuO,, so, WO, eF and N@, «F, that is

(Q@xi)m(ikzjloxi);t@, then there is a number i, <n, what @, NO, =&, SO We got a

contradiction, therefore, f - complete.

Definition 2. Mapping f:(X,U) —(Y,V) uniform space (X,U) to a uniform
space (Y,V) is called strongly uniformly paracompact if for any finite additive open
cover « uniform space (X,U) there exists a finitely additive open cover B uniform
space (Y,V) and uniformly star finite open cover y such that f *BAy ~a.

Proposition 6. Every strongly uniformly paracompact mapping is uniformly
paracompact.

Proof. Given a uniformly continuous mapping f :(X,U) — (Y,V) uniform space
(X,U) to a uniform space (Y,V) is strongly uniformly paracompact and « - arbitrary
finitely additive open cover of the uniform space (X,U), then there is a finitely

additive open cover g uniform space (Y,V) and uniformly star finite open cover »
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such that f*BAy=a, since every uniformly star finite open cover is a uniformly
locally finite open cover, we conclude that the mapping f uniformly paracompact.

Proposition 7. If a f:(X,U)—(Y,v) uniformly continuous mapping and
uniform space (X,U) strongly evenly R - paracompact, then the mapping f strongly
uniformly paracompact.

Proof. Let o be an arbitrary finitely additive open cover of the uniform space
(X,U), due to the strongly uniform R - paracompact space (X,U) we have aeU,
there exists a uniformly star finite open cover yeU, what y-a. Let g - arbitrary
open space cover (Y,V). Lets put pB“={uB,:B,cp-final}, than
B4 ={up,: B, c p—final} has a finitely additive open cover, hence f*g“ Ay >a, SO
the display f is strongly uniformly paracompact.

Proposition 8. If a f:(X,U)—(Y,v) - strongly uniformly paracompact
uniformly continuous mapping and uniform space (Y,V) is compact, then the uniform
space (X,U) uniformly paracompact.

Proof. Given f:(X,U)—(Y,V) - a strongly uniform paracompact mapping,
and « an arbitrary finitely additive open cover of the uniform space (X,U), then
there is a finitely additive open cover g uniform space (Y,v) and uniformly star
finite open cover » such that f *g Ay >a. In what follows, we will assume that g a
finite open cover, set A= f B Ay, then according to Lemma 3. the cover 1 is a
uniformly star finite open cover of the space (X,U), means space (X,U) is strongly
uniformly R - paracompact.

Proposition 9. If a f:(X,U)—(Y,v) a uniformly paracompact uniformly
mapping, and Y ={y}, then the uniform space (X,U) strongly uniformly R-
paracompact.

Proof. Let f:(X,U)—(Y,V) be an strongly uniform paracompact mapping,
and « - arbitrary finitely additive open cover of the uniform space (X,U), then there

are finitely additive open covers g uniform space (Y,v) and uniformly star finite
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open cover y, what f*BAy>=a. It's obvious that f*BAy=y, hence the space
(X,U) is strongly uniform R - paracompact.

Proposition 10. If f:(X,U)—(Y,v) an strongly uniform paracompact
mapping, and M < X - closed subset, then its restriction f |,,:(M,U,,) —(Y,V) is also

a strongly uniformly paracompact mapping.

Proof. Let «,, be a some finitely additive open cover (M,U,,), let 2 - finite
additive open family (X,U) such that 2AA{M}=¢,,, it is clear that the family
a={A,X\M} is a finitely additive open cover of the space (X,U), then there is a
finitely additive open cover g uniform space (Y,v) and uniformly star finite open
cover y such that f*Bay>=a. It's obvious that (f|,)"BAy, -a,, hence the
mapping f|,, strongly uniformly paracompact.

Theorem 3. Let f:(X,U)—(Y,v) be a strongly uniformly paracompact
mapping of a uniform space (X,U) is strongly uniformly R- paracompact space
(Y,V), then (X,U) is also strongly uniform R - paracompact.

Proof. Let f - a strongly uniform paracompact mapping, and (Y,V) - strongly
uniform R -paracompact, let « - arbitrary finitely additive open cover of the uniform
space (X,U), then there are finitely additive open covers g uniform space (Y,v) and
uniformly star finite open cover ,, what f*BAy>=a. In a finitely additive open
cover g uniform space (Y,V) refines a uniformly star finite open cover 1 space (Y,V)

According to Lemma 4, the cover f*3, while Lemma 3 covers f iy are
uniformly star finite open covers, hence the uniform space (X,U) strongly uniformly

R - paracompact.

Corollary 1. Let f:(X,U)—(Y,V) be a strongly uniformly paracompact
mapping of a uniform space (X,U) onto a uniformly R-paracompact space (Y,V).
Then (X,U) is also uniformly R -paracompact.

Proof. Let f be a strongly uniformly paracompact mapping, (Y,V) - uniformly

R -paracompact space and « - arbitrary finitely additive open cover of the uniform

space (X,U), then there are finitely additive open covers g uniform space (Y,V) and
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uniformly star finite open cover ,, what f*BAy>=ca. In a finitely additive open
cover g uniform space (Y,v) we refines uniformly locally a finite open cover 2
space (Y,V). According to Lemma 2, the cover f 4 is a uniformly local finite cover,
it is easy to see that the coverage f gy is a uniformly locally finite open cover, as

the intersection of uniformly locally finite and uniformly star finite covers, hence the

uniform space (X,U) uniformly R -paracompact.

Proposition 11. The composition of two strongly uniformly paracompact
mappings is a strongly uniformly paracompact mapping.

Proof. Given strongly uniform paracompact mappings f:(X,U)—(Y,v) and
g:(Y,V) > (Z,wW), and « - any finitely additive open covering of the uniform space
(X,U), then there is a finitely additive open cover g space (Y,Vv) and uniformly star
finite open cover , what f*BAy=a. In turn, for open cover g space (Y,V) there
exists a finitely additive open cover 5 space (z,w) and uniformly star finite open
cover 4, what g7'dAA1> g, notice, that (ge f)'dA(f "AAy) = 'BAy>=a, that is
(gof)*'oAn=a and neU, where n=f*AAy. According to the lemma, the cover
f 2 uniformly star finite cover, and by the lemma the cover = f “A Ay is uniformly
star finite, hence (go f):(X,U) = (Z,w) strongly uniformly paracompact.

Theorem 4. Every strongly uniformly paracompact mapping f :(X,U) = (Y,V)
of the uniform space (X,U) to a uniform space (Y,V) is a complete.

The proof follows from Theorem 2 and Proposition 6.
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byn makanaga YbIHBITBI TOJYK THXOHOBAYK jKaHa OWp KaJbINTarbl MEHKUHIUKTEPIU
KEHEUTYYJep, OLIOHJION 3Ji€ TUXOHOBIYK jXKaHa OUpP KaJbIITarbl MEHKUHIAUKTEPIUH KEPTHIUKTYY
KOMITAKTTYy TapaKOMITAKTTYy »JKaHa >KEPTWIMKTYY KOMIAKTTYy JIMHIACIOPTYK KEHEHTYYIep
KapaJjar.

Ypyummyy cezdep: bup kanbInTarsl YbIHBITH TOJIYK KEHEUTYY, JKEPTHIIMKTYY KOMMIAKTTYy
MapPaKOMITAKT, KEPTUIUKTYY KOMITAKTTYY JTUHIETO(TYK KEHEUTYY.

B »oroit cratbe pacCMaTpUBAOTCA pPACHIMPCHUA BCHICCTBCHHO IIOJIHBIX THXOHOBCKHX H
PaBHOMCPHBIX IIPOCTPAHCTB, a TaKXKXC JIOKAJIbHO KOMIIAKTHO MHapPaKOMIIAKTHBIC W JIOKAJIbHO
KOMITIAKTHO JII/IH,HGJ'Ié(l)OBLIC PaCcIupPCHUA TUXOHOBCKUX U PABHOMCPHBIX IIPOCTPAHCTB.

Knrwouesvie cnosa: PaBHOMepHO BCHICCTBCHHO IMOJIHOC paCIIUPCHUEC, JIOKAJIBHO KOMIIAKTHBII
IMapaKOMIIAKT, JIOKAJIbHO KOMITIAKTHOC J'II/IH,ZLCJIé(bOBO pacmipeHuc.

The real complete spaces introduced by Edwin Hewitt. [1] The properties of
real complete or in other terminology of complete Hewitt spaces are presented in the
book. The maximal real complete Tychonoff spaces extensions called the Hewitt
extension (the Hewitt extension). The first Tychonoff spaces constructed by E.
Hewitt ([1]). Uniform analogues analysis of other important classes topological
spaces and formation all extensions of such Tychonoff spaces classes considered
([3]). Real complete extensions are considered in [4].

Definition 1. A uniform space (X, U) is called a uniformly functional space,
and the uniformity U is functional if the uniformity U is generated by some family
of functions Cy(X), i.e. U is generated by a family of coverings of the form
(f ta: feCy(X), aeEg), where f: X — R, and Eg-natural uniformity of the number

line R.
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Proof. Let Cy(X) - set of all uniformly continuous functions, where
f:(X,U) - (R, ER). We denote by Ur the uniformity generated by coverings of the
form {f ta: feCy(x), aeEr}. Then U is the desired uniformity of X.

Definition 2. A uniform space (X, U) is called uniformly real complete if it is

uniformly functionally and complete.

Theorem 1. Let (X, U) be a uniformly function space. Then its completion (X,
0) is uniformly real complete, and its topological space (X,z;) will be real complete
spaces.

Proof. Let Cy(X) be the set of all uniformly continuous functions
f:(X,U) - (R,Eg). By R' denotes a copy of the number space R for each
feCy(X)and by Af =A{f:f € Cy;(X)} the diagonal product of mappings
{(f:f € Cy(X)}. Then the mapping Af:(X,U) - [1{(R/, E};)} is uniformly
continuous. Since the space (X, U) is uniformly functional and the set of maps CU
(X) generates the uniformity of U, then CU (X) also generates the Tychonoff
topological space (X, t U). Then the mapping Af:(X,U) — H{(Rf ,E};)} IS a
homeomorphic embedding ([2]). Since U is the weakest uniformity on X for which
the whole mapping f € Cy(X) is uniformly continuous, the diagonal mapping
Af: (X, U) - [I{(R, E};} Is also a uniformly homeomorphic embedding.

Then we consider the image Af(X,U) as a uniform subspace of the uniform

space [T{(R’, E}; ), f € Cy(X)}. By X denotes the closure Af (X) in the products
[T{(R",E})}. Then X as a closed subspace of space and [I{(R,f € Cy(X)} of

substances is a real complete space [2]. Denote by U the uniformity on X induced by
the uniformity [T{(E/, f € Cy(X)}. The uniform space (X, U) is the completion of
the uniform space (X, U) and it is a uniformly real complete space.

Theorem 1 is proved.

Let (X, U) be an arbitrary uniform space. Then, by Proposition 1, there exists

maximal functional uniformity Up contained in U. By Theorem 1, the completions

()?, U) of the uniform space (X, U) are uniformly real complete, and its topological

24



space (X, D)is a real complete space. We denote it by V,X and call it the Hewitt
extension of the uniform space (X, U).

If U is the maximal uniformity of the Tychonoff space X, then VX coincides
with the classical Hewitt extension VX of the Tychonoff space X.

Let X be an arbitrary real complete space. By C (X) we denote the set of all
continuous functions f: X — R, which generates the maximum functional uniformity
of Ug. We show that the uniformity of Ur is complete. By the external characteristic,
the real-complete space X is a closed subspace of the product [T{(R”, f € C(X)} of
the set of copies R of the real line R ([2]). We denote by U the uniformity on X
induced by the product ]'[{(Ef,f € C(X)} the set of natural uniformities E}; of the
real line R/. . The uniform space (X, U) is complete as a closed subspace of the
complete of the uniform space [I{(R/,E}):f € C(X)}. The uniformity U is
generated by the restriction family by the projection pry [T{R”: f € C(X)} - R”.
Since pry € C(X), for each f € C(X), then U < Up.

Hense, Uy is the complete functional uniformity on X. Then the topology of the
space X is also determined by this maximal functional uniformity Up.

Definition 3. A uniform space (X, U) is called a pre-maximal functionally
uniform space if its completion (Y l7) Is uniformly real complete and uniformity U
Is an maximal functional uniformity.

Let X be an arbitrary Tychonoff space. Now we construct real complete
extensions of the Tychonoff space by means of uniform structures.

We denote by V (X) the set of all pre-maximal uniformities of the Tychonoff
space X. The sets V (X) are partially ordered by inclusion. We denote by H (X) the
set (identifying the equivalent extension) of all real complete extensions of the
Tychonoff space X. The set H (X) is also partially ordered in a natural way [2], [3].
On every real complete extension HX of the Tychonoff space X, there exists a unique
complete maximal functional uniformity 3. It induces on X the pre-maximal
functional uniformity 8€V (X). Each uniformity corresponds to a unique real

complete extension (Hy, X) obtained as a completion of the uniform space (X, U). It
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IS easy to see that this correspondence between the partially ordered sets H (X) and V
(X) preserves a partial order.

So, we have obtained the following theorem

Theorem 2. Partially ordered sets V (X) and H (X) are isomorphic.

Lemma. Every uniformly real complete space is uniformly homeomorphic to a
closed subspace of the product of some set of copies of a real line with natural
uniformity.

Proof. Let (X, U) be an arbitrary uniformly real complete space. By his
definition, it is complete, and U is the maximum functional uniformity. Let Cy(X) be
the set of all uniformly continuous functions f: (X,U) = (R,Eg) and AF = {f:f €
fCy(X)} be the diagonal product [T{R, E}): f € Cy(X)}, where (R, EE) is a copy
of the uniform space (R, ER) for each f € Cy(X).

It is easy to verify that the map AF:(X,U) - [I{(RF,EE)} is a uniformly
homeomorphic embedding. The fact that AF is a homeomorphic embedding is
indicated in [2]. The uniformly homeomorphic embedding of the map AF follows
from the fact that uniformity is generated by the family of functions Cy(X). Since the
uniform space (X, U) is complete, its image AF (X, U) is also complete, and the
complete subspace of any uniform space is closed.

The lemma is proved.

Theorem 3. For each uniform space (X, U) there is exactly one (up to a
uniform homeomorphism) uniformly real-complete space (9yX,9y) with the
following properties:

(1) There is a uniformly homeomorphic enclosure i: (X, Up) = (9yX,39y), for
which (95X, 9y) is the completion of the uniform space (X, Ur), where Upg is the
maximum functional uniformity contained in U.

(2) For any continuous function f:(X,U) — (R, Eg), there is a uniformly
continuous function f: (9,X,9y) = (R, Eg) suchthat fi = f.

The spaces (9,X, 9y) also satisfy the condition:
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(3) For each uniformly continuous mapping f: (X, U) — (y, M) of the uniform
space (X, U) into an arbitrary uniformly real complete space (y, M), there is a
uniform mapping f: (9yX,9y) = (v, M) such that f i = f.

Proof. Let (X, U) be an arbitrary uniform space and Ur the maximal functional
uniformity of those contained in U (exists by Proposition 1). By (9y,X,9y) we
denote the completion of the uniform space (X,Ur). Then the uniform space
Iy, X,9y) is uniformly real complete, i.e. condition (1) is satisfied.

Let f:(X,U) — (R, Eg) be an arbitrary uniformly continuous function. Then
the mapping f: (X, Ur) — (R, Ex) will also be uniformly continuous. By f we denote
the continuation of the mapping f onto the completions (9y,X,9,) of the space
(X,Up) and i:(X,Up) = (Iy,X,9y) is a natural uniformly homeomorphic
embedding. Then f = f i condition (2) is satisfied.

It follows from conditions (1), (2) and the lemma that a uniformly real-
complete space (9, X, 9y) satisfies condition (3).

Let (9,,X,9,) be some uniformly real complete space for which conditions
(1) and (2) are satisfied. Then (9, X, 9, also satisfies condition (3), which implies
that (9, X, 9;,) is uniformly homeomorphic (9y, X, 9;).

Theorem 3 is proved

A uniformly real complete space (9y, X, 9y) is called the Hewitt completion of
the uniform space (X, U). Generally, it differs from the completion (X, 0) of the
uniform space (X,U).

Example. Let R be the space of real numbers. By Egx — we denote the natural
uniformity of the space R, and E, the maximal functional uniformity on R, and also
by Ep the maximal precompact uniformity on R contained in Eg. Then E,# Er and
Er # Eg. The first inequality follows from the fact that Ep is incomplete uniformity,
and Er is complete uniformity. The second inequality follows from the fact that the
function f(x) = x? is continuous on R, but is not uniformly continuous on (R,ER).

Therefore, there exists a uniform covering a € Eg such that fa & Eg, but by
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construction of Eg, the covering f~ta € Eg. Therefore, Eg # Eg. The uniform spaces
(R,Er) and (R,Er) are uniformly real compact spaces.

Now we consider locally compact paracompact, locally compact Lindelof
extensions of Tychonoff and uniform spaces.

Definition 4. Let (X, ¢/) be a uniform space. The uniformity ¢ is called:
1) preparacompact if every cover y of the set x such that y~nF =@ forany Feg(V)
belongs to ¢;
2) strongly preparacompact if ¢ is a preparacompact and has a base consisting of a
star-finite coverings;
3) preLindeloff if ¢ is a preparacompact and has a base consisting of countable
coverings.

We denote by ¢, (X) (respectively ¢ (X), L (X), ¢ (X)) the set of all
preuniversal (respectively preparacompact, strongly preparacompact, preLindeloff)

uniformities of the Tychonoff space X . The sets ¢/, (X), ¢, (X), U (X) are partially

ordered by inclusion.

Theorem 4. For any Tychonoff space X the following partially ordered sets

1) (D(x).<) and (¢4(x).):

2) (P(x).<) and (64 (X))

3)(5(X).<) and (¢4 (X))
) (L (LX)

L(X),<) and (¢ (X),<).
are isomorphic.

Proposition 3. A Tychonoff space X is locally compact and paracompact
(respectively Lindelof) if and only if it contains a universal uniformity ¢ contains a
cover (countable cover respectively) consisting of compact subsets.

Proof. Let the space X be locally compact and paracompact (respectively

Lindelof). Then for any point xe X there is a neighborhood O, such that [O,] is
compact. Then, by the paracompactness of X the cover {[OX]ZXG x} belongs to

universal uniformity ¢°. If x is Lindelof, then the cover {O,:xe X} contains a
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countable subcover {0, :ieN}. Then the cover {(A): Aca} belongs to the universal

X

uniformity ¢". Conversely, suppose that the universal uniformity ¢ of the space x

contains a cover (countable cover) « consisting of compact subsets. Then the cover

{(A): Aca} also belongs to the uniformity ¢". This implies that x is locally

compact. Uniform space (X,U*) is complete and ic(¢/)=1. Since the well-known

theorem of Stone states that every metrizable space is paracompact and the preimage
of a paracompact space under a perfect map is paracompact. If there is a countable
cover of X consisting of compact subsets, then its any open covering contains a
countable subcovering, i.e. X is Lindeloff.

Proposition is proved.

Remark 1. Let (X, ¢/)-be a uniform space, and (x, U)- be its completion. If
(AU,) is a precompact subspace of the space (X, ¢/), then the subspace ([A]X , U[A]x)

of the space (X, ¢/) is compact.

Theorem 5. There is an isomorphism between the partially ordered the set of
all locally compact paracompact (locally compact Lindel6ff) extensions of the given
Tychonoff space x and partially ordered set of all preuniversal uniformities of the
space X containing a uniform cover (respectively countable uniform cover)
consisting of precompact subsets.

A partially ordered set (D(X), s) has the greatest element. This element is the
extension t,. > X corresponding to the universal uniformity ¢ of the space x. The
rest partially ordered sets (P(X), <), (P(X), <) and (L(X), <) generally speaking, do

not have greatest elements.
Theorem 6. For Tychonoff space X the following conditions are equivalent:

(1) Partially ordered set (P(X), <) has a greatest element.
(2) Universal uniformity U™ of the space X is preparacompact.

If Uy is a universal (the maximal) uniform of a Tychonoff space X, then a

maximal locally compact paracompact (locally compact Lindeloff, respectively)
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extension of a uniform space (X,Uy) is a maximal locally compact paracompact
(maximal locally compact Lindeloff, respectively) extension of the Tychonoff space
X.

From the above results, one can get the following theorem.

Theorem 7. Among all locally compact paracompact (locally compact
Lindeloff, respectively) extensions of a Tychonoff space X there is a maximal
extension.

Let uX be a maximal Dieudonne complete extension of the space X and pX
$(spX,1X) a maximal locally compact paracompact (a maximal locally compact
strongly paracompact, a maximal locally compact Lindeloff respectively) extension
of the space X. Then we get the following inclusions u X € pX € spX € IX € B X§$.

If vX$ is a maximal real compact Hewitt extension of a space X, then the
following inclusions u X € vX € IX € £ X. hold.

Remark 2. Locally compact paracompact space is strongly paracompact. The
locally compact strongly paracompact extensions coincide with locally compact

paracompact extensions
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In this paper, studied precompact spaces. In particular, a criterion for the precompactness of
uniform structures is established, and countably precompact structures are extended to the mapping.

Keywords: Uniform space, uniformly continuous mapping, precompact, countably
precompact, pre-Lindelof.

byn wnumuii Makanajga CaHaKTyy HPEAKOMIIAKTTYY MEWKUHIUKTED H3WIIACHUIIET.
[IpenxomMnakTTyy OHp KaJIBINITYy CTPYKTypaJaplblH KPUTEpPUHH Typry3yjaT, CaHaKTyy
IIPEAKOMIIAKTTYY CTPYKTYpaJIap 4arbULAbIpYyyJlapra KaubUIThLIAT.

Ypynmmyy cesoep: bup xanbmTyy MEHKUHAUK, OMp KalbIITYY Y3TYJITYKCY3 YarbULABIPYY,
IIPEIKOMIIAKT, CAHAKTYY MPEAKOMIAKT, npea-JIlunnenéd.

B Hacrosmen cratbe BBOAATCSA U MCCIEAYIOTCS CYETHO NMPEAKOMIIAKTHBIE IIPOCTPaHCTBA. B
YaCTHOCTH, YCTAHABJIMBAETCS KPUTEPUM IPEAKOMIIAKTHOCTH PAaBHOMEPHBIX CTPYKTYp, Ha
0TOOpaKEHNE PACIIPOCTPAHSIETCS CUETHO MPEAKOMITAKTHBIE CTPYKTYPHI.

Kniouesvie cnosa. PaBHOMEpHOE NPOCTPAHCTBO, PABHOMEPHO HENPEPHIBHOE OTOOpakeHUe,
MPEIKOMITaKT, CYETHO MPEIKOMIAKT, npen-JIunmenéd.

A uniform space (X,U) is called precompact if the uniformity U has a base

consisting of finite covers.

A uniform space (X,U) is called pre-Lindel6f if the uniformity U has a base
consisting of countable coverings.

A uniform space (X,U) is called countably precompact if every countable
uniform cover can be refinement with a finite uniform cover.

Proposition 1. Every precompact uniform space is countably precompact.

Proof. Let (X,U) be a precompact uniform space and « U is an arbitrary
countable uniform cover. Then there is a finite uniform cover g<U such that g>«.
Thus, (X,U) is a countably precompact uniform space.

Corollary 1. Every compact uniform space is countably precompact.

Proposition 2. Every subspace of a countably precompact uniform space is

countably precompact.
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Proof. Let (X,U) be a countably precompact uniform space and (m,u,,) is a
subspace of it. Let «,, €U,, be an arbitrary countable uniform cover. Then there is a
countable uniform cover « eU such, that « A{M}=¢,, . Let U be a finite uniform
cover such, that g =« . It is easy to see that g,, - «,, and g, U, are final coverage.
Therefore, the uniform space (X,U) is countably precompact.

Theorem 1. A Tychonoff space X is countably compact if and only if the
uniform space (x,U,) is countably precompact, where u, is a universal uniform
structure.

Proof. Necessity. Let the Tychonoff space X be countably compact and let
a €U, be an arbitrary open countable cover. Then there is a finite open cover g of
the space X such, that g>~a«. Clearly pgeu,. Therefore, the space (X,uU,) is
countably precompact.

Sufficiency. Let a uniform space (x,uU,) be countably precompact, where u,
Is a universal uniform structure. Let prove that the Tychonoff space X is countably
compact. Let « be an arbitrary countable open covering. Then « eU, and, since the
space (x,U,) is countably precompact, there exists a finite open cover of geuU,
such that g~ « . Consequently, the Tychonoff space x is countably compact.

Theorem 2. A Tychonoff space X is Lindelof if and only if the uniform space
(X,U,) Is pre-Lindelof, where U, is a universal uniform structure.

Proof. Necessity. Let a Tychonoff space X be a Lindelof space and let o U,
be an arbitrary open uniform cover. Then there is a finite open cover g of the space
X such, that p=«a . Obviously g <u, . Therefore, the space (x,u,) is pre-Lindel6f.

Sufficiency. Let the uniform space (x,uU,) be pre-Lindel6f, where U, is the
universal uniform structure. Let prove that the Tychonoff space X is Lindelof. Let o
be an arbitrary open covering. Then « U, and, since the uniform space (X,U,) is
pre-Lindeldf, there is a countable open cover g<U, such, that g« . Therefore, the
Tychonoff space X is Lindel6f.

Theorem 3. A Tychonoff space X is compact if and only if the uniform space
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(X,U,) is countably precompact and pre-Lindelof, where U, is a universal uniform

structure.
The proof follows from Theorems 1 and 2.

Theorem 4. A uniform space (X,U) is precompact if and only if the space
(X,U) is pre-Lindelof and countably precompact.

Proof. Necessity. Let (X,U) be a precompact uniform space. It is clear that
(X,U) is a pre-Lindelof space. Let « €U be an arbitrary countable uniform cover.
Then there exists a finite uniform cover g<U which is refinement in the uniform
cover « . Therefore, (X,U) is a countably precompact space.

Sufficiency. Let « €U be an arbitrary uniform cover. Then, since the space
(X,U) is pre-Lindel6f, there exists a countable uniform cover peU such that g~ «.
In turn, for the cover g<U, since the space (X,U) is countably precompact, there
exists a finite uniform cover y U refinement in 3. It is clear that y - « . Hence (X,U)

IS precompact.

Corollary 2. Let (X,U) be a complete uniform space. A uniform space (X,U)
Is compact if and only if the space (X,U) is pre-Lindel6f and countably precompact.

Let f:(X,U)—(Y,V) be a uniformly continuous mapping of a uniform space
(X,U) into a uniform space (Y,V).

A mapping f is called countably precompact if for any countable uniform
cover « €U there exists a finite uniform cover y eU and a uniform cover eV such
that f Ay >a .

A mapping f is called pre-Lindelof if for any uniform cover a eU there exists
a countable uniform cover y eU and a uniform cover geV such, that f Ay >«

A mapping f is said to be precompact if for any uniform cover « €U there
exist a finite uniform cover y eU and a uniform cover geV such,that f gy -«

Theorem 5. Let f:(X,U)—(Y,V) be a uniformly continuous mapping from a
uniform space (X,U) to a uniform space (Y,V). A mapping f is precompact if and

only if it is pre-Lindel6f and countably precompact.
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Proof. Necessity. Let the mapping f : (X,U) —(Y,V) is uniform space (X,U) to
uniform space (Y,Vv) be precompact. Then it is easy to see that it is pre-Lindel6f and
countably precompact.

Sufficiency. Let the mapping f be pre-Lindel6f and countably precompact, and
let « €U be an arbitrary uniform cover. Then, since the mapping f is pre-Lindelof,
there exist a countable uniform cover y<U and a uniform cover geV such, that
f 18 Ay >« . Further, for a cover y eU, there exist a finite uniform cover ,, cu and
a uniform cover B, eV such that f By Ay, 7. Then
(F 2B At BAy, = Bry=a. Weput f 8 Af B=F"(B,Ap) and g, rp=21. It

is clear that g, Apgcuand f Ay, =a . Therefore, f isa precompact mapping.
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As we know the strong 7 -finally paracompactness play an important role in the General
Topology. Therefore, the finding of uniform analogues of strong r -finally paracompactness is an
important and interesting problem in the theory of uniform spaces.

In the paper, strongly uniformly 7 -finally paracompact spaces and their connection with
other uniform properties of compactness type are studied, and characterizes of these classes are
established with the help of finitely additive open covers, compact Hausdorff extensions, and @ -
mappings.
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Kyuryy 7 -QunHanayy napakoMIakTyylIyK Kajbl TOMOJIOTHSAA HETM3TH POJIbAY OWHOWT.
Kyuryy 7-(unanmyy mnapakoMOnakTyyayKTyH OHp KaJBIITYy aHAJIOTJOpYyH Talyy Owup
KaJIBINTYYJIyKTap TEOPUSCHIHBIH HETU3IH KaHa KbI3BIKTYY MaceseIepuHeH 00yl caHamar.

Byn mimmuit Makanana Kyuryy Oup KajaslnTyy 7 -(pUHANIyy MapakoMIaKTyy MEWKHHIUKTEP
’KaHa aJlap/blH OalIKa KOMIIAKTYy TUIITYY OUp KaJbINTYy KacueTTep MEHEH O0JIrOH OailaHbIIITaphI
M3WIJICHEHT jKaHa YeKTYY aJJUTHBIYY adblK jka0ayynap, XaycAoppTyK KOMIIAKTyy KeHEHyyyep
’KaHa @ -4arbUIIBIPYYJIap apKbUIYY MYHO3/1eMejepy Oepurer.

Ypynmmyy cezoep: xydryy Oup KanbInTyy 7 -(pUHANIYy MapakOMOAKTYyJIyK, KY4TYY 7 -
¢buHanAyy NapakOMIAKTYYyIyK, 7 -(PUHAILYy NapaKOMIAKTYyJIyK.

Kak n3BecTHO, CHIIBHO 7 -(hWHAIBHO NMapaKOMIAKTHBIE POCTPAHCTBA UTPAIOT BAXKHYIO POITh
B o0meii Tomomornu. HaxoxaeHne  paBHOMEpPHBIX  aHAJIOTOB  CHWJIBHO 7 -()WHAIIBHO
[IapAKOMITAKTHOCTH SIBJISIETCS BaKHOW M MHTEPECHOM 3a/1aueil TeOpur paBHOMEPHBIX IPOCTPAHCTB.

B HacTosmeil craTthe wH3ydaeTrcs CHJIBHO PAaBHOMEPHO 7 -(UHAIBHO MApaKOMIIAKTHbBIE
IIPOCTPAHCTBA M MX CBA3b C JPYITMMHM pPaBHOMEPHBIMH CBOMCTBAMM THUIA KOMIIAKTHOCTH,
YCTAHABJIMBAETCS XapAKTEPUCTUKU NPU MOMOIIM KOHEYHO AJJUTUBHBIX OTKPBITHIX MOKPBITHUH,
XaycnopoBbIX KOMITAKTHBIX PACIIMPEHUN H @ -OTOOpasKEHUA.

Kntouegvie cnoea: CWIBHO PaBHOMEPHO 7 -(puHAIbHAsS NapaKOMIAKTHOCTb, CHJIBHO T -
¢buHanbHAas IaPaKOMIAKTHOCTb, 7 -(PMHAJIbHAs IAPAKOMIIAKTHOCTb.

1. Introduction

Throughout this paper all uniform spaces are assumed to be Hausdorff,
mappings are uniformly continuous.

For coverings « and g of the set X, the symbol « > means that the
covering « is a refinement of the covering 3, i.e. for any Aea there exists Be f
such that AcB and, for coverings « and S of a set X, we have:
anf={AnB:Aca,Bepf}. The covering o« finitely additive ifa” =0,
a’ ={ua,:a,ca is finite}. a(x)=USt(a,X), St(e,X)={Aca:A>5x}, xeX,
a(H)=uSt(a,H), St(a,H)={Aca: AnH =}, Hc X.

A covering « of the uniform space (X,U) is called uniformly locally finite if
there exists a uniform covering g eU such that every B e g meets « only for a finite
number of elements of «[5]; a uniform space (X,U) called uniformly r-finally
paracompact, if every open covering has an open uniformly locally finite refinement

cardinality << [2]; a uniform space (X,U) is called uniformly z-locally compact if
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the uniformity of U contains a uniform covering cardinality <<zconsisting is
compact sets [3]; a uniformly continuous mapping f:(X,U)—(Y,V) of uniform
space (X,U) onto a uniform space (Y,v) is called a precompact, if for each « cU
there exist a uniform covering S eV and finite uniform covering y €U, such that
f B Ay >=al2]; a uniformly continuous mapping f:(X,U)—(Y,V) of uniform space
(X,U) onto a uniform space (Y,v) is called a uniformly perfect, if it is both
precompact and perfect [2]. For the uniformity U by z, we denote the topology
generated by the uniformity and symbol U, means the universal uniformity.

2. Strong uniformly 7 -finally paracompactness

Definition 1. A uniform space (X,U) is called strongly uniformly z -finally
paracompactness if each of its open covers can be a refinement with a uniformly star-
finite open cover of cardinality <-.

Moreover, a covering « of a uniform space (X,U) is called uniformly star-
finite if it is star-finite and uniformly locally finite.

Theorem 1. If a uniform space (X,U) is strongly uniformly z-finally
paracompact, then the topological space (X,z,) is strongly r-finally paracompact.
Conversely, if the Tychonoff space (X,r) is strongly r -finally paracompact, then the
uniform space (X,U,), where U, is universal uniformity, is strongly uniformly r -
finally paracompact.

Proof. Let « be an arbitrary open covering of the space (X,z,). Then there
exists a uniformly star-finite open covering g of cardinality < r a refinement in it.
Since every uniformly star-finite open cover is a star-finite open cover, then the cover
B is a star-finite cover of cardinality <z . Thus, the space (X,z,) is strongly r -finally
paracompact.

Conversely, let the space (X,z) be strongly 7 -finally paracompact. Then the set
of all open covers forms a base of universal uniformity U, of the space (X,z) . Itis
easy to see that the uniform space (X,U,) is strongly uniformly z-finally

paracompact.
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The following theorem characterizes strongly uniformly ¢ -finally
paracompactness in the spirit of Tamano [6].

Theorem 2. Let (X,U) be a uniform space, bX is an arbitrary compact
extension. A uniform space (X,U)is strongly uniformly z -finally paracompact if and
only if for any compact set K < bX \ X there exists a uniformly star-finite open
cover « of cardinality <z such that [A]l,, "K =& forany Aca.

Proof. Necessity. Let (X,U)is strongly uniformly z-finally paracompact and
K < bX \ X is an arbitrary compactum. Then for each point x e X there exists a open
in bX neighborhood O, such that [0 ], "K=3. Put g={O, "X :xe X}. It is clear
that g is an open covering of the space (X,U).We refinement a uniformly star-finite
open cover g of cardinality » into the cover <z. Then [I],, nK =9 forany r'ey.

Sufficiency. Let « be obtained an open cover of the space (X,U). Then there is
an open family g in bX such that gA{X}=«a. Put K =bX \ug. Then for a compact
set K there exists a uniformly star-finite open cover » of cardinality <+ such that

[Ix "K=< for any I'ey. Due to the compactness of the set [/, , there are
B,.B,,....B, € B such that [I'],, ci\}lBi . Then FCikZJlAi , Where IknJlA, ea .

Consequently, the uniform space (X,U) is a strongly uniformly «-finally
paracompact space.
The following theorem is an intrinsic characterizes for strongly uniformly r -
finally paracompactness spaces.
Theorem 3. For a uniform space (X,U) the following statements are
equivalent:
1) (X,U) isstrongly uniformly ¢ - finally paracompact;
2) (X,U) is uniformlyly  -finally paracompact and the topological space (X,z,)
is strongly r -finally paracompact.
Proof. 1) = 2)obviously.
2)=1). Let « be an arbitrary open cover of the uniform space (X,U) . We

refinement in it a star-finite open covering g of cardinality <<. In turn, we
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refinement into the cover g a uniformly locally finite open cover , of cardinalit
y <z . It is easy to see that g is a uniformly finite open covering of cardinality <z .
Thus, the uniform space (X,U) is strongly uniformly z -finally paracompact.
Theorem 4. For a locally compact space (X,U) the following conditions are
equivalent:
1) (X,U) isuniformly r - locally compact;
2) (X,U) is strongly uniformly ¢ - finally paracompact.
Proof. 1) = 2)obviously.
2) = 1). From the local compactness of (X,U) it follows that for every point
xe X there is an open neighborhood O, such that [0 ] is compact. The family

a={0, :xe X} forms an open covering of the space (X,U). In « refinement a

uniformly star-finite open covering g of cardinality <z . Each B e g is contained in a

certain set goxi, whence, due to the monotonicaly of the closure, we have that

[B]c [ikZJlOXi], and therefore [B] is compact. So [p]={[B]: B € g} is a uniform covering

consisting of compact subsets. Hence (X,U) is uniformly r -locally compactness.

Theorem 5. A uniform space (X,U) is strongly uniformly < -finally
paracompactness if and only if any finitely additive open cover of (X,U) can be
refinement with a uniformly star-finite open cover of cardinality <.

Proof. Necessity. Let (X,U)be a strongly uniformly ¢ -finally
paracompactness space and « is an arbitrary finitely additive open cover. In it we
refinement a uniformly star-finite open covering £ of cardinality < of thes pace
(X,U). Consequently, the space (X, U) is strongly uniformly r -finally paracompact.

Sufficiency. Let in any finitely additive open cover of the space (X,U) one can
refinement a uniformly star- finite open cover of cardinality <z . Let us show that
(X,U) is a strongly uniformly « -finally paracompact space. Let « be an arbitrary
open covering. By virtue of the strongly uniformly z -finally paracompact of (X,U),

a finitely additive open cover «“ can be refinement with a uniformly star-finite open
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cover £ of cardinality <z of the space (X,U). Consequently, the space (X,U) is
strongly uniformly ¢ -finally paracompact.

An infinite discrete uniform space (X,U,) , where U, is a discrete uniformity
of cardinality z>¥, is a strongly uniformly r -finally paracompact but not compact
uniform space.

The property of strongly uniformly r -finally paracompactness is preserved in
passing to closed subspaces and to any disjoint sum of uniform spaces.

Proposition 2. Any uniformly r-locally compact space is strongly uniformly
r -finally paracompact.

Proof. Let a uniform space (X,U) be a uniformly r -locally compact space.
Then the topological space (X,z,) is locally compact and r -finally

paracompactness, i.e. strongly  -finally paracompact. According to Theorem 3, the
uniform space (X,U) is a strongly uniformly r -finally paracompact space.
Proposition 2 is a uniform analog of A.V. Arkhangelskii [1].
Proposition 3. Any uniformly « -finally paracompact space (X,U) whose

topological space is ¢ -locally compact is strongly uniformly z -finally paracompact.

Proof. Let (X,U)be a uniformly r-finally paracompact space and let its
topological space (X,z,) be locally compact. Then the space (X,z,) is ¢ -finally
paracompact. Consequently, the topological space (X,z,) is strongly r-finally
paracompact. Then, by Theorem 3, the uniform space (X,U) is strongly uniformly

-finally paracompact.

Lemma 1. Any (uniformly) perfect mapping f:(X,U)—(Y,V) of a uniform
space (X,U) onto a uniform space (Y,V) is a o -mapping for any finitely additive
open cover o of the space (X,U) .

Proof. Let » be an arbitrary finitely additive open cover of the space (X,U). It
is easy to see that o ={f "y:yeY}is refinementin @ . For each f'yea, we choose
W, ew such that f™ycWw,. Then, since the mapping f is closed, there exists a
neighborhood O, >y such that ™0, cW,.
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Lemma 2. Let f:(X,U)—(Y,v) be a uniformly continuous mapping of a
uniform space (X,U) onto a uniform space (Y,V) . If £ is a uniformly star-finite
open cover of cardinality <- of the space (Y,V), then f 2 is a uniformly star- finite
open cover of cardinality <z of the space (X,U).

Proof. Let £ be a uniformly star- finite open covering of cardinality << of the
space (Y,V). Then, by virtue of the uniform continuity of the mapping f, the

covering f 4 is open in the space (X,U). Let yeV be a uniform cover such that

has only a finite number of elements £ , i.e. FCik:JlBi . It follows from here that

f‘lﬁ(f‘lr)céf‘lBi,where , f7B, ef?p, f'ref?y, flyeU. ltiseasy to see that

f 7 is a star- finite covering. Hence, f 23 is a uniformly star- finite open covering
of cardinality < of the space(X,U).

The following theorem is a uniform analog of V.I. Ponomarev on the
characterization of strongly paracompact and finally compact spaces using -
mappings.

Theorem 6. Let f:(X,U)—(Y,V) be w-mapping of the uniform space (X,U)
into the uniform space (Y,Vv). If a uniform space (Y,V) is strongly uniformly z -finally
paracompact, then the space (X,U)is also strongly uniformly z -finally paracompact.

Proof. Let » be an arbitrary finitely additive open cover of the space (X,U).
Then for each point yeY there is a neighborhood O, >y such that O, cw for some
Wew. Let g={O,:yeY}. Then there exists a uniformly star-finite open cover » of
cardinality <- of the space (Y,V) such that y > 8 . It follows from Lemma 2 that f
is a uniformly star-finite open cover of cardinality <+ of the space (X,U) . Itis clear
that f 'y = w. Consequently, (X,U) is strongly uniformly r -finally paracompact.

Corollary 1. Under perfect (uniformly perfect) mappings, strong uniformly r -

finally paracompactness is preserved towards the inverse image.
The proof follows from Lemmas 1 and 2.
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ABOUT REMAINDERS OF UNIFORMLY CONTINUOUS MAPPINGS

Kanetov B.E. !, Esenkanova N. 2
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A uniform space can be considered as a special case of a uniformly continuous mapping,
identifying the uniform space under consideration with its uniformly continuous mapping to a point.
Therefore, the idea arises of extending to uniformly continuous mappings the concepts and
statements available for uniform spaces. The method of mappings is of universal importance for the
classification of uniform spaces. The mutual classification of uniform spaces and uniformly
continuous mappings is an important trend in modern uniform topology. In this article, we study
some properties of remainders of uniformly continuous mappings.

Key words: uniformly continuous mapping, remainders, Samuel compactification, locally
perfect mapping.

Kapansim xatkan OUp KaJbINTyy MEHMKUHIUKTH OMp KAJBINTYY Y3TYATYKCY3 YarbULABIPYY
MEHEH TYIOHAYPYN OHp KalbIITyy MEUKHMHIUKTH OHp KaJBINTYyy Y3TYJITYKCY3 YarbUIABIPYYHYH
alippIM ydypy KaTapel Kapooro MYMKYH OoyoT. OmIOHAYKTaH OWp KaNbINTYy MEHKWHIUKKE
TUelenyy OOJroH TYIIYHYKTOPAY KaHa HaTblbKamapabl Oup KaJIbINTYy  Y3TYJITYKCY3
YareUIIBIpyyJiapra >KaWblITYy WICSICHl KENWI 4bIraT. YarsUiablpyy BIKMAackl OHp KalbIITYY
MEHUKUHAUKTEPIM  KBATM(PHUKALMAIOONO  YHUBEpCAIAyy MaaHure 923. bup  xameinryy
MEHKUHANKTEPIN KaHa OUp KaJbIITYy Y3TYATYKCY3 YarbULABIPYYIapAbl 63 apa KBATU(PHUKAIHIIOO
3aMaHOAaI TOIMOJIOTUSHBIH MaaHWIYY OarbIThl Oonym caHanatr. byn Makamaga Oup KalbIITyy
Y3TYJTYKCY3 YarbUIABIPYYIIapAslH ©CYHAYIOPYHYH alipbIM KaCHETTEPH N3MIIJICHET.
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Ypynmmyy cez0ep: 6up KanbITyy Y3TYJITYKCY3 YarbUIABIpYYJap, ecyHayiep, Camyaniauk
KOMMaKTH(UKALKs, JTOKAAYY KETKUIICH YarblUIABIPYY.

PaBHOMEpHOE MPOCTPAHCTBO MOYXHO paccMaTpUBaTh KaK YACTHBIA CIy4all paBHOMEPHO
HETPEPBIBHOTO OTOOpPAKEHUS, OTOXKICCTBISISI PacCMaTPHUBAEMOE PAaBHOMEPHOE IMPOCTPAHCTBO C
PaBHOMEpPHO HEIMPEPBIBHBIM OTOOpa)kKeHHEM ero B To4Ky. [loaToMy BO3HHMKaeT wujaes
pacnpocTpaHEHUsT Ha PABHOMEPHO HEIMPEPbIBHbIE OTOOpaXKEHUs TMOHATUA U YTBEPKICHUU,
UMEIOLIUXCA Il PaBHOMEPHBIX MPOCTPAHCTB. MeTol OTOOpaKeHUN HUMEET YHHUBEpPCAIbHOE
3HaUCHUE s KIAaCCH(PHUKAIMU pPABHOMEPHBIX MPOCTPAHCTB. B3aumHas KiaccuuKaius
PaBHOMEPHBIX MPOCTPAHCTB M PABHOMEPHO HEMPEPHIBHBIX OTOOPaKEHUN COCTaBISET Ba)XKHOE
HAIPABJIEHUE COBPEMEHHON PABHOMEPHOM TOMOJIOTMU. B HacTOAIEH CTaThe U3YyYatOTC HEKOTOPbIE
CBOMCTBA HAPOCTOB PABHOMEPHO HETIPEPHIBHBIX OTOOPAKECHUIA.

Knrouesvie cnosa: paBHOMEPHO HEIPEPHIBHOE OTOOpaxKeHHe, HapocTbl, CamyanoBckas
KOMIaKTU(UKAIIHSL, TOKAJILHO COBEPILIEHHOE 0TOOpaKEeHHE.

One of the important concepts of the theory of uniform spaces are the concepts
of completeness and completion of uniform spaces. These concepts were introduced
and studied by A. Weil [7]. It is known [6] that for every uniformity U on a
Tychonoff space x there exists a maximal precompact uniformity U, contained in
the uniformity U . The completion (sx,su,) of the uniform space (x,u,) is called the
Samuel compactification of the space x with respect to this precompact uniformity
U . It was established [5] that the Samuel compactification of the Tychonoff space X
with respect to the universal uniformity on X coincides with the Stone-Ceh
compactification of the space X .

The idea of extending some concepts of uniform spaces to uniformly
continuous mappings led to the construction of an extensive theory. Thus, the
concepts of completeness and completion have been transferred from uniform spaces
to uniformly continuous mappings [1]. In particular, the Samuel compactification of
uniform spaces is carried over to mappings, i.e. the concept of Samuel
compactification of uniformly continuous mappings is introduced and studied.

Let f:(X,U)—(Y,V) be a uniformly continuous mapping of a uniform space
(X,U) into a uniform space (Y,V) .
Recall [2] that a uniformly continuous mapping & :(8x,su) —(v,v) of a uniform

space (8x,su) into a uniform space (Y,V) is called the Samuel compactification of a
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mapping f if the following conditions are satisfied:

1. (X,U) is an everywhere dense subspace of a uniform space ($X,sU).

2. f =¢f I, .

3. The mapping $f is uniformly perfect.

It is known [2] that any uniformly continuous mapping f : (X,U) — (Y,V) of
a uniform space (X,U)into a uniform space (Y,v) has a unique Samuel

compactification.
The notion of a locally perfect mapping was introduced and studied in [4]. In
[3], the notion of a uniformly locally perfect mapping was introduced and studied.

Theorem 1. A uniformly continuous mapping f:(X,U)—>(Y,v) from a
uniform space (X,U) to a uniform space (Y, V) is perfect if and only if X is a closed
subset of the space (§X,$U).

Proof. Necessity. Let f:(X,U)—(Y,V) be a perfect mapping from a uniform
space (X,U) to a uniform space (Y,v) and let sf :($X,sU)—(Y,V) be a Samuel
compactification. Then f =$f . Therefore, X is a closed subset of the space ($X,$U).

Sufficiency. Let f:(X,U)—(Y,V) be a uniformly continuous mapping of a
uniform space (X,U) into a uniform space (Y,v) and sf :(8X,8U) —>(Y,V) be its
Samuel compactification. Let x be closed in (§X,$U). Then the mapping f =$f |,isa
perfect mapping, as the restriction of the mapping f:(X,U)—(Y,V) to the space
(X,U).

Corollary 1. A uniformly continuous mapping f : (X,U) — (Y,V) from a
uniform space (X,U) to a uniform space (Y,V) is uniformly perfect if and only if X
Is a closed subset of the space ($X,sU).

Corollary 2. A uniform space (X,U) is compact if and only if X is a closed
subset of the space (sX,sU).

Let f : (X,U) — (Y,V) be a uniformly continuous mapping and (X,,U,) is
subspace of a uniform space (X,U). The restriction of f, = f [, :(X,,U,) > (Y,V) is

called a submapping of f :(X,U) —(Y,V).
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f, 1s said to be a closed submapping if X, is closed in (X,U).

Theorem 2. If f:(X,U)—(Y,V)is uniformly continuous and the submapping
fo = f 1y, (X,,Up) = (Y,V) is a uniformly perfect mapping, then f; is a closed
submapping.

In this sense, uniformly perfect mappings in the class of uniformly continuous

mappings have the property of absolute closure, like compact spaces in the class of

separable uniform spaces. Recall [2] that a uniform space (X,U) is called (strongly)

uniformly locally compact if there exists a (locally finite) uniform cover « U
consisting of compact subsets.

Theorem 3. Any uniformly continuous mapping f : (X,U) — (Y,V) from a
locally compact uniform space (X,U) into a uniform space (Y,V) is a locally perfect
mapping.

Proof. Let (X,U) be a locally compact space and f : (X,U) = (Y,V) a
uniformly continuous mapping of a uniform space (X,U) into a uniform space (Y, V).
Let x be an arbitrary point of the uniform space (X,U). Then, due to the local
compactness of the space (X, U), there exists an open neighborhood O of the point
x € X such that [O] is compact. The restriction f |, of the mapping f to the
compact set [0] is perfect. It is clear that [0] is closed in (Y,v). Therefore, fis a
perfect mapping.

Corollary 3. Any uniformly continuous mapping f : (X,U) — (Y,V) of a
uniformly locally compact uniform space (X,U) into a uniform space (Y,V) is a
locally perfect mapping.

Corollary 4. Any uniformly continuous mapping f:(X,U)—(Y,v) of a
trongly uniformly locally compact uniform space (X,U) into a uniform space (Y,V) is
locally perfect.

Theorem 4. A uniformly continuous mapping f : (X,U) — (Y,V) from a uniform
space (X,U) to a uniform space (Y,V) is locally perfect if and only if X is an open
subset of the space (§X,$U) .
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Proof. Necessity. Let f:(X,U)—(Y,v) be a locally perfect mapping of a
uniform space (X,U) into a uniform space (Y,v) and sf :(8X,8U) —>(Y,V) is the
Samuel compactification of a mapping f . Then for any point xe X there exists an
open set Oand a closed subspace (H,U,)of a uniform space (X,U) such that
xeOcH , the mapping f|,is perfect, and fH is closed. Since H is closed in
(§X,8U), then [O], c[H]« =H < X . Let §0=8X\[X\Ol, . Then $O=$X\[X\O],.
The space (X,U)is everywhere dense in ($X,8U), since $O\[O], =&. Thus, 0=$0 .
Therefore, X is openin (SX,8U).

Sufficiency. Let X be open in (8X,8U) and xe X is an arbitrary point. Then
there is an open neighborhood O in (§X,8U) such that [0], < X . Put H =[O],, . Then
the restriction $f |, of the uniformly continuous mapping sf : (sX, sU) — (Y,V) to
the closed subspace (H,U,,) is perfect. It is easy to see that $f |,=f|, and fH are

closed.

Corollary 5. A uniformly continuous mapping f:(X,U)—(Y,v) from a
uniform space (X,U) to a uniform space (Y,Vv) is uniformly locally perfect if and
only if X is an open subset of the space ($X,sU).

Corollary 6. A uniform space (X,U) is locally compact if and only if X is an
open subset of the space (sX,sU).

Corollary 7. If f:(X,U)—(Y,V) is a uniformly perfect mapping and A is an
open set in (X,U), then the restriction of f |, is locally perfect.

Let sf :(8X,8U)—(Y,V) be the Samuel compactification of a uniformly
continuous mapping f:(X,U)—>(Y,V). The restriction

A

fl $Xiu\ Xi4,8Ug 1x ) —(Y,V) of a mapping & on a uniform space

- €
(8X; ., \ X 41.8U .\ ) is called the remainder of the Samuel compactification of a
uniformly continuous mapping f : (X,U) = (Y,V).

Theorem 5. The remainder $f |, :(SX\X,8U4 ) — (Y,V) of a uniformly
continuous mapping f:(X,U)—(Y,V) is perfect if and only if the uniformly
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continuous mapping f : (X,U) —(Y,V) is locally perfect.

Proof. Let the remainder §f |, :(SX\X,8Uqy\)—(Y,V) of a uniformly
continuous mapping f be perfect. Then $X \ X will be closed in the space (§X,$U),
I.e. X is open in ($X,8U). Thus, according to Theorem 4, the mapping f is locally
perfect.

Conversely, let f:(X,U)—(Y,v)be locally perfect. Then, according to
Theorem 4, the set X is open in (8X,8U), i.e., the set X \ X is closed in (8X,8U).
Therefore, the mapping $f | : (X \ X,8U ) — (Y,V) is perfect.

Corollary 8. The remainder $f |, : (X \X,8Uq.,)— (Y,V) of a uniformly
continuous mapping f:(X,U)—(Y,V) is uniformly perfect if and only if the
uniformly continuous mapping f :(X,U) — (Y,V) is uniformly locally perfect.

Corollary 9. The remainder (sX \X,sU,,) of a uniform space (X,U) is

compact if and only if the uniform space (X, U) is locally compact.
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ON THE UNIFORMLY ANALOG OF COUNTABLY PARACOMPACT
SPACES

Kanetov B.E.?, Urgaziev A.B.?
12Kyrgyz National University named after J. Balasagun

Countable uniform paracompactness is one of the most important uniform analogues of
compactness, which was studied by A. Hohti [4] and U. Marconi [5]. At present paper countably
uniformly paracompact space is studied. A uniform space is called countably uniformly
paracompact, if every countably open covering has an open uniformly locally finite refinement. The
topology of countably uniformly paracompact is countably paracompact. If we have countably
paracompact space, then uniform space with the universally uniformity is countably uniformly
paracompact. Any closed subspace of a countably uniformly paracompact space is countably
uniformly paracompact. It is proved that a uniform space is countably uniformly paracompact if and
only if every finitely additive countably open covering has an open uniformly locally finite
refinement. It is established that for perfect mappings the countably uniform paracompactness is
preserved in the direction of the image and in the direction of the preimage. If a uniform space is
countably uniformly paracompact then every finitely open covering has an open uniformly locally
finite refinement. The sum of finitely family countably uniformly paracompact spaces is countably
uniformly paracompact. The product a countably uniformly paracompact space onto a compact
space is a countably uniformly paracompact. The space of real numbers (with natural uniformity) is
a countably uniformly paracompact space. A discrete uniformly space is a countably uniformly
paracompact space.

Keywords: uniform space, countably uniformly paracompact space, finitely additive
countable covering, countable open covering, uniform covering, uniformly continuous mapping.

CanakTyy Oup KaJbIITYy NMapaKOMIAKTTYYJIyK KOMIIAKTTYYJyKTYH HETM3IH OUp KaJIbIITYy
aHaJIOrIOpyHYH Oupu Gomyn cananar. AHbl A. XoxTH [4] xana Y. MapkoHu [5] M3MIIEIIKEH.
CyHylI KbUIBIHTAH MJIMMHUH MakajlaJja CaHaKTyy OMp KaJbllITyy NapaKOMIIAKTTYy MEHKHHIUKTEp
M3WIIeHeT. bup KaneinTyy MEHKMHAMK CaHaKTyy Oup KalbIITyy MapakOMIAKTTyy JeN aTajart,
arepze ap Oup aublk kabayyra OMp KaJbIlITYy JOKAJIAYy YEKTYY aublK KaOayyHy WYTEH ChI3yyra
MYMKYH 601c0. CaHakTyy OMp KaJlbIITyy NapaKOMIAKTTYy MEHKUHAUKTUH TOMOJOTHSICH] CAHAKTYY
MapaKOMIIAKTTYy OO0JOT. Orep CcaHaKTyy MNapakOMIAKTTyy MEWKUHAMK Oepuice, aHga Oup
KaJbINTYy MEWKMHIUK YHUBEpCAINyy OHp KaJbIITYyyJlyry MEHEH CaHakTyy Oup KaJbINTyy
NapakoMIakTTyy 0osioT. CaHakTyy OUp KaJbIlITyy MapakOMIAaKTTyy MEWKMHIUKTUH KaajlaraHjan
TYIOK KaMTBUITaH MEHKUHIWIH CaHAKTYy OUp KaJbIITYy MapakoOMIIAKTTyy O0ioT. bup kamemryy
MEHKUHJIUK CAaHAKTYy OMp KaJbINTYy NapaKOMITAKTTYy MEUKHUHAUK O0JIOT, KauaH raHa aHbIH ap Oup
YEeKTYY aJIMTUBAYY CAaHAKTYY adbIK *aOayycyHa OUp KaJbIITYY JOKAJAYY YEKTYY auyblK ka0 yyHy
WYTEeH ChI3yyra MyMKYyH Oosico. CaHakTyy OHMp KajbIlITyy HapakOMIIAKTTYyJdyK OUp KalbIITyy
KETKUJICH YarbulIbIpyyaa o0pas3 skarbiHa J1a, Ipoo0pas jKarblHa J1a CaKTaJIbIIIbl TYpPry3yarad. Orep
OUp KaJIbINTYy MEHKUHIMK CaHAaKTYyy OWp KaJbIITYyy MapakOMIAaKTTyy 0oJico, aH/la aHbIH ap Oup
YEeKTYY aublK ka0ayyra OMp KaJbIITYy JIOKAIAYY YEKTYY aublK *aOIyyHYy WYTEH ChI3yyra MyMKYH
60710T. UekTyy caHgarbl cCaHakTyy OHMp KajlbIITyy MapaKOMIAKTTyy MEUKUHAUKTEPAUH CyMMAacChl
CaHaKTyy OHp KaJBINTYy MapakoMOakTTyy Oonor. CaHakTyy OMp KaJbINTYyy MapaKOMOAaKTTYy
MEHKUHJIUKTUH KOMIAKTTyy OUp KaJbIlITyy MEHKHHIUKKE OOJTOH KOOOHTYHIyCY CaHAaKTyy Oup
KaJIBIITYy MapakoOMIaKTTyy OONOT. AHBIK CaHAApAbIH MEUKUHIUTU (TaOUTbId OMp KalbIITYYIyTy
MEHEH) CaHaKTyy OHMp KaJbIITYyy HapaKOMIIAKTTyy 00J0T. J{UCKpeTTHK O6ap KalblITyy MEMKUHINK
CaHaKTyy OUp KaJIBIIITYy MapaKOMIAKTTyy OOJIOT.
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Ypynmmyy cezoep: 6up KanbINTyy MEHKUHAWK, CAHAKTYY OUp KAJIBINTYy HapaKOMIIAKTTyy
MEWKMHANK, YeKTYY aIJUTHBAYY CaHAKTyy »aOdyy, CaHaKTyy aublK ka0nyy, Oup KaJbIITyy
XKabayy, OUp KaJbINTyy Y3TYATYKCY3 YarbUIIBIPYY.

CuerHas paBHOMEpHAasi MMapAKOMITAKTHOCTH SIBJISIETCS OAHUM U3 BaXKHEHIIMX PAaBHOMEPHBIX
AQHAJIOTOB KOMITAKTHOCTH, KoTopas uccienoBaitack A. Xoxtu [4] m Y. Mapkouu [5]. B
IpeagaraéMoil  Ccrarbe MCCIEAYETCS CUYETHO pPAaBHOMEPHO I1APAKOMIIAKTHOE IPOCTPAHCTBO.
PaBHOMEpHOE MPOCTPAHCTBO HA3BIBAETCS CUETHO PABHOMEPHO MAPAKOMIAKTHBIM, €CIIU B KaXKI0e
€ro CYETHO OTKPBHITOE MOKPHITUE MOXHO BIHUCATh PABHOMEPHO JIOKAJBHO KOHEYHOE OTKPBITOE
MOKpbITUE. TOMOJOTUS CUETHO PAaBHOMEPHO MAPAKOMIAKTHOTO MPOCTPAHCTBA SIBISIETCS CYETHO
napakoMIakTHeIM. Eciau 3a7aHo CueTHO NapakOMIAKTHOE IMPOCTPAHCTBO, TO PaBHOMEPHOE
MPOCTPAHCTBO  C  YHUBEPCAJIBbHOM  PaBHOMEPHOCTHIO  SIBJISIETCS  CUYETHO  PaBHOMEPHO
MapakOMIIaKTHBIM. 3aMKHYTO€ MOAMPOCTPAHCTBO CYETHO PABHOMEPHO MapaKOMIIAKTHOTO
MIPOCTPAHCTBA SBJISIETCSI CYETHO PABHOMEPHO IMAPAaKOMMIAKTHBIM. J[OKa3aHO, YTO pPaBHOMEPHOE
MIPOCTPAHCTBO SBJISICTCSI CYETHO PABHOMEPHO MApaKOMIAKTHBIM TOTJa W TOJIBKO TOTJa, KOT/a B
KKJ0€ €ro KOHEUHO aJAUTHBHOE CUETHOE OTKPBITOE IMOKPBHITUE MOXHO BIHCATH PABHOMEPHO
JIOKAJTbHO KOHEYHOE OTKPBITOE MOKPHITHE. YCTAaHOBJIEHO, YTO TPH PABHOMEPHO COBEPILICHHBIX
O0TOOpaKEHUSIX CYETHO PAaBHOMEPHO MapaKOMIIAKTHOCTh COXpaHSIETCsl Kak B CTOPOHY 00pasa, Tak u
B CTOpOHY mpooOpa3a. Ecnm paBHOMEpHOE MPOCTPAHCTBO SBISETCS CYETHO PaBHOMEPHO
MapaKOMITAKTHBIM, TO B KaXKI0€ €ro KOHEYHOE OTKPBHITOE MOKPHITHE MOXHO BIIMCATh PAaBHOMEPHO
JIOKAJTbHO KOHEYHOE OTKPBITOE MOKpPHITHE MpocTpaHcTBa. CyMMa KOHEYHOTO CEMEWCTBa CUYETHO
PaBHOMEPHO MapaKOMIAKTHBIX MPOCTPAHCTB CUETHO pPaBHOMEPHO MapakommnakTHa. [IpousBeneHue
CYETHO PAaBHOMEPHO MapaKOMMIAKTHOTO MPOCTPAHCTBA HA KOMITAKTHOE PaBHOMEPHOE MTPOCTPAHCTBO
SBIIAETCS CYETHO pPABHOMEPHO MMapakOMOakTHBIM. [IpocTpaHCTBO BelIECTBEHHBIX 4Hcen (C
€CTECTBEHHONW PaBHOMEPHOCTBIO) SIBJISIETCS CUYETHO PAaBHOMEPHO IMAapaKOMIIAKTHBIM. JlMCKpeTHOE
pPaBHOMEPHOE MPOCTPAHCTBO SABJSETCS CYETHO PABHOMEPHO MapaKOMITAKTHBIM.

Kniouesvie cnosa: paBHOMEpPHOE NPOCTPAHCTBO, CUYETHO PABHOMEPHO NapaKOMIIAKTHOE
MIPOCTPAHCTBO, KOHEYHO aJJUTUBHOE CUETHOE IMOKPBITHE, CYETHOE OTKPBITOE IOKPHITHE,
PaBHOMEPHOE MOKPHITHE, PABHOMEPHO HEMPEPHIBHOE OTOOPAKEHHUE.

Definition 1. A covering «a of the uniform space (X,U) is called uniformly
locally finite, if there exists a uniform covering £ €U such that every B e 8 meets

a only for a finite number of elements of « .

Definition 2. A uniform space (X,U) is called countably uniformly

paracompact, if every countably open covering has an open uniformly locally finite
refinement.

Proposition 1. If a uniform space (X,U) is countably uniformly paracompact
then the topological space (X,z,) is countably paracompact. Conversely, if (X,7) is
countably paracompact space then the uniform space (X,U,) is countably uniformly

paracompact, where U, is a universally uniformities of the space (X,7).
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Proof. Let (X,U) be countably uniformly paracompact space and « be an
arbitrary countably open covering of the space (X,z,). Since the space (X,U) is

countably uniformly paracompact, there exists a uniformly locally finite open

covering S of the space (X,U) which is a refinement of covering a. Every
uniformly locally finite covering is locally finite. Therefore covering £ is locally
finite open covering. Thus, locally finite open covering £ refined in the countably
open covering « . Consequently, the space (X,z,) is countably paracompact.

Conversely, let (X,7) be countably paracompact space and « be an arbitrary
countably open covering of the space (X,U,). Since the space (X,7) is countably
paracompact, there exists a locally finite open covering £ which is a refinement of
covering « . For every point xe X there exists a neighborhood O, that intersects
only with a finite number of elements of covering f. Denote y ={O, : x € X}. Since
the system of all open coverings forms a base of universal uniformity U, of the
space (X,7), y €U, . Consequently, £ is uniformly locally finite open covering.

Lemma 1. Let @ and /S be a covering of the space (X,U) and M < X be any
subset. If the covering « is refined in the covering # then the covering «,, is also
refined in the covering g,, , where «,, =a A{M}, B, = S Ar{M}.

Proof. Let A, €«,,, where A, = AnM . The covering « is a refinement of
the covering £, then for Aca there exists B e f such that Ac B. It follows from
this that AnM cB~ M, where BNM € f,,. Consequently, the covering «,, Is
refined in the covering f,, .

Proposition 2. Any closed subspace of a countably uniformly paracompact
space is countably uniformly paracompact.

Proof. Let (M,U,,) be closed subspace of a countably uniformly paracompact
space (X,U). Let «,, be an arbitrary countably open covering of the space (M,U,,)
. Denote o ={«,,, X \ M}. Obviously the covering « is countably open covering of
the space (X,U). Since the space (X,U) is countably uniformly paracompact, there
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exists a uniformly locally finite open covering £ of the space (X,U) which is a
refinement of covering «. Let g, = S A{M}. Since g is uniformly locally finite
open covering of the space (X,U), there exists a uniform covering y €U such that

every I'ey meets £ only for a finite number of elements of S. Let y,, =y A{M}.

k
For every ['ey there exists B,B,,..,B,ef such that I"cUB. Then
i=1

k k
FmMc(UBiij: U(B, nM). Thus, every element of covering y,, €U,, meets
i=1 i=1

By only for a finite number of elements of g,, . Therefore f,, is uniformly locally
finite open covering of the space (M,U,,). Since the covering S is refined in the
covering «, then by lemma 1 the covering pg,, is refined in the covering «,, .
Consequently, (M,U,,) is countably uniformly paracompact.

Theorem 1. A uniform space (X,U) is countably uniformly paracompact if

and only if every finitely additive countably open covering has an open uniformly
locally finite refinement.

Proof. Necessity. Let (X,U) be a countably uniformly paracompact space and
a be an arbitrary finitely additive countably open covering of the space (X,U).

Since « is countably open covering, then covering « has an open uniformly locally
finite refinement.

Sufficiency. Let o be an arbitrary countably open covering of the space

(X,U). Denote a“ ={ua,:a, ca is finite}. Since the set of all finite subsets of a

countable set is countable, then «“ is finitely additive countably open covering.

Accordingly to the condition of the theorem, there exist an open uniformly locally

finite covering B refined in the covering a“. For every Be 3 there exists
k

LkJA ca’Aeca such that BcUA. Denote A=U{4;:Be S},

i=1 i=1

s ={BNA:1=12,.,k}. Then A is an uniformly locally finite open covering

refined in the countably open covering «. Consequently, (X,U) is countably
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uniformly paracompact.

Lemma 2. A uniform space (X,U) is countably uniformly paracompact if and
only if a“ €U for any countably open covering « of the space (X,U).

Proof. Necessity. Let (X,U) be a countably uniformly paracompact space and
a be an arbitrary countably open covering of the space (X,U). Then there exist an
open uniformly locally finite covering £ of the space (X,U) refined in the covering
a . By definition of uniform local finiteness of covering S there exists a uniform

covering ¥ €U such that every '€y meets £ only for a finite number of elements
k

of . Then each element "€y is contained in some set B,. € #“, where B, =UB,.
i=1

Consequently, the covering y is a refinement of the covering B<. It follows from
this that the covering » is a refinement of the covering . By axiom (P1) of the

definition of a uniform space a“ €U .

Sufficiency. Let a“ €U for any countably open covering a of the space

(X,U). By proposition 3 [5] the covering « has an open uniformly locally finite
refinement. Then the uniform space (X,U) is countably uniformly paracompact.
Lemma 3. Let f:(X,U)—(Y,V) be a uniformly continuous mapping of a

uniform space (X,U) onto a uniform space (Y,V). If £ is open covering of space

(Y,V) then (f*p)" =f7'p~.
Proof. Let Uf B e(f?f)?. Then Uf?B =f'UB. Obviously that
i=1 i=1 i=1

f*anJBi e f'p“. Consequently, (f *B)" =fp~.
i=1

Lemmad4. Let f:(X,U)—(Y,V) be a uniformly continuous mapping of a
uniform space (X,U) onto a uniform space (Y,V). If a is finitely additive open
covering of space (X,U) and B={f"A:aca}, where f*A=Y\ f(X\A), then the

covering f B~ is refined in the covering « .
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Proof. Let f*f*Acff. Then fH(Y\f(X\VA))=X\ff(X\A). Since
X\VAc fHf(X\A), then X\f'f(X\VA) <X\ (X\A)=A. Consequently, the
covering f~'4 is refined in the covering «. It follows from this that the covering
f B~ is refined in the covering « .

Theorem 2. Let f:(X,U)—>(Y,V) be a uniformly perfect mapping of a

uniform space (X,U) onto a uniform space (Y,V). Then the countably uniform

paracompactness is preserved in the direction of the image and in the direction of the
preimage.

Proof. . Let (X,U) be a countably uniformly paracompact space and £ be an

arbitrary finitely additive countably open covering of the space (Y,V). Then f3 is

finitely additive countably open covering of the space (X,U) and by lemma 2
fB U . Since the mapping f is precompact, there exist such a covering 1eV
and finite covering yeU that f'AAy>=f"'B. It is easy to see that
(F"AAY) =(f'B)". Since (f"AAy) =(f"A)" and (f'p) =187, then
(f*A)” = f7'8“. Consequently, the covering A is a refinement of the covering f3.
Then S €V and by lemma 2 the space (Y,V) is countably uniformly paracompact.

Conversely, let (Y,V) be a countably uniformly paracompact space and « be

an arbitrary finitely additive countably open covering of the space (X,U). It is easy
to see that the family {f 'y:yeY} of all compact sets 'y is a refinement of the
covering «. Since the mapping f is closed, f={f*A: Aca} is countably open
covering of the space (Y,V), where f*A=Y \ f(X \ A). Then by virtue of lemma 2
S“eV. By lemma 4 the covering f3“ is refined in the covering «. Since

f'B“eU, then acU . Consequently, by virtue of lemma 2 (X,U) is countably

uniformly paracompact.

Proposition 3. If a uniform space (X,U) is countably uniformly paracompact

then every finitely open covering has an open uniformly locally finite refinement.
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Proof. Let (X,U) be countably uniformly paracompact space and « be an
arbitrary finitely open covering of the space (X,U). Let A be an arbitrary countably
open covering of the space (X,U). It is easy to see that o A A is countably open
covering of the space (X,U). Consequently, there exist an open uniformly locally
finite covering S of the space (X,U) refined in the covering aAA. Since the
covering a A A is a refinement of the covering «, the covering S is a refinement of

the finitely open covering «.
Proposition 4. The sum of two countably uniformly paracompact spaces is
countably uniformly paracompact.

Proof. Let (X,,U,) and (X,,U,) are countably uniformly paracompact spaces,
(X, I X,,U,11IU,) is the sum of countably uniformly spaces. Consider an arbitrary
countably open covering a of the space (X,LIX,,U,I1IU,). It is easy to see that
L={X."A:Aea,i=12} is again a countably open covering of the space
(X, IX,,U,1IU,) is a refinement «. Let B ={X;nA:Aca} and
B, ={X, nA:Aeca}. Then at least one of these coverings is countably open. Let g,
be countably open covering of the space (X,,U,), then g, is finitely open covering
of the space (X,,U,). Since (X, U,) and (X,,U,) are countably uniformly
paracompact spaces, there exists an open uniformly locally finite covering y, of the
space (X,,U,) refined in the covering g, and an open uniformly locally finite
covering y, of the space (X,,U,) refined in the covering £,. It is clear that a family
y that is a union of families y, and y, is a uniformly locally finite open covering of
the space (X, LI X,,U,1U,). And the covering y is a refinement of the covering « .

Corollary 1. The sum of finitely family countably uniformly paracompact
spaces is countably uniformly paracompact.
Proposition 5. The product (X,U)x(Y,V) a countably uniformly paracompact

space (X,U) onto a compact space (Y,V) is a countably uniformly paracompact.

53



Proof. Let (X,U) be a countably uniformly paracompact space and (Y,V) be
a compact uniform space. It is known that if (X,U) is an arbitrary uniform space and
(Y,V) is a compact uniform space then the projection =z, :(X,U)x(Y,V) —(X,U)
is uniformly perfect. Then by theorem 2 the product (X,U)x(Y,V) the countably
uniformly paracompact space (X,U) onto the compact space (Y,V) is a countably

uniformly paracompact.
Proposition 6. The space of real numbers (with natural uniformity) is a
countably uniformly paracompact space.

Proof. Let (R,U;) be a uniform space, R be a real line and U, be a natural
uniformity on the R. Let's show that the space (R,U;) is countably uniformly

paracompact. Let o be an arbitrary countably open covering of the space (R,U;). It

is enough to show that a“ eU,. Let S={(n—-Ln+1):neZ} be some element of the
uniformity U, . It is easy to see that £ is uniformly locally finite open covering. Note

that [n—-1:n+1] is compact. Therefore, there exists the finite family

{A,A,,...A}c a such that [n—];n+1]c_LnJA, e, (n—];n+1)c_LnJA. It is clear that

UA =A“ea”. Hence, the covering B is a refinement of the covering a”.
i=1

According to the axiom (P1) of uniformity, o eU,. Consequently, (R,U,) is
R R

countably uniformly paracompact.
Proposition 7. A discrete uniformly space is a countably uniformly
paracompact space.

Proof. Let (X,U) be a discrete uniformly space and « be an arbitrary
countably open covering of the space (X,U). The family B ={{{x}: x e X}} forms a
base of discrete uniformity U . Then the covering S ={{x}:x e X} is a refinement of

the countably open covering «. It is clear that « is uniformly locally finite open

covering of the space (X,U). Consequently, (X,U) is countably uniformly

paracompact.
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SOME PROPERTIES OF REMAINDERS OF TOPOLOGICAL GROUPS

Kanetov B.E.!, Abdykaimov 1.Z.?
L2Kyrgyz National University named after J. Balasagyn

In this article some questions about remainder of the uniformed space are considered.
Uniformed spaces have their own theoretical sphere of interesting and important mathematical
problems. The reason for this is that there are many interconnection between the theory of
uniformed spaces and the general topology. All completely regular spaces can be characterized as
topological space, inducted by some uniform structure. Some special constructions of
compactifications of topological spaces can be determined using the completion of uniformed
spaces, having precompact uniform structure. Such as there is big meaning of the uniform structures
for topological groups: possibility of the completion of the topological group depends on uniformed
structure, which is considered to be agreed with topology. Under what necessary and sufficient
conditions does its remainders imposed on uniform spaces have some uniform property? For
uniform spaces this question has answer, responding for it. This work is trying to determine such
conditions for some natural uniformed structures on topological groups.

Keywords: uniform structure, topological group, free Cauchy filter, co-cover.

byn wmakanana Oup KalbNTyy MEHKUHIUKTEPIWH OCYHIYJIOpY >KOHYHAery Oup Heue
CypooJiop Kapajiar. bup Kanelntyy MEMKHHIUKTEP ©3YAYK TEOPUSUIBIK 001acTKa, KBI3BIKTYY jKaHa
MaaHWIyy Kereinepre 933. Ce0ebu, Oup KalbINTyy MEHKUHIUKTEPIUH TEOPHUACHI >KaHa
TOTIOJIOTUSIHBIH apachblHia Kem Oainanpimyynyk Oap. Tomyk perymapayy MEHMKMHIUKTEPIUH
OapabITbIH KaHAAUABID OUp KaJBINTYy CTPYKTYpa apKbulyy O€pHITreH TOMOJOTHUSAIBIK MEHKEHIUK
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Karappl MyHee31eere 00J0T. TOMONOTUSIBIK MEUKUHAMKTEPIUH KOMITAKTH(HUKAIASICHIH
MPEKOMITAKTYY OUp KaJBINTYy MEHKHHIUKTEPIMH TOMYKTaHYYCY KaTapbl aHBIKTOOTO 0010T. bup
KaJIBIIITYy CTPYKTypalap TOMOJOTHSIIBIK Tpymnmajap Y4yH MaaHWIYy, MHUCAQIbBI, TOMOJIOTHSIIBIK
TpyIIATAPAbIH TOJIYKTaHYyCy OUp KalbIITYy CTPYKTypallap apKbuUlyy aHbIKTanar. Kanmaii 3apbui
KaHa JKETUINTYY IIapTrapjaa Oup KaiblNTyy MEHKHHIUKTEPAWH OCYHIyJIepy aWpeiM Oup Oup
KaJIBIITYy KacHeTKe 33 00JI0T ? JIereH Cypoo kapayat. bup KaibinTyy MEWKHHIUKTEP YIYH MbIHIAN
Cypoo YeuwireH. byn Makalaaa TOMOJOTHSUIBIK TPyIIajap YUYH Oyl Macese yeunier.

Ypynmmyy ce3z0ep: OUp KalbIITYy CTPYKTypa, TOTOJOTHSIIBIK T'pyIa, 3pKuH KommHuH
bubTpH, KO-XKa0Iyy.

B oTOli cTratbe paccMaTpUBAarOTCS HEKOTOPHIE BOIPOCHI O HApOCTaX pPaBHOMEPHOIO
pocTpaHcTBa. PaBHOMEpHBIE IPOCTPAHCTBA UMEIOT CBOKO COOCTBEHHYIO TEOPETHUYECKYI0 00JacTh,
MHTEPECHBIX U BaXHBIX MaTeMmarudeckux npoOiem. [lpuumnHa 3TOro 3akiroyaercs B TOM, 4YTO
CYIIECTBYET MHOI'O B3aMMOCBSI3€M MeXJy TEOpuel paBHOMEpPHBIX IPOCTPAHCTB M  OOLIEH
tonojorueil. Bce BHoaHE peryisipHble NPOCTPAHCTBA MOTYT OBITh OXapaKTEpU30BaHbl Kak
TOIOJOTUYECKUE IPOCTPAHCTBA, WHAYLUPOBAHHBIE HEKOTOPOW PpAaBHOMEPHOM CTPYKTYpOM.
Hexotopeie cnenmanbHble KOHCTPYKIIMA KOMIAKTH()HUKAINN TONOJIOTHYECKUX MPOCTPAHCTB MOTYT
ObITb  OIpEJeJIeHbl C IIOMOILIBIO IIOMOJHEHUS PABHOMEPHBIX MPOCTPAHCTB, HMEIOIINX
IIPEIKOMIIAKTHYI0 PaBHOMEPHOCTh. bojblioe 3HaueHHE HMEIOT PABHOMEPHBIE CTPYKTYpHI JUIs
TOIOJOTUYECKUX TI'PYII, HApPUMEP, MONOJHEHHUS TONOJIOTMYECKON TPYIIIBI ONpPEAEIAETCS 4epes
paBHOMEPHOM CTPYKTYpbl. Bo3HMKaeT BONpocC: Npy KaKuX HEOOXOAUMBIX U JOCTATOYHBIX YCIOBHSIX
HaJlaraéMble Ha pPaBHOMEpPHbIE IMPOCTPAHCTBA €r0 HApOCT 00J1aJaeT HEKOTOPHIM PaBHOMEPHBIM
cBoricTBoM? [[s paBHOMEPHBIX MPOCTPAHCTB ATOT BOMPOC MMEET pemieHue. B manHOi pabote
JIEJIaeTCs MOMbBITKA ONPEAEIIUTD TAKUE YCIOBUS ISl HEKOTOPBIX €CTECTBEHHBIX PABHOMEPHOCTEH Ha
TOMNOJOTUYECKUX IPYIINax.

Kniouesvie cnosa: paBHOMEpHas CTPYKTYpa, TOMOJIOTHYECKas rpymmna, cBOOOAHbBIN (UIbTp
Komm, ko-nokpeITue.

Let us see at the some uniformed space (X, U), its completion (X,U) and its

remainder (Y, V): Y =X\Xx,V=U _

.
Definition 1. (X, U) is called r-bounded, if for any uniform covering « of the
space (X,U) exists some its uniform covering g such, that 8~ « and g has cardinal 7.
Definition 2. (X, U) is called precompact, if for any uniform covering a of the
space (X,U) exists some its uniform cover g such, that g>~«and g is finite.
Definition 3. (X, U) is called I-lindelof, if for any uniform cover a of the space
(X,U) exists some its uniform cover g such, that g>~« and g has countably infinite
cardinal.
Definition 4. (G,*, r) is called topological group if (G,*) is group, (G, r) is
topological space and such operation as f (x, y) = x* y ™ determines mapping, which is

continuous in the (G, 7).
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Definition 5. If (G,*, r) is the topological group, then U, is the right uniform
structure of the (G,*, r), if it consists of covers «, such thatea,, ={H *x:xeG}for all
H, which are elements of the basis of the identity element. Analogically to this: U, is

the left uniform structure of the (G,*, r), if it consists of covers such that

a,, ={H*x:x e G} for all H, which are elements of the basis of the identity element.
Definition 6. Let us talk that the topological group (G,*, ) is precompact, if

uniformed space (G, U,) is precompact as uniformed space, where U,is the left

uniform structure of the (G,*, ).
Definition 7. Let us talk that the topological group (G,*, r) is r-bounded, if

uniformed space (G, U,) is r-bounded as uniformed space, where U,is the left

uniform structure of the (G,*, ).

Definition 8. Let « be a family of subsets of the topological group (G,*, 7).
Then we will call « a co-cover of the (G,*, r), if for every free Cauchy filter 3 of the

(G,*, ) exists F e Iwhich is common with, i.e.. Fea.
Theorem 1. (G,*, r) has precompact remainder if and only if in every uniform

cover « of the space (G,*, ) there exists its subcover «,, which is a finite co-cover.
Proof. Let (G,*, ) has a precompact remainder and G is its completion. Then

for any uniformed covera ={x*H:xeG}of a U,we can determine a ={X*H :X G},

where H=G\[G\H];, i: G— G- is trivial injection: X =i(x). From this we can see the

track of the aat the remainder G\G: a4=an(G\G)eU,, where U, is got as
U, =U, (@G\G). (G\G,U,)is precompact, that’s why & has a subcover g, U, , which
is finite. Then there exists such &, ={x*H,:xe X}<eU,, that its track on a (G,*, 1) is
@,, anda, is finite with number of elements n=card(X), where X cGwhat is
implication of building of such covers as: « and «,, and of the including of «, by « .

It is so because of the fact that completion of topological group by left uniform

structure is topological group (in the case of its existing). And now let us look at the
family of sets o, ={X*H, : x ei *(X) = X}={x, *H, :1<i <n}, which is got as
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a track of a,on the (G, U,). Of course, «, is subset of «. Let us show that «, is co-

covering on the (G, U,). Let us see at the free Cauchy filter 3 in the space (X,U,).
Then it is track of some Cauchy filter 3 in the space (G,U,), and 3 has a limit on
the (X,U,), because (é,Gl)is complete. But because of Jis free, the condensation
point X of Jlies in (G,U,). Let us consider that B(X) is filter of neighbourhoods of
the point X. Then let us think that 3, :§(>?)mx. Then because of being by 3 the

Cauchy filter we notice that 3, = 3. But 4,is cover, so there exists such A, €4,, that
xeA,, it means that exists some 1<i<n such that Rex*H,. It is clear that
x, *H, = A, eB(X), Where ,&Ois some neighbourhood, inducting the A, as its track in
the (G*, 7). So the track of theA, in the (G,*, ¢), which we will call as
A =%*H,€3,. It means that A, €3, so as A, €a,. From this and because of the

definition of co-cover we can get that «, is co-cover in the (G,*, ) as the family of
sets, which has minimally one common element with every free Cauchy filter from
(G,U)).

Let us make a proof for the inversed direction. Let us think that the condition,
declared in the condition of the theorem, is realized. Let us prove that (é,Jl) IS
precompact uniformed space. Let & U . Then it is got as the track of some uniform
covering a ={X*H:X eG}on the (G*, 7): d:&m(é\G). Then there exists some
a={x*H :xeG} as a track of the & on the G. From the considered in the theorem we
can get that it means that there exists «, ={x, *H, :1<i<n}, which is finite subset of
« and is a co-cover. It means that the track of the continuation
&, ={x*H,: xe X =i(X)}={i(x)*H, :1<i<n} of the a,on the (G,U,), which we will
call asa,, will be a subset of the track of the continuation of the « on the (é,U,),
which is &by the building of the «,. But by the building: &, €U,. So for any g, €U,

by this way we are able to see that exists some its subset &, €U,, having the elements,

58



which’s set has natural number of points. It means that (é \G,lj,) has the property of

precompactness. So the theorem is proved.

Notification 1. This result can be got with the right uniform structure on the
topological group. Formally, proving of such result will be respectively similar to
that, which is shown higher for the left uniform structure.

Theorem 2. (G,*, r) has r-bounded remainder if and only if in every uniform

cover « of the space (G,*, ) there exists its subcover «,, which is a co-cover and
has a cardinal .

Proof. Let (G,*, r) has ar-bounded remainder and G is its completion. .

Then for any uniformed cover o={x*H:xeG} of a U,we can determine

& ={x*H:X G}, where H=G\[G\H];, i: G—G- is trivial injection: X =i(x). From
this we can see the track of the & at the remainder G\ G : 4=a(G\G)eU,, whereU,
is got as U, =U, ~(G\G). (G\G,U,) is r-bounded, that’s why &has a subcover
&, €U,, which has an cardinal . Then there exists such &, ={x*H,:xe X}eU,, that
its track on a (G,*, r) is &,, and the cardinal of the @, is r=card(X), where X cG
what is implication of building of such covers as: « and «,, and of the including of
a, by «. It is so because of the fact that completion of topological group by left
uniform structure is topological group (in the case of its existing). And now let us
look at the sets-family o, ={xX*H,:x e i*1(>?) = X}={x, *H, :1<i<n}, which
is got as a track of «,on the (G, U,). Of course, «, is subset of «. Let us show that
a, Is co-covering on the (G, U,). Let us see at the free Cauchy filter 3 in the space
(X,U,). Then it is track of some Cauchy filter 3 in the space (é,G,), and 3 has a
limit on the(X,U,), because (G,U,)is complete. But because of Jis free, the
condensation point X of Jlies in (@,Jl). Let us consider thatB(R) is filter of
neighbourhoods of the point X. Then let us think that 3, = B(X) "X . Then because of

~

being by 3 the Cauchy filter we notice that 3, = 3. But ¢,is cover, so there exists
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such A, €d,, that xeA,, it means that exists some 1<i<n such that xex *H,. It is
clear that x *H, = A,  B(%), where A,is some neighbourhood, inducting the A, as its

track in the (G,*, 7). So the track of the,&O in the (G,*, r), which we will call as
A, =X%*HyeJ,. It means that A, €3, so as A, €ea,. From this and because of the
definition of co-cover we can get that «, is co-cover in the (G,*, ) as the family of
sets, which has minimally one common element with every free Cauchy filter from
(G,U)).

Let us make a proof for the inversed direction. Let us think that the condition,

declared in the condition of the theorem, is realized. Let us prove that (5,0,) IS ar-

bounded uniformed space. Let ¢ €U . Then it is got as the track of some uniform
covering a ={X*H:X eG}on the (G*, 7): d:&m(é\G). Then there exists some
a={x*H :xeG} as a track of the & on the G. From the considered in the theorem we
can get that it means that there exists o, ={x, *H, :1<i <n}, which is subset of «, and
IS a co-cover, and X =G has the cardinal 7. It means that the track of the continuation
&, ={x*H,  xe X =i(X)}={i(x)*H, :1<i<n} of the a,on the (G,U,), which we will
call as «,, will be a subset of the track of the continuation of the «on the (é,J,),
which is & by the building of the «,. But by the building: &, <U,. So for any 4, €U,
by this way we are able to see that exists some its subset ¢, <U,, having the cardinal

r. It means that (é\G,U,)has the property of r-boundedness. So the theorem is

proved.

Notification 2. Analogically to this case we are able to get result with the right
uniform space on the topological group. Formally, proving of such result will be
respectively similar to that, which is shown higher.

Corollary 1. (G,*, r) is I-lindelof topological group if and only if in every

uniform cover « of the space (G,*, ¢) there exists its countably infinite subcover «,.
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Proof. Let us make an accent at the fact of that property of being I-lindelof for
the topological group (G,*, r) means that this topological group (G,*, ) is r-
bounded, wherez =X,. That’s why, using the result, which is got in the previous
theorem, we can understand that being by the topological group (G,*, ) I-lindelof is

equivalent for (G,*, r) to have such countably infinite subcover «,for any uniform
cover « of the space (G,U,) thate,is co-cover of the (G,*, ). This sentence gives

the proof of the proposition, given at the implication.
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PARTIAL CUTTING METHOD AND EVALUATION OF THE SOLUTION
OF A LINEAR VOLTERROAN INTEGRAL EQUATION OF THE SECOND
KIND ON A HALF-AXIS

Iskandarov S.!, Iskandarova G.S.2
L2nstitute of Mathematics of the NAS of Kyrgyz Republic

Sufficient conditions are established for estimating, boundedness, exponential law absolute
integrability on the half-axis, tending to zero (including the exponential and exponential law) with
an unlimited growth of the argument of the solution of a linear Volterra integral equation of the
second order without assuming that the free term of this equation has these properties. The partial
cutting method is being developed in combination with other methods. An illustrative example is
being constructed.

Keywords: linear integral equation of the Volterra type of the second kind, estimate of the
solution, boundedness, exponential absolute integrability, tending to zero, exponential law,
exponential law.
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OkuHYM Typaery Bombreppa THOWHIETH CBI3BIKTYY HWHTETPAIIBIK  TEHIACMEHUH
YBITAPBUIBIIIBIHBIH ~ KapbIM  OKTO  OaajaHBIIbl, YEKTENreHAETH, Japakanyy aOCONIOTTYK
MHTETrPaJJIaHbIIIbl, apryMEHT YEKCH3 YOHOMIOHIO HeJre, HKCIOHEHLMAJIBIK KaHa Aapaxalyy
3aKOHJIOpY OOIOHYA, YMTYIYIIYHYH KETUINTYY IIAPTTaphl, Oy TEHAEMEHUH OOLI MY4ecy aTairaH
KacuerTepre 33 60100 Kanyy yaypyHaa, Tadsuiar. JKekede kecyy MeToay Oamika METO0p MEHEH
ailkaiblITa OHYKTYpYJIeT. MImocTpaTuBIMK MUCal Typry3yJiar.

Ypynmmyy ce3z0ep: oskuHum Typaery Bombreppa THOMHAEIH CBI3BIKTYY TEHIEME,
YBITAPBUIBIIITHIH 0aalaHbIIIbl, YEKTEITeHANK, Japaxaayy aOCONIOTTYK HMHTErpaj/IaHbllll, HOeJre
YMTYJTaH/bIK, SKCIIOHEHIMSUIBIK 3aK0H, 1apayKalyy 3aKoH.

YcraHaBIMBaKOTCS JAOCTAaTOYHBIE YCIOBUA [UI OLUEHKH, OIPAHUYEHHOCTH, CTEIEHHOMN
a0COJIIOTHOM HHTETPHPYEMOCTH Ha TOJIyOCH, CTPEMJICHHS K HYIIO (10 SKCIMOHEHIMAIbHOMY M
CTENEHHOMY 3aKOHY) MpPU HEOTPAaHUYEHHOM POCTE aprymMeHTa PEIICHHs JUHEHHOTO BOJTEPpOBa
WHTETPAJIbHOTO YpPaBHEHHsI BTOPOro poja 0e3 MPEeIIoNOKEHHUs, YTO YKa3aHHBIMH CBONCTBAMHU
o0namaeT CBOOOMHBIA WIEH JTOr0 ypaBHEHHS. Pa3BHBaeTCS METOJ] YAaCTUYHOTO CPE3bIBAHHS B
COUYETaHUHU C APYTrUMHU MeToaaMH. CTpOUTCS WILUTFOCTPATUBHBIN IPUMED.

Knrouesvie cnosa: nuHerHOE HMHTErpalIbHOE ypaBHEHHUsI Tuiia BosbTeppa BTOporo pona,
OLICHKa pEIIEHUs, OTPAaHHYEHHOCTb, CTEMEHHAas a0COJIOTHAs HMHTErPUPYEMOCThb, CTpEMJICHHE K
HYJII0, SKCIIOHEHIIMAJIbHBIN 3aK0H, CTEIIEHHOM 3aKOH.

All appearing functions and their derivatives are continuous and the relations
hold for t >ty t=1 >ty ] =|[ty,©); IE - integral equation; IDE - integro-
differential equation.

Problem. Establish sufficient conditions for boundedness, exponential absolute
integrability on a half-interval | = [¢,, o), tending to zero, including exponential and
exponential law, for t, — oo solutions of a linear IE of the second kind of the
Volterra type of the form:

x() + [ Kt Dx(@)dr = f(0), t 2 1, (1)
without the assumption that the free member f(t) of this IE has the indicated
asymptotic properties.

Note that such a statement of the problem was first posed in the work of the
first author [1] to establish x(t) € L2(J, R) and further considered in numerous works
of this author. In [2], the problem posed above was solved by developing the method
of weight and cut functions [3, p. 41], and in this work, to solve the problem, first the
IE (1) multiplied by some weight function ¢(t) > 0, [4], then the partial shearing
method [5] is developed in combination with other well-known methods.

Let us proceed to obtain the main result.
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First, according to [4], both parts of IE (1) are multiplied by some weight
function ¢(t) > 0, then both parts of the resulting relation are differentiable with

respect to t. Then we get the following IDE of the form

(p®x(t)" + @(OK(t, T)x(t) + fé((p(t)K(t, 1)), x(t)dr =

= (eOf ()", t = to. (2)
Note that the solution of IDE (2) with the initial condition
x(to) = f(to) (3)

coincides with the solution of IE (1).
The method of partial cutting [5] is applicable to the study of IDE (2). Let
[3,5]:
(p(OK(t, 1)) = Xitq Ki(t, 7), (K)
(p(Of () = XiL, fi (D), (f)

Y;(t) (i =1..n) -some cutting functions,
Pi(t) = (DKt ) (1), it 7) = 9K, (6, D (Wi (D),
Ei(t) = o) f:()(: () Pi(t) = Ay(t) + B;(t) (i = 1..n), (P)

¢;(t) (i = 1..n) - some functions.

For an arbitrarily fixed solution x(t) IDE (2) multiply by @ (t)x(t) [3, p. 46-
47], integrate within tyno t, including by parts, while applying the lemma [5], lemma
1.2 [3, c.44-45], enter conditions (K),(f), functions v;(t), P;(t),Q;(t, 1), E;(t),
condition (P), functions c;(t) (i = 1..n). Then we get the following identity:

POREO) +2 [ PEOKE D s+ Y (4 (Ot 1) +

t

+B;(£)X;(t, t9)* — 2E;(£)X;(t, to) + ¢;(t) — f[Bi’(S)(Xi(S: to))? —

—2E[()X;(s,to) + c}(s)]ds = c, + z J 1G5 (XG5, £0))? +
+ 7 [Qi(s, DXi (3, to)x(s)drlds, 4)
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where X;(t,to) = [ Yi(mx(dy (i = 1.0), ¢, = p2(te) (x(t))” + ZiLy cilto).
Passing from identity (4) to the integral inequality, applying Lemma 1 on the
integral inequality [6], and similarly to the theorem 1.1 [3, p.48-50], theorem [5]
proves
Theorem. Let 1) ¢(t) > 0, conditions are met (K), (f), (P); 2) K(t;t) = 0;
3) A;(t) > 0,B; = 0,B](t) < 0, cymectyror ¢pynkuuu A} (t) € L1(J, R,) functions

exist. ¢;(t) (i =1..n) such as A;(t) < A;(t)A;(t), (Ei(k)(t))z < Bi(k)(t)ci(k)(t)

(i=1.nk=0,1): 4) fttolQ{T(t, DIA;(0) "2 (p(0)~rdt € L*(J,R,) (i = 1..n).
Then for any solution x(t) UJY(2), therefore, for the solution x(t) UY(1) the

estimate is true:

x() = (p(®) " 0(1) 5)

and the ratio is correct

P (OK (L) (x(D)" € L'U,R). (6)

From estimate (5), similarly to the corollaries 3.1-3.4 [3, ¢.117] the following
propositions follow.

Corrolary 1. If all the conditions of the theorem are satisfied and (¢(t))™! =
0(1), then the solution IE(1) is restricted to J.

Corrolary 2. If all the conditions of the theorem are satisfied and ¢ (t) — oo at
t — oo, then the solution IE (1) x(t) - 0 and t — co.

Corrolary 3. If all the conditions of the theorem are satisfied and (¢(t))™! =
e *0(1) (1 — const > 0), then the solution IE (1) x(t) = e *0(1) (1 — const >
0), solution is x(t) IE (1) tends to zero at t — oo according to the exponential law.

Corrolary 4. If all the conditions of the theorem are satisfied and t, = 0,
() t=(+6)Y0(1) (6,y—const>0) solutions of IE is (1)
() =({+5)7Y0() (8,y — const > 0) solution is x(t) IE (1) tends to zero and
t — oo according to the exponential law.

Corrolary 5. If all the conditions of the theorem are satisfied and

(p(©) " € LP(J, R,{0}) (p > 0),solution is IE (1) x(t) € LP(J, R)(p > 0).
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Here is an illustrative

Example. For IE:

t
t
x(t) + j e~V2t J e V2555457 [16 4 (s — 1)e~295ds |x(v)dt =
0
0

= —e V2 fote‘m%sds, t=0 (1,)

all conditions of the theorem and corollaries are satisfied 1,2,4,5 about ¢(t) = eV2t,
wherety, = 0,n =1, ¥, (t) = e>t, P,(t) =4, A,(t) =3, B,(t) =1, E,(t) = —1,

— 15t

e
2,/16+(t—-1)e~ 20t

c,(t)=1,0,(t1) = eSt\/16 + (t —1)e 20, Q1,(t, 1) = —

Thus, we managed to find a class of IE of the form (1) for which the above

problem is solvable.

Note that to study the properties of the solution IE (1,) it is impossible to apply

the results of work (2), since in this case Qi,(t,7) < 0. This means that it is

impossible to IE (1,) use the method of cutting functions from [3].

Note also that using the results of [7], it is possible to extend the results of this

work to an IE system of the form (1).

1.
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FINITE ELEMENT METHOD FOR SOLVING ORDINARY DIFFERENTIAL
EQUATIONS WITH THE PARAMETER

Omuraliev A. 1, Mederbek kyzy A.?
L2Kyrgyz-Turkish Manas University

The work is devoted to the construction of a numerical solution of a boundary value
problem for an ordinary singular perturbed second-order differential equation. To apply the finite
element method in singular perturbed problems, this problem is first regularized, then the finite
element method is applied to the obtained regular problem.

Keywords: finite element method, singularly perturbed problem, basis functions.

YeKTenreH 3JeMEHTTEp BIKMACBIH CHHTYISIPAYY KO3TOJITOH Maceleliep/ie KOJJIOHYY YYYH
anrad Macelie peryJsipjaHaT, alblHTaH PETYJIpAYYy Macelere YeKTEIreH 3JIEMEHTTEP BIKMachl
KotoHynaT. Perymsapioo JIOMOB BIKMAachl MEHEH aTKapbUIaT, ajl bIKMa OOIOHYA KOLIyMYa ©3repMe
KAPTU3WINI Macele MEWKWHAUKTH OHp eideMre >KOropyiaryy MeHeH arkapbuiaT. Crarbsga
SKUHYHM TAPTHITETH CHHTYJSPAYY KO3TOJTOH KaguMKH quddepeHImaniplk TeHIeMe YIYH YSTTHK
MaceJIeHUH CaH/IbIK YbITapbUIBIIIBI TYPry3yJar.

Vpynmmyy ce30ep. dYeKTeNnreH SJIEMEHTTep METOAY, CHHTYJSIPIYy KO3TOJITOH Macele,
6azucTuk GpyHKUMsIAP.
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PaGora mocCBsieHAa TOCTPOCHUIO YHUCICHHOIO PEIICHHsS KpaeBOW  3amaud  Juis
OOBIKHOBEHHOTO CHHTYJISIPHO BO3MYILICHHOTO M dhepeHINnaIbHOr0 ypaBHEHHUS] BTOPOTO MOPSIIKA.
JInsi MpUMEHEHUs] METO/Ia KOHEUHBIX DJIEMEHTOB B CHHTYJSIPHO BO3MYIICHHBIX 3aJladyaxX CHadaja
JaHHas 3ajJa4ya Peryjsipu3yercs, lajee IMOJYYCHHOW pPeryisipHOil 3amade MPHMEHSETCS METOJ
KOHEYHBIX 3JIEMEHTOB.

Knrouesvle cnosa. MeETOI KOHEUHBIX O3JIEMEHTOB, CHHIYJSIPHO-BO3MYILCHHAs 3ajaya,
0a3ucHbIe (QYHKIIHH.

Numerical solution of a singular perturbed equation based on finite elements.

The paper is devoted to the numerical solution of a singular perturbed
boundary value problem

Lu=¢u"(x.e)—a(x)u(x,e)=f(x), (1)
u(0,e)=u’, u(Le)=u’

Using the regularization method for singular perturbed problems [1], problem
(1) is regularized. Next, the regularized problem is solved by the finite element
method and the finite difference method.

The given functions a(x), f (x)are differentiable a sufficient number of times.

Such a problem (1) has boundary layers along x =0 and x = 1. We introduce

two regularizing functions

- () (X) _ (_i)ll fol\/@ds’ =12 (2)

&

and the extended function G(x,&,,&,,¢) such that
0(x.& )| o0 =U(%.5) ©

We find from (3), on the basis of (2), the derivative u"(x,¢)

u'(x,g)z(axaélq(x)aga) |
-1 & ' £

u"(x,g):aimi[@] 220+ > (20 (X):,0+g0(x)2,,0)

then, instead of problem (1), we set the extended problem
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af

x=0,

g0 +Z[a X)ol0+za(x)L, 0 ]-a

o= O, =, L= 2go|'(x)8§§| +¢,0

Note that there is an identity

(Eﬂ)ézw =Lu

The solution of problem (4) will be defined as

a(x,s,

—a(x)V,(x) = F(x), LV, ==V, (x )

Wy (%) =(

—l)l_l[Z(pI'(X W, (x)+ ¢ (

be solved by the finite element method:

V.00 =2V, @ ().

n-1

YW, @, (X)+(u° =V, (0)) @, (x)+(u* -V,

i=1

where the trial functions w;(x) are defined as follows

(X_Xi—l)

h

0 ()= %=X

h
0 inother cases,

, Xe(X 4, X)

17 %

xe(X,X.,)

(Xi—X) i —
0, (X) = e if xe(x,=0,x),
0 it xe(x,x),
—(X_X“‘l) if xe(x ,,X
o ()= n " xelax),

0 if xe(x, X, ),
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2 |x:l—1_

Xg|

€)=V, (x)+V, (x)+W,(x)exp(-& ) +W, (X)exp(-S, ),

with respect to V,(x),W,(x), I =1, 2 we will get the problem

0,

(x)]=0,

Here V, is the remainder of the regular term. The equation with respect to W (x) will

(1)), (x),

(4)

()

(6)

(7)
(8)

9)

(10)



x =ihh=1,i=01..n
n

Substituting (9) and (10) respectively in (7) and (8), for the definition of
vV, W/

2077 721

multiplying scalar by @, (x)we obtain the systems
?Z_;\Nzli (&’ (x) — (—1)'7l g(z(pl' (x)a)i' (X) + (X)a)i (X)),a)k (X)):

=—(u"=V,(0))(@,(x), 0, (x))—(u" =V, (1) )(®,(x), @ (X)), k=12,.,n-1 (11)
(

S
RS
~
I
—_~
jab)
—~
x
~
RS
—~
x
~—
RS
—~
x
~—
~
D
>
—
D
=
>
«Q
—+
=
D
(@8
D
.
«Q
>
=3
o
>

to determine V,,and W, we obtain systems of algebraic equations

n

-1
iZ:l:aijVZi = fj

n-1

YW, =g, j=12.,n-11=12
i1

Let's describe these systems
a. .V, +a V. +a .V f,

i-Lj2j1 2] L 2j T T

b, W, +bl W, +b,, W) =g,, j=12,...,n-1 (12)

| A 2] j+L] 2j+1:

here

81,75 (0100) (3000, (0.0, (1)) = 12" o 2258

I 1]

0=~ i) (0 - 25 o251

2
L _ \h
Ay :_52(a)j+1a)j)—(a(X)a)m,a)j):_i _a(XJ _;XHJE
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g, =~(u* -V (0))[ 0}, 0is” ~2( gl @) ~ (00, ,) ] =

ool oS3

g, == (U =V @)[-#* (0 0..) ~2(00,0,.) (91, .,) | =

BN R R P

Solving systems (12) definition V,,,W,.. By narrowing (6) we obtain an approximate

solution of the problem (1).
Following Theorem 1.5 and [6] it is possible establish a pointwise estimate,

that is, the validity of the following theorem.
Theorem. Let the second derivative u”(x), be continuous, then there are
estimates

u—u"|<ch’

Example. Using the MATLAB package we will solve the problem

gu"—4u=1+x°,

1)



The exact solution of which has the form

o

X Exact solution | Approximate Solution

0 2.0000 2.0000
0.05 -0.1697 -0.2678
0.1 -0.2473 -0.2500
0.15 -0.2505 -0.2508
0.2 -0.2517 -0.2519
0.25 -0.2536 -0.2538
0.3 -0.2563 -0.2566
0.35 -0.2602 -0.2606
0.4 -0.2655 -0.2658
0.45 -0.2722 -0.2726
0.5 -0.2806 -0.2811
0.55 -0.2909 -0.2914
0.6 -0.3032 -0.3038
0.65 -0.3178 -0.3184
0.7 -0.3348 -0.3355
0.75 -0.3545 -0.3552
0.8 -0.3769 -0.3777
0.85 -0.4025 -0.4033
0.9 -0.4329 -0.4332
0.95 -0.5165 -0.4640

1 -1.0000 -1.0000
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ON THE STRUCTURE OF SOLUTIONS OF THE INITIAL PROBLEM OF
NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS IN PARTIAL
DERIVATIVES OF THE FOURTH ORDER

Baizakov A.B. !, Dzheenbaeva G.A.?, Sharshenbekov M.M. 3
L23Institute of Mathematics of NAS of KR

The solvability of the Cauchy problem for partial integro-differential equations can be
studied by the method of transforming solutions. The essence of this approach is the transformation
of the original Cauchy problem into an integral equation equivalent to it, to which one can apply the
topological method - the principle of compressed mappings.

In this paper, the solvability of the Cauchy problem for nonlinear integro-differential
equations in partial derivatives of the fourth order is investigated and an integral representation of
the obtained solutions is found.

Keywords: Sufficient condition for the solvability of the Cauchy problem for nonlinear
systems of partial integro-differential equations, contraction mapping principle, Volterra integral
equation of the second kind, space of continuous functions with their derivatives.

XKekeue TyyHaynyy UHTErpo-auddepeHIuanabK TeHaeMenep yuyH Komm macenecMHUH
yblrapblila TYPraHJBITBIH H3WIAO6]6 YbIFApbUIBILITAPAbl ©3repTYNl TY3YY BbIKMAachl MEHEH
KYprysyyre 0osior. MblHAall BIKMaHbIH MaHBI3bl KbICBUITAH YarbULABIPYYJIap HpUHIUOW Jen
aTaJrad TOIOJOTHUSIIBIK BIKMaHbl KOJIOHYYTra MyMKYH OosiroH KommHuH Gamiranksl MacelecuH ara
HKBUBAJIECHTTYY OOJITOH MHTETPAJIbIK TEHJAEMEre aillaniblpyy 60Tyl caHanar.

byn »sMrekte TOpTYHUY TapTUNTETH KeKede TYYHAYJIYy CBI3BIKTYY 3MEC HHTErpo-
muddepeHManIbIK TeHaemenep yuyH Kol macenecMHUH 4Yblrapblia TYpraHabITbl HU3WIIEHAN
’KaHa aJIbIHIaH YbITapbUIBIIITAPABIH HHTETPATIABIK KOPYHYIIY TaObUI/BI.

Ypynmmyy ce3oep: Kekeue TyyHIyNyy CBI3BIKTYY 3MeC HHTErpo-audepeHaiibK
TeHJeMenep cucremanapbl yuyyH KoM MacelnecMHMH ublrapbiia TYPraHAbITBIHBIH SKETHULITYY
IIapThI, KBICBUITAH YarbUABIPYYJap MNPUHLUMOM, SKUHUM Typaery BoabTeppa HHTErpaibk
TEHJEMECH, TYYHAYIapbl MEHEH Y3I'YATYKCY3 (PYHKUIMSAIAPIbIH MEUKUHIUTH.

Hccnenosars pazpemmMocTs 3agaun Ko ans uaterpo-aud depeHnuanbHbIX ypaBHEHUH B
YaCTHBIX TMPOU3BOJHBIX MOXHO NPOBECTH METOJIOM IpeoOpa3oBaHus pemieHui. CyTbi0 Takoro
M0/IX0J1a SBJIsIETCS MpeoOpa3oBaHue MCX0aHOM 3amaun Koim B 3KBUBaJI€HTHOE €l MHTErpajibHOE
YPaBHEHHE, K KOTOPOH MOXHO IIPUMEHUTHh TOIOJOTMYECKUNA METOJ — NPHHLHI CXKAThIX
OTOOpaKECHHUIA.

B nanHo#t pabore wuccienoBaHa paspemiuMOCTh 3ajaud Komm HETMHEWHBIX HHTErpo-
muddepeHIMaTbHBIX YpaBHEHHM B YacTHBIX IPOM3BOJHBIX YETBEPTOrO MOpsjAKa M HaiijeHa
MHTErPAILHOE IIPEACTABIICHUE ITOJyYEHHBIX PELICHUM.

Kniouesvie cnosa: n0oCTaTOYHOE YCIOBHE PAa3peIMMOCTH 3anayd Komwm s HeIMHEHHBIX
CHCTEM HHTErpo-IuQQepeHInaIbHbIX YpaBHEHUNH B YaCTHBIX MPOM3BOIHBIX, MPUHIMUI CXKAThIX
0TOOpakeHW, HMHTErpajbHOE YypaBHeHHE BonbTreppa BTOporo popaa, MpPOCTPAHCTBO (GYHKIUI
HENPEPBIBHBIX CO CBOMMH ITPOU3BOIHBIMH.

Consider an integro-differential equation in partial derivatives of the fourth

order of the form
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U, +2al, +2pU, +a’u, +4afu, + U, +
t
+2Ba’u, +2afu, + fPa’u = F(t,x,u)+IK(t,r,u(r,x))dr (1)
0

where «, SeR,, with initial condition
u(o,x)=g(x), u(0,x)=y(x) (2)
The solution of problem (1), (2) will be sought in the form

u(t,x) :c(t,x)+j j g POS) () (x —)Q(v,s )dsd v, 3)

where c(t,x) is a known function such that

c(0,x)=¢(x), ¢,(0,x)=w(X),
Q(t,x) is an unknown function to be determined. To find the unknown function
Q(t,x), we will substitute (3) into (1). To this end, differentiating (3) with respect to

t, we have

U, =c —a(u —c)+j I g ()P0 (x _5)Q(v,s )dvds. (4)

0

Hence, differentiating with respect to t and replacing the resulting double

integrals, taking into account (3), (4), we obtain
U, +au, =C, +ac, —oz[ut +a(u —c)—ct} + j e P (x —s)Q(t,s)ds. (5)
Further, differentiating (5) with respect to X, we have
U, +2au, +a’U, =C, +2aC, +a’C, —
—,BI e PU9)(x —s)Q(t,s)ds + i e 7U*)Q(t,s)ds . (6)
Equality (5) can be rewritten in the form
U, +2au, +a’u—C, —2aC, —a’cC= i e 70 (x—s)Q(t,s)ds. (7)

—0

In (6) replacing the first integral on the left - according to the formula (7) and

differentiating with respect to x we get
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2 2
Uy, + 20U, +a U, + ﬂ[uﬁx +2aU, + ux} =

Coy +2QC,, +a’C, +ﬁ[cttx +2ac, +a’c ]+-Q(t,s)—,BJ' e 7Q(t,s)ds. (8)

Considering (7) from (6) we have

2 2
Uy, +2aU, +au, +ﬂ[utt +2aU, +a u]:
X
=Cy +2aC, +a’C, + B[ ¢, + 2a¢, +a’c |+ [ e7Q(t,s)ds.

(9)
Multiplying equality (9) by g and adding the resulting expression with (8)

term by term, we have

2
Uy T 2QU,, + uXX+2ﬂ[um+2au +a’u }

XX

+,6’2[un+2aut+a2u] Co T+ 2QC,, +a’C, +

e K
+2ﬂ[cttX +2aC, +a’c }+ﬂ2[cn +2ac, +a2c} +Q(t,x).
We write the last equality in the form
Uy, + 20U, + 28U, +a’u, +4afu, + fU, +
+2pa’u, + 2af°U, + fra’u = N(t,c,e)+Qlt, x), (10)
where
N (L, C) = Cppp + 20Cyq, +2/3Cy, + @ °Cyy, +4affC, + B7C, +2p0°C, +205°C, +a’ fC.
Taking into account (3), (10) from (1) we have a nonlinear integral equation of

the form
Q(t,x)=—N(t,c) + F(t, x,c(t,x) +

+Jje“‘””““)(t —V)(X—S)Q(v,s)dsdvj+

+jK[t’T,C(T,X)+ﬁe““V)ﬂ(xS)(r—v)(x—s)Q(v,s)dsvads =P(Q). (11)

Nonlinear integral equation (11) will be solved by the contraction mapping

method [1]. Let's pretend that:
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N(t,c) e C(R, xR), (12)
F(t,x.u) e C(R, xRxR)MLip(L],). (13)
K(t,z,u) eC(R, xR, xR)nLip(K,) (14)
We consider the right side of (11) as an operator P[Q] acting on the function

Q(t, x). It's clear that
”F(t, X, U) - N(ta C)” <N =const,

where
N=N,+N,.

Taking into account (12)-(14) we estimate the difference

HP[Ql]_P[Qz] <

F (t, X,C +j j e Nt —y) (x—5)Qy(Vv,S )dvds) —

—F (t,x,c + j' I g (PO (£ ) (x—5)Q, (v, S)dvds)| +

0 —o0

+

_[ K [t, 7,C +j jf e O (2 ) x (x—38)Q,(v, s)dvds))dz -

t

K (t, r,C +j j e U (2 -y ) x (x—5)Q, (v, s)dvds ))d || <

O'—.

<(L,+K,T) {j g () j e PO (t —y)(x =) x

<[|Q.(v,9) - Q, (v, s>||dvds}<(Lu+KT) zllQl(t X)—Q,(t, X)| .

At the same time, the integral was estimated

T1
<——5

[e“‘je "(t—v)d v]{e Ax I e (x—s)ds]| <

Ie’”‘“ D (t—v)dv j e P09 (x —5)ds| =

Suppose that «, B are such that

(15)
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Then, according to the contraction mapping principle, we conclude that the
nonlinear integral equation (11) for all (t,x)eD has a unique continuous solution
Q(t, x).

Next, we prove the boundedness of the solutions of the Cauchy problem (1)-

(2). From (3) we have the inequality

JluCt, )| <leCt,x)||+ <

t X
[ (t—v)dv [ €70 (x—5)xQ(v,s)ds
0 —00

co O

~-=C, = const.

Thus, fair
Theorem. Let 1) the functions c(t,x), c(0,x)=¢(x), C(0,X)=w(x),

c(t,x)eC*?(D); 2) conditions (12)-(15) are fulfilled. Then the nonlinear integro-

differential equation in partial derivatives of the fourth order (1) with initial data (2)

has a unique solution u(t,x) eC%*? (D).
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MAGIC SQUARE: TERMS OF ARITHMETIC PROGRESSION -
IDENTIFIERS

Baizakov A.B. !, Sharshenbekov M.M. 2, Aitbaev KA. 3
L23Institute of Mathematics of NAS of KR

This article illustrates the construction of M-matrices of the 12th order based on the
available M-matrices of the third and fourth order. When constructing the M-matrix of the 12th
order, the decomposition method is used, as well as the properties of the members of an arithmetic
progression. Earlier in [1], it was noted that the creation of a database of low-order M-matrices is an
important step in the decomposition method. It turns out that in this method the constants of squares
forming an arithmetic progression of split block matrices act as identifiers.

Keywords: Decomposition method, arithmetic progression, square constants, matrix block.

byn makanaja yuyHUy jkaHa TOPTYHUY TapTUOTErd MypJaTaH OepuiireH M-MaTpunanap/bH
0azaceinga 12-taptunrtern M-maTpunacelH TY3Yy cypeTTener. l12-taptunrtern M-maTpuliachiH
TY3YYZ©® NE€KOMITO3UIHS BIKMAChl, OLIOHION 3Ji¢ apr(PMETHUKAIBIK MPOTPECCHSIHBIH MYYOJIOpYHYH
KacHeTTepH KOJIOHynaT. byra wueiimn [1] wimire TeMeHKy TapTunTerd M-MaTpUiiaiap/IbH
MaasbIMaT 0a3achlH TY3YY JIEKOMITO3UIMS BIKMACBIHBIH MAaaHHMITYY STaObl SKEHIUTH OCNTHIICHIEH.
byn bikmMaga OenyHyydy OJOK MaTpuiiaiapablH apu(METUKAJIbIK IMPOTPECCUSHBI  TY3YY4YY
KBaJIpaTTapAblH KOHCTaHTaJIapbl UIEHTU(UKATOP KaTapbl UII-apaKeT KbLIBIILIAT.

Ypynmmyy cesoep: JlekoMIo3uiusi bIKMachl, apu(METUKAIBIK MPOTrpeccHsi, KBaJpPaTThIK
KOHCTaHTaJjlap, MaTpULlajJap/bIH OJIoTy.

B nanHO#l crarbe wumOCTpUpYETCS THocTpoeHune M-matpuin 12ro mopsiaika Ha 0Oase
nMeromuxcsd M-maTpull TpeTbero u uerBeproro nopsaka. Ilpu mocrpoennn M-matpunsl 12ro
MOpSAJIKa HCHOJb3YEeTCd METOJ JIEKOMIIO3UIMH, a TaKKe CBOWCTBAa YJIEHOB apHU(PMETHUECKOMN
nporpeccuu. Panee B pabore [1] ObI7I0 OTMEUEHO, UTO co3/1aHMe 0a3bl JaHHBIX M-MaTpHIl HU3KOTO
MOpsAJIKa — BAXKHBIM ATanm Merona jAekoMno3uinu. OKa3bIBaeTcsi, YTO B 3TOM METOJE KOHCTaHThI
KBaJpaToOB 00pa3yrolye apupMeTHIECKy0 POrpeCCUI0 PaCIEIVIEHHBIX OJIOK MaTpPUI] BBICTYMAIOT
KaK UJIeHTU(UKATOPBI.

Kniouegvie cnosa: Meron neKOMNO3UIUM, apupMeTHUYecKas MPOrpeccus, KOHCTAHTHI
KBa/IpaToB, OJIOK MaTPHULIBI.

It was noted in [1] that the creation of a database of low-order M-matrices is an
important step in the decomposition method. It turns out that in this method the
constants of the squares of the split block matrices act as identifiers. Due to the
properties of an arithmetic progression, the constants of squares of each split block
matrix are calculated by the well-known formula

k =

= m 1)
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where m is the order of the matrix of split groups, i - means the number of the group,

a ,a - the first and last member of the m-th group. Note that the set of values of

square constants is modeled by a second-order difference equation of the form

un+2 = 2un+1 - un' nz 1
with appropriate initial conditions. According to the Euler method, the general
solution of Eq. (1) has the form

u(n)=c, +c,n
since the roots of the characteristic equation A°-24+1=0: 4 =4, =1 coincide,

where c,,c, are arbitrary constants. The constants of squares forming an arithmetic

progression act as identifiers.
In this article, we will illustrate the construction of a 12th order M-matrix based
on the available M-matrices of the third and fourth order. Recall that the first chosen

M-matrix of the fourth order is known as the “Diirer square”, see figure 2.

6|7]|2 16| 3|2 (13| [13|2|12] 7

11519 5110 (11| 8 16| 3|96

8134 96712 | 1114]8 11

Fig.1 4 15|14 1 4 15| 5 |10
Fig.2

We will construct a 12th order M-matrix using the 3*4 decomposition method. In our
case, the construction is based on the properties of the members of an arithmetic
progression. Now we divide the set of numbers from 1 to 144 into 9 groups. Each
group consists of 16 numbers forming an arithmetic progression: 1st group - 1, 10,
19, ..., 127, 136. 2nd group - 2, 11, 20, ..., 128, 137, etc. ,VIlIth group - 8, 17, .26 ...,
134, 143, IXth group - 16.25, 34, ..., 135, 144,

When calculating the nth member of the arithmetic progression in each group,

the formula @, =a, + (N —1)d was used, where &, =1,...,16;d =9
Next, for each group, we calculate the constants of the squares of the block

matrix of the order 4*4 according to the formula (1). For the first group we have
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a +a 1+136
— " .m=

k, = 5 -4=274 . Further
a +a
k=t 21T o7
2
a +a
= e 23738 _og)
2
a +a
Kk, = o .mo8t144 oo

2
Then the constants of the squares of the created groups form an arithmetic

progression with the difference d =4. We have the first 9 members of an arithmetic

progression: k, =274, k, =278, k, =282, ..., k, =320 and we will place them in full

accordance with the numbers in Fig. 1, i.e.

a, a, a, 294 298 278
a a a4 |=|274 290 306
a, a, a, 302 282 286

Fig.3

Note that the square constant of the last M-matrix is 870.

Further, we will consider the obtained 9 constants of squares as identifiers of
an expanding order. The M-matrix of the 12th order is considered as a nested 3 * 4, or
rather a block matrix. Each element of the M-matrix of the third order is considered
as a block and expanded, keeping its location in Fig.3. So, for example, the constant

274 will consist of M-matrices of the fourth order of the form

136 | 19 | 10 | 109
37| 82| 91 | 64
73 | 46 | 55 | 100
28 | 127 (118 | 1

By virtue of the constants of the square, each block can be painted in an arbitrary
way. We have the right to take any other M-matrices of the fourth order from the
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database, for example

132|127
163|996
1]14] 8 |11
4 |15| 5|10
Fig.4

For the constants 278 and 282 we can take the M-matrix of the fourth order built on

the basis of the last Fig. 4 contained in our database:

110 | 11 | 101 | 56 111 | 12 | 102 | 57
1371 20 | 74 | 47 138 | 21 | 75 | 48

2 |119] 65 | 92 3 [120| 66 | 93
29 | 128 | 38 | 83 30 129 | 39 | 84

We will continue this procedure for all constants of the squares in Fig.3. As a result,
instead of each constant of the square, we write the M-matrix of our group, we get M
- a matrix of the 12th order. Here is a fragment of the arrangement instead of

constants274, 278, 282 M-matrices of the 4th order of these groups.

110 | 11 | 101 | 56
137 | 20 | 74 | 47
2 [119] 65 | 92
29 | 128 | 38 | 83

136 | 19 | 10 | 109
37182 | 91 | 64

73 | 46 | 55 | 100

28 | 127|118 | 1

111 | 12 | 102 | 57
138 | 21 | 75 | 48

3 [120| 66 |93
30 129 | 39 | 84
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Finally, we obtain one form of the M-matrix of the 12th order:

114 | 15 |105| 60 | 115 | 16 | 106 | 61 | 110 | 11 | 101 | 56
141 | 24 | 78 | 51 | 142 | 25 | 79 | 52 | 137 | 20 | 74 | 47
6 123 | 69 | 96 7 124 | 70 | 97 2 | 119 | 65 | 92
33 | 132 | 42 | 87 | 34 | 133 | 43 | 88 | 29 | 128 | 38 | 83
136 | 19 10 | 109 | 113 | 14 | 104 | 59 | 117 | 18 | 108 | 63
37 82 91 | 64 | 140 | 23 | 77 | 50 | 144 | 27 | 81 | 54
73 46 55 | 100 | 5 | 122 | 68 | 95 9 |126 | 72 | 99
28 | 127 | 118 | 1 32 [131 | 41 | 86 | 36 | 135 | 45 | 90
116 | 17 | 107 | 62 | 111 | 12 | 102 | 57 | 112 | 13 | 103 | 58
143 | 26 | 80 | 53 | 138 | 21 | 75 | 48 | 139 | 22 | 76 | 49
8 125 | 71 | 98 3 | 120 | 66 | 93 4 1121 | 67 | 94
35 | 134 | 44 | 89 | 30 | 129 | 39 | 84 | 31 | 130 | 40 | 85
It is clear that
+a 274 + 306
5= -3=870.
2
This is the 12*12 magic square constant.
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ON THE UNIQUENESS OF SOLUTIONS OF FREDHOLM LINEAR
INTEGRAL EQUATIONS OF THE FIRST KIND ON THE SEMI-AXIS

Asanov A. ', Kadenova Z.A.?, Bekeshova D.>
'Department of Mathematics, Kyrgyz-Turkish Manas University
23Institute of Mathematics of NAS of the Kyrgyz Republic

In the present article the theorem about uniqueness of Fredholm linear integral equations of the first
kind on the semi axis, with method of nonnegative quadratic forms and functional analysis methods.

Key words: Fredholm linear integral equations, first kind, the semiaxis, uniqueness of solutions.

Byn wmakamama Tepc sMec KBagpaTTBIK QopMmanap YCydyHYH, (QYHKIHOHAIIBIK aHATU3IHH
YCYIIapBIHBIH KapAaMbl MEHEH JKapbIM OKTOTy DpeAronbMayH OMPHHYN TYPAOTY CHI3BIKTYY MHTETPANIBIK
TCHACMECIICPUHUH YCUHUMACPUHUH KAJIT'BI3ALITbl JATWIACHON.

Ypynmmyy ce3zdep: ®penronbMIyH CHI3BIKTYY WHTETPANIBIK TEHAEMENepH, OMPWHYH TYPHeTY,
JKapbIM OK, YCUUMIACPUHHUH KAJIT'bI3ABITBI.

B Hacrosen cratbe AoKa3zaHa TeOpeMa O €IMHCTBEHHOCTU JIMHEHHBIX MHTETPAIBHBIX YPABHEHHUU
®penroibpMa MEPBOroO Poja Ha MOYOCH C MCIIONB30BAaHUEM METOa HEOTPUIATEIFHBIX KBaPaTHIHEIX (hopM
1 METOJI0B (DYHKIIMOHAIBHOTO aHaJIi3a.

Knrouegvie cnosa: JluneltHble MHTErpanbHble ypaBHeHUs dpenroibma MEpPBOrO poja, MOJIY OCh,
€IMHCTBEHHOCTH PELLICHUH.

1. Introduction

Many problems of the theory of integral equations of the first kind were
studied in [1-15]. But fundamental results for Fredholm integral equations of the first
kind were obtained in [11-12], where regularizing operators in the sence of M.M.
Lavrent'ev were constructed. Rezults on non-classical Volterra integral equations of
the first kind can be found in [1]. In [2,6], problems of regularization, uniqueness and
existence of solutions for VVolterra integral and operator equations of the first kind are
studied. In [13], for linear Volterra integral equations of the first and the third kind
with smooth kernel, the existence of multiparameter family of solutions was proved.
In [4,5], on the basis of theory of Volterra integral equations of the first kind, various
inverse problems were studied. In [8], uniqueness theorems were proved and
reqularizing operators in the sense of Lavrent'ev were constructed for systems of
linear Fredholm integral equations of the third kind. In [10], problems of uniqueness
and stability of solutions for linear integral equations of the first kind with two

independent variables were investigated. In [3, 9], based on a new approach, the
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existence and uniquenes of solutions of Fredholm integral equations and the system
linear Fredholm integral equations of the third kinds were studied. In [15],
uniqueness theorems were proved for the linear Fredholm integral equations of the
first kind in the axis.

In the prezent paper, on the basis of the method of integral transformation,
uniqueness theorems for the new class of linear Fredholm integral equations of the
first kind in the semiaxis were proved.

2. The linear Fredholm integral equations of the first kind

Consider the linear Fredholm integral equations of the first kind
Ku = j K(t,s)u(s)ds=f(t), te(-x,a] (1)

where the u(t) is the desired function on (—x,a], the given function f(t) is the

continuous on(—x,a],

} _T|K(t,s)|2dsdt < o0,

—00 —00

K(t,s)z{A(t’s)’ —o<S<t<a,

B(t,s), —w<t<s<a, (2)
the given functions A(t,s) and B(s,t) are continuous on the domain
G={(t,s):—~0<s<t<aj.
Let C(—xo,a] denote the space of all functions continuous on (—w,a]. Here C(G)

denote the space of all functions continuous on G.
We introduce the notation
H(t,s) = A(t,s)+ B(s,t),(t,s) €G. (3)
Assume that the following conditions are satisfied:
(H(t,s),H/(t,s),H.(t,s),H.(t,s) e C(G), a(t) = limH (t,s), te(—o,a],a(a) =0,
a(t) e C(-w,a], a'(t) <0 for all te(—x,a], H (t,s)<0for all (t,s) €G,
a'(t) e L (-=,a],B(s)=H.(a,s)>0for all se(-x,a], A(s) eC(—»,a]N L, (—»,a];
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(i) Sup [H(t,s)| <

(t,s)eG te(

< y(s) L (~o.al;

ts
tesa

(iii) At least one of the following three conditions holds:

1) & (t) <0 for almostt e (—o,a]; 2) A(s) >0 for almostall s € (—xo,a;
3)H_(t,s) <0 for almostall (t,s) € G.

Theorem. Let conditions (i), (ii) and (iii) be satisfied. Then the solution of the
integral equation (1) is unique in L, (—o,a].
Proof. Let u(t)eL (-«,a] be a solution of the integral equation (1). By virtue

of (2), we can write of the integral equation (1) in the form

t

IA(t,s)u(s)ds+jB(t,s)u(s)ds: 0 @

Multiplying both sides of the equation (4) by u(t) and integrating over the domain
(—,a], we obtain.

a

H (t,s)u dsdt+”B (t,s)u(s)u (t)dsdtzjf(t)u(t)dt. (5)

—00 —00 —0

Applying Dirichlet’s formulas to (5) and taking into account (3), we have

[ [Hs)u(s)dsu(tydt= | 1 (t)u(t)d ©)
We shall introduce_twh:notation )
2(t,5) :ju(v)dv,(t,s) cG. (7
Then from (7), we obtain |
d.z(t,s) = —u(s)ds, z(t,s)u(t)dt = %dt(zz(t, s)). (8)

Let us transform the integral on the left hand of the identity (6). Taking into account
(7), (8) and integrating by parts, we have
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a t a a t

[ [HEs)uEuE)dsdt = [ a®)z(t,—o)u(t)dt+ [ [ H,(ts)z(ts)u(t)dst.

—00 —00 —00 —00 —00

Hence, applying Dirichlet’s formula, we obtain

[O[OH (t,s)u dsdt—%ia(t (t,—0)) +%iBHs t,s)d,(z°(t, 5))]
= a(a)zz(a,—oo)—Ela'(t)zz(ﬁ—w)dt+E£ﬂ(5)zz(a’5)ds_ (9)

Nll—‘ N | =

j j H.. (t,)z2(t, s)dtds.
Taking into account (6) and applying Dirichlet’s formula from (9), we have

%a(a)zz(a,—oo) —% T a (t)z2%(t,—o)dt +% ja' B(s)z*(a,s)ds —
Lo - . - (10)
- j j H. (t, )z’ (t,s)dsdt = j f (t)u(t)dt.

—00 —00 —00

Suppose that f(t)=0 for te(—,a]. Then, taking into account conditions (i), (ii) and

(iii), we see that (10) implies

j. u(z)dz =0, t e (—o,aj or jlu(z')dz' =0, s € (—x,a]

—00

or
j.u(r)dr =0, (t,s) e G.

Therefore, u(t)=0 for all te(—x,a].

The theorem is proved.

Remark 1. If B(s,t)=0 for all (t,s)eG, then the integral equation (1) is
Volterra linear integral equation of the first kind. In this case the assertion of the
theorem is true for H(t,s) = A(t,s), V(t,s) € G.

Remark 2. If A(t,s)=0 for all (t,s)eG, then the integral equation (1) is
Volterra linear integral equation of the first kind. In this case the assertion of the

theorem s true for H(t,s) = B(s,t), V(t,s) €G.
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3. Examples

Example 1. Consider the integral equation
t 0
j A(t,s)u(s)ds+IB(t,s)u(s)ds = f (t),t € (~o0,0],
—00 t

where

A(t,s) = —L[e’”ea“s’ - Z—be“}, (t,s) eG,
a(b—a) a+b

B(s,t) = %(ebt -2), (t,s) €G,

(11)

(12)

(13)

G ={(t,s);—o<s<t<0},ab,c and d are real parameters, a>0,b>0,c¢>0,d <0,a=b.

Then taking into account (12) and (13) from (3) we have

H(tns):_—I: bt y-a(t-s) 2b
a(b-a) a-+

. C cd
H,(t,s) = ——e”e + —e", (t,5) € G,
a a

2—beas},(t,s)eG,

oot 2

H. (t,s) = —ce”e " (t,5) € G,

a(t) = lim H(t,s) =0, &'(t) =0, t & (~=0,0],

ﬂ@)zrgms)zgggefsE(ﬁmol

From (14) and (16), we obtain

c (1+ 2b j+2c|d|'

~|b-alall a+b ab

c(a+3b)
‘" |b-ala(a+b)’

7(s) :L[ebs +2—beas] s e (—oo,0].

|b—a]| a+b

as Cd bt
—e — (" —-2),(t,s) €G,
b }ab( ) (t,s) €

14)

(15)

(16)

(17)
(18)

(19)

(20)

(21)

(22)

Then taking into account (14)-(22), we can verity that conditions (i), (ii) and (iii) are

satisfied for the integral equation (11). Therefore the solution of the integral equation

(11) is unique in the pace L (-,0].

Example 2. Consider the integral equation
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j A(t,s)u(s)ds = f(t), te(-»,0], (23)
where

At,s) = —ﬁ[emea“s) - az—fbeas} - ac—jrjb(ebt -2), (24)
(t,s) e G ={(t,s); —o<s<t <0},
a,b, cand d real parameters, a>0,b>0,¢>0,d >0,a=b. Then taking into account
(23), from (3) we have
H(t,s) = At,s), (t,s)eG. (25)
Then taking into account (24), (25) and (14)-(22), we can verity that conditions (i),
(i) and (iii) are satisfied for the integral equation (23). Therefore the solution of the

integral equation (23) is unique in the space L (-»,0].
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BOUNDEDNESS OF SOLUTIONS OF A CLASS OF LINEAR
DIFFERENTIAL EQUATIONS OF THE SECOND ORDER ON THE
SEMIAXIS

Asanova K. A
Institute of Mathematics of NAS of the Kyrgyz Republic

In this paper based on a formula for one class of second order linear differential equations

with variable coefficients were established sufficient conditions of exponential estimate of solutions
for one class of second order linear differential equations on the semi axis.

Keywords: Formula, linear differential equations, second order, limitations, semi axis.

byn wmakanaga Ko3(QQHUIMEHTTEpH ©3repMesyy OOJIrOH SKUHYM TAPTHUITETH CBHI3BIKTYY

muddepeHINaNAbIK TeHAEMEIEpAuH OUp KJIACCHIHBIH YbITAPBUIBIIITAPBIHBIH  (HOPMYIIaChIHBIH
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HETM3UH/IC JKapbhIM OKTOTY IKWHYH TAPTUITETH CHI3BIKTYY AU(PepeHITnaNIbIK TEHASMEIEpIuH Onp
KJIACCHIHBIH YBITAPBUIBIIITAPBIHBIH YEKTEITCHIUTUHUH KETHINESPIIHK MapThl KOPCOTYIIY.

Ypynmmyy cezdep: @opmyna, CHI3BIKTYY AuPQGEpPEHIUAIIBIK TEHASMENep, SKUHYH
TapTUNTETH, YEKTEIreH, XKapbhIM OK.

B nannoii pabote Ha ocHOBe (pOpPMYIIBI ISl OTHOTO KJlacca JIMHEWHBIX nuddepeHInanibHbIX
YpaBHEHHI BTOpPOTO MOpsAKa C NEPEMEHHBIMH KO3(P(QHUIMEHTaMH YCTAaHOBJIECHBI JOCTAaTOYHBIC
YCIIOBUSI OTPAaHMYEHHOCTH PEIICHUH OJHOIr0 Kilacca JMHEWHbIX nuddepeHranbHbIX ypaBHEHUN
BTOPOT'O MOPSAKA Ha MOIYOCH.

Kntouesvie cnosa: ®opmyna, nunelinbsle nuddepeHnuanbHbie ypaBHEHHS, BTOPOTO MOPSIKa,
OTrPaHUYEHHOCTD, II0JIYOCh.

Consider the linear differential equation
y'+p@y" +q@y = f),t =t (1)
with initial conditions
y(te) =m,y'(tx) =n,m, n€R (2)
where p(t), q(t), f (t) — known features.

The questions of boundedness and asymptotic stability of solutions on the
semiaxis for differential and integro-differential equations were studied in [1-7]. In
this paper, on the basis of the results of [8] and the method of transformations, we
establish sufficient conditions for the boundedness of solutions of the differential
equation (1) on the semiaxis.

Assume the following conditions are met: a)

q(t) = qo(t) +q.(t), t=t,, (3)
qo(t) = a@®)[p) — a(®)] = 1*(t) + a'(t), t = t,, (4)
U(®) = rexp {[;,[2a(s) —p(s)lds}, ©)

where a(t),a’(t), q.(t), p(t), f(t) — known continuous functions on [t,, o),
a'(t) — function derivative a(t),r € R,r # 0;
b)a(t) +I(t) =0 and a(t) — I(t) = 0 forall t € [ty, ),

F 1 {exp |- [, (@@ + 1) = p(@)dr| + exp |- [ (a(x) = 1) — p(D)dz|} <
<l(®) and |q; (O {exp |- [} (a(@) + () — p(x))dr| + exp |- f (a(®) - 1) -
—p(r))dr]} < L) forall t € [ty, ), e Ly (£), () € Ly[to, ), 1;(t) = 0 and
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l,(t) = 0forall t € [t,, ).
Substituting (3) into (1) we have
y'+p@y" +q0(®)y = () = q1(Dy, t = to. (6)

Taking into account the corollary of Theorem 1 from [7], from (6) we obtain

y(©) = 22 )) [m(i(te) — a(to)) = n] + 222 [n + m(U(to) + a(to))] + 30, ()

where [y, (s)y,(t) — y1 (D)y2(s)]lds, t = t,
y1(8) = exp |~ [ (a(s) + I(s))ds] 8)
y2(£) = exp |~ [ (a(s) - I(s))ds] 9)

t
ys(8) = j F(5) = 1 (&)Y 2LV (8)y2 ()] [y2()y2(E) —

to

—y1(t)y2(s)]ds, t = to. (10)
Substituting (8), (9) (10) by (7) and taking into account (5) we get

y(t) = 2l( 3 [m(l(to) a(to)) — n]exp{ j [a(s) + l(s)]ds} +

TN [n + m(1(ty) + a(ty))]exp {— fto [a(s) — z(s)]ds} +

f —exp [ j p(r)dr] F(5) — 41 (s)y(s)] {exp[ j (a(r)+l(r>)dr]

exp

—j (a(r) + l(T))dT]

—j (a(x) - l(r))dr] — exp

exp [— INCOE l(T))dr]}ds, t>t,. (11)

We introduce the notation:

F(t) = ! [m(r — a(to)) — n]exp{ ft[a(s) + l(s)]ds} +

1 t
+§ [n+m(r + a(ty))]exp {— j;o [a(s) — l(s)]ds} +

1 [t s t
+th0f(s) {exp [— _];0 (a(@) +I(z) - p(r))dr] exp [— jto(a(f) — l(r))dr] _
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—exp [— f:)(a(r) —I(7) - p(r))dr] exp [— ftto(a(r) + l(r))dr]}ds, (12)

K(t,s) = — ‘hz(:) {exp [—J (a(r) + (1) — p(‘[))d‘[] exp [—J (a(r) — l(T))dT] —

—exp |~ [ (a(r) = 1() = p())dz| exp |~ [ (a(r) + 1(x))dz|}, (13)
(t,s) €G ={(t,s):ity <s <t <o},
Taking into account notations (12) and (13), we write equation (11) in the form
y(t) = F(t) + ffo K(t,s)y(s)ds, t = t,, (14)
Theorem. Let conditions a) and b) be satisfied. Then the solution of the Cauchy
problem (1)-(2) satisfies the following estimate:
ly(®)] < c;1, t = ¢y, (15)

where

0]

[,(s)ds]|,
letOZ()]

€1 = Cexp [

C2 =i [|m(r —a(ty)) —n|+ In+m@ +alt)| + [, ll(s)ds]
Proof. Considering condition b), from (12) and (13) we have:
[F()| < ¢y, t2=t, (16)
IK(t,s)| < lzl(sl) (t,s) €G. (17)
Then, by virtue of (16) and (17) from (14) we obtain:

YOI < ez + 5 LOIYElds, €2t (18)

Further, due to the Granwall-Bellman inequality, from (18) we have estimate

(15). Theorem proven.
Example. Consider problems (1) - (2) for t, = 0, p(t) = 2(1 + t),
q(t) = (1 +t)% + 2exp [——tz 4t] f(t) = 3exp [——tz — 3t] [0, 00).
In this case, conditions a) are satisfied for
a(t) =3+t =1,q,(t) = 2exp [—%tz - 4t], I(t) = 1,t € [0, ).
In addition, conditions b) are satisfied for

L,(t) = 6e7t, L,(t) =4e %, t € [0,m).
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Indeed
a®)+ l(t)=2+t=0,a(t)— l(t) =t =0,t € [0,0),

F(Ol{exp |- J, (a(@) + 1(D-p(D)) dr] + exp[- [, (a(r) - 1(2) — p(2)dr]}=
= 3~ (t*+3D) (eé + e§+2t> < 6e t =1,(t), t € [0, ),
@) {exp [~ [ (a(t) + 1() — p(D)dz| + exp |- [, (a(®) - 1(D) - p(D)dr|}=

_(1.2 = =
= 2G4 [e 2 +e 2+2t] < 4e72t = [,(t) € [0, o).
Thus, all conditions are met. In this case

c, = %[|n| + |n+2m| + f0°° L(s)ds] = %[Inl + |n + 2m| + 6], (19)

€, = C,exp [ﬁ fooo lz(s)ds] = c,.
Therefore, to solve this Cauchy problem (1) - (2), estimate (15) is valid for , where

the number is determined by formula (19).
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ONE CLASS OF FREDHOLM LINEAR INTEGRAL EQUATIONS OF THE
THIRD KIND WITH DEGENERATE KERNELS ON THE SEMIAXIS

Asanov R. A.
The International University of Central Asia (IUCA)

Based on a new approach, it is shown that solutions for one class of Fredholm linear integral
equations of the third kind with degenerate kernels on the semiaxis are equivalent to solving
systems of linear algebraic equations. The questions of existence and uniqueness of the solution for
this integral equation are studied.

Keywords: Solutions, linear, equations, semi-axially integral, algebraic, Fredholm, third
kind, equivalent.

JXaHpl BIKMaHBIH HETHU3UHAE >KapbIM OKTOry DpearoibMAyH y4yHUy TYpAery KyOyiraH
CBI3BIKTYY MHTETPAJABIK TEHAEMENIEpAuH Oup KJIacChlH YbITapyy CbI3BIKTYY alireOpalibIk
TEHJEMENEPINH CHCTEMAChIHBIH YbIlapyyra OJKBHUBAJEHTTYY OJKEHAWIM KepceTyiny. byn
MHTETPpaNJIbIK TeHIEMEHUH YbITapbUIbIIIBIHBIH JKAIIAIIb] KaHa KalITbI3AbITb] JaTUIICHIH.

Ypynmmyy ce30ep: UbIrapbUibllll, CBI3BIKTYY, TEHIEMEJep, KapbIM OKTOTY HHTErpajijiap,
anreOpainbik, @penronbm, yuyHUY TYpP, SKBUBAIEHTTYY.
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Ha ocHoBe HOBOro mojxoja IOKa3aHO, YTO PELIEHUS s OJHOrO KJacca JUHEHHBIX
WHTETPAIbHBIX ypaBHEHUN Ppearonbma TPETHErO poOAa C BBIPOKIACHHBIMHU sJIpaMU HA TOJYOCH
SKBUBAJICHTHBI PEHICHUIO CUCTEM JIMHEHHBIX anredpandeckux ypaBHeHuu. MccienyroTess BOpochl
CYILLIECTBOBAHUS U €IMHCTBEHHOCTH PELIEHUS 3TOr0 UHTETPAIbHOIO YPaBHEHUSI.

Knwuegvie cnoea:. Pemienus, JMHENWHBIC, ypaBHEHUSA, IIOJIYOCEBBIE  HMHTETPAbI,
anrebpanueckue, @pearoiabma, TPETbETO POJIa, SIKBUBAICHTHEIE.

Consider the following integral equations
p(u(x) = AT, q;(x) [ b;u(y)dy + f(x), xe[a, ), ¢))

where p(x) a known continuous function on [a,o), a;(x) and b;(x) known

continuous functions on [a, ) (j = 1,...,m), f(x) aknown continuous function on
[a,0), wu(x)— unknown continuous function on [a, o), A — a real parameter,
p(x;)) =0,x;€[la, ), | =1,2,..,k.

Many questions for integral equations were investigated in [1—12]. In
particular, regularizing operators according to M.M. Lavrentiev were constructed in
[3] to solve linear integral Fredholm equations of the first kind. In [5-6], uniqueness
theorems were proved for systems of nonlinear Volterra integral equations of the
third kind and for systems of linear integral Fredholm equations of the third kind and
regularizing operators according to M.M. Lavrentiev were constructed. In this paper,
the uniqueness and existence theorems of the solution for linear integral equations (1)
are proved.

Denote by C[a, ) is the space of all continuous functions on [a,»). By
L,[a, o) we denote the space of all functions with integrable p-th degree on [a,),
p>1.

Everywhere we will assume that

p(x) = [Té=1 p(x), p,(x)) = 0, py(x) € C[a, ), (2)
pi(x) #0 for xe[a,o) and x #x;, [ =1,...,k.

Assume the following conditions are met:

a) For everyone [ =1,..,k, and j =1,..,m a;;(x)— functions are continuous

functions on [a, ), a; ;j(x) € Ly[a,),p > 1,b;(x) € Ly[a, =), =+-=1,

Q|-

1
p

1
where ag ;(x) = a;(x),a;;(x) = oy [al_l'j(x) — al_l,j(xl)],xeR;
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b) For everyone [ =1, ...,k f;(x) — functions are continuous functions on [a, o),

fie(@) € Lyla, 00), where f(x) = £(), fi(0) = == [fi-1(0) = fa ()], x € R.
Theorem. Let the conditions (2), a) and b) be satisfied. Then
1) if a system of linear algebraic equations

f m
AZ aj(xl)cj +f(x) =0,
j=1
AZ a1,j(x2)cj + f1(x2) =0,
j=1

m (3)
/12 A1, (X1 )¢ + fre—1(xx) = 0,
=1

(00]

Ci:_]
\

a

O @06 + ey, i =1,..,m,
j=1

with respect to the unknowns cy,c, ..., c,, has a unique solution, then the integral
equation (1) in the space C[a, o) N Ly[a,o0),p >1 has a unique solution that
can be represented as
u(x) =227 a j(x)cj + fi(x), x € R; (4)

2) if the system of linear algebraic equations (3) are incompatible, then the integral
equation (1) in the space L,[a, o), p > 1 has no solution;
3) if the system of linear algebraic equations (3) has an infinite number of solutions
depending on g parameters, then the integral equation (1) in space C[a, ) N
Ly[a, ), p > 1 has an infinite number of solutions depending on g parameters. In
this case, the general solution of the system (1) is determined by the formula (4).

Proof. First, let u(t) e C[a,o0) N L,[a, ) is the solutions of the integral

equation (1). Then, assuming x = x; from (1) we have

1Y a0 [ BOYueIdy + FG) =0, (5)
j=1 a
Subtracting (5) from (1) we get
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k m 0
[ [reoue =2 Te,e - 461 [ boIumIdy + 1) - £Ge),
=1 j=1 a

Hence, given the conditions a) and b) we have

k m oo
[ [reoue =2 0,60 [ b utidy + G0, xela,) ©)
=2 j=1 a

If k=1, then

k
le(x) =1, x €[a, ).
1=2

In the case when k > 2 assuming x = x, from (6) we obtain

A a6 [ O uGIdy + fi) =0, )
j=1 a

Subtracting (7) from (6) and taking into account the conditions a) and b) we get

k m oo
[ [r0um = 2) @ [ 5o uoddy + +£0, xela ). ®
=3 j=1 a

If Kk = 2,then

k
npl(x) =1, x €[a, ).
1=3

In the case when k > 3, continuing this process, we will make sure that the solution
of equation (1) u(x) satisfies condition (3) and is determined by formula (4).
Conversely, let u(t) e C[a,©) N Ly[a, ) is determined by the formula (4)
and satisfy the condition (3). Multiplying (4) by P, (x) and by virtue of (3) we get
pr(ulx) =AY, a_1,;(x)cj + fi—1(x), x €[a, ). 9)
Further multiplying (9) by p,_1(x) and given the conditions (3) we have
Pr—1(%) Pre()u(x) = A X711 ag—2,;(X)¢; + fr—2(x), x €[a, ). (10)
Continuing this process with respect to system (10) and taking into account
condition (3), we make sure that w(t) is the solution of the integral equation (1). The

theorem is proved.
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Example. Consider the integral equation

x(x-3)u(x) = /1f

e + (x+2)e ?Y](y? (11)

2+6
X € [a, o).

Where 1, «, [, — real parameters, A # 0. It is not difficult to verify that for the
integral equation (11), the conditions (2), a) and b) are satisfied when

p=2 a=0, m=2,k=2,x;,=0,x, =3, p1(x) =x, p,(x) =x—3,

X
a;(x) =71 g a,(x) =x+2, b,(y) = e Y(y? + 6),
by (y) = ™2 (y? +6), f(x) = a1, (1) = 5=, a15(x) =
3 3
Ly (0) = — o, @00 =0, fi() = F=+ B 00 = —fogee.

Then for the integral equation (11), the conditions (3) are written as follows:
( 2/1C2 + l.l = 0,

1

4
c, = —1—5(/1c1 + a),

7
\ 02=—5(1c1+a).

From (4) we have

(Aci+a)(x+3)
u(x) = — W, x € [a, ). (13)

Further, from (12) we get

_ 13 _ 8u _ 30u
C=—55 1=~ Acg +a = —
__ 2(4A+15)p ﬂ _ W(71-4) (14)
- 72 0T 142
2(4/1+15)u

1) Let 1+ 0, B= %:14). Then from (14) we have that the integral

72
equation (11) has a unique solution in space C[a, ) N L,[a, ), defined as at

least or

_ 2u(x+3)
u(x) = rerey X € [a, ). (15)

2(4A+15)u n(7A—-4)
72 or Bi 141

2) Let A # 0, atleast a #
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3)

10.

Then the integral equation (11)has no solution in space

Cla, ) N Lp[a, ©),p > 1.
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THE GALERKIN METHOD FOR CONSTRUCTING SOLUTIONS TO A
QUASILINEAR DIFFERENTIAL EQUATION OF THE SECOND ORDER

Bapa kyzy A.
Issyk-Kul State University named after K. Tynystanov

The article considers the problem of constructing a periodic solution to a second-order
quasilinear differential equation by the Galerkin method. An algebraic equation is constructed with
respect to the coefficients of the Fourier series and its solvability is proved. An estimate of the
accuracy between the approximate and exact solution of the differential equation is obtained.

Keywords: Second order quasilinear differential equation, periodic solution, Galerkin
method, algebraic equation, approximate and exact solutions.

Makasiaga SKMHYM TAPTUITEIH KBAa3HUCBI3BIKTYY AU depeHUualblK  TEHIEMEHUH
ME3TWJIJIUK  YbITapbUIbIIBIH  [anepkuHAMH MeToqy MeHeH Talyy MaccelecH —Kapasar.
Huddepenunanpik TeHaeme @DypbeHUH KOAXPPHUIMEHTTEPUHE KapaTa aiureOpajiblk TeHJeMere
KEJITUPWUIIUI, aHBbIH YBbITapbUIBIIIBIHBIH YEUWINIIN JaNuigeHeT. Tak jKaHa >KaKbIHAAIITHIPBUITaH
YBIrapbUIBIILITAPIbIH OPTOCYHATbl alibIPMAHbIH YEHN aHBIKTAJIAT.

Ypynmmyy ce30ep: KBa3UCBI3BIKTYY SKHHYM TapTUNTETH AUPPEpeHLIUanbIK TEHIEME,
ME3TWJAMK  YbITapbUIbIN, [ aJlepkMHIMH  MeTOAy, airedpaslblk  TeHAeMe, Tak jKaHa
YKaKbIHIAIITHIPbUITaH YbITaPbLIBILITAP.

B cratee paccMarpuBaeTcs  3ajada  IIOCTOPOEHUS  IIEPUOAMYECKOTO  PELICHUS
KBa3WIMHEWHON nuddepeHanibHoil  ypaBHEHUH BTOPOTO MOpsiaka MeTojnoM [anepkuHa.
IToctopoena anredpandyeckoe ypaBHEHHE OTHOCHUTENBHO KOA(pHUIMEHTOB psna Dypbe JOKa3aHO
ero paspemmMoctb. IlomyyeHa oleHKa TOYHOCTH MEXKIY NMPHUOJMKEHHBIM M TOYHBIM DPELIEHUEM
Qg QepeHInanbHOTO YpaBHEHUS.

Knrouesvie cnosa: KpasmnuneintHoe auddepeHnnanbHOe ypaBHEHHE BTOPOIo MOpsaKa,
nepuoMveckoe pemieHue, Mmeton [amepkuHa, anreOpandeckoe ypaBHEHHUE, MPUONMKEHHbIE WU
TOYHBIE PEIICHHUS.

Consider for continuously differentiable with respect to t, 2m-periodic

functions f(t, x) the norms

1
2

2T
1
Il =max|fOw0ll xeD<Rfllo = |5 f IF112 de
0
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Given a second-order differential equation

d?x
a0z f (), (D

where f(t) is a periodic function with a period of 2w, continuous, expanding in a

Fourier series of the form
f(t) = Cy +V2 X7 (cpcoskt + dysinkt). (2)

On the set of periodic functions, an operator S, is defined such that
m
Smf (@) =Cy+ \/EZ(ckcoskt + dy sinkt).
k=1

aking into account (2), from (1) we have

d?x S
== Co + \/EZ(ckcoskt + d,,sinkt). (3)

Theorem 1. Let x=x(t) be the solution of equation (1). If a

C, =0, x(0) = \/EZ % dx(o) \/—2 "z
k=1

then the 2 -periodic solution x = x(t) will be represented as the formula

x(t) = \/_z (—cycoskt — dysinkt). (4)

Proof. Integrating both parts of the equality of equation (3)

tdzx(t)dtz fd (dx) dx(t) _dx(0) _

dt? dt dt dt
0 0

e’} t

t
= Cpt +\/§z cx | cosktdt + dkjsinktdt =

k=1 0 0
N Cr . dy
= Cot + \/Ez (?Slnkt T (coskt — 1)).

dx(t) dx(O)
dt dt

+ Cpt + \/—2 - (cisinkt — d,(coskt — 1)),
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x(0) t?

j—( =fdx(t)—x(t)—x(0)— +Co?+
0

t

=1
2 ZE i j sinktdt — d,, j (coskt — 1)dt | =
k=1

0

d 0

dx(0)  Cp , Ck dy
x(t) =x(0) + ——-t+—t +\/§kzlﬁ+\/§kzlﬁt

+ +\/—z (—cycoskt — dysinkt),

or

[ee] m
_ Ck dX(O) dk CO 2
x(t) —x(0)+\/§zﬁ+< o +\/§2k2 t+—t?+
k=1 k=1
2y -
+V?2 z =) (—cycoskt — dysinkt).
k=1
Hence, taking into account the condition of the theorem, we obtain
x(t) = \/_z (—cycoskt — dsinkt).

The theorem has been proven.
Let us estimate the difference between the exact and approximate solutions of
equation (1).
Theorem 2. The difference x(t) — x,,(t) satisfies the estimate
[%(t) = Xm (Do < a(m)[ o,
1%(¢) — X (Ol < o (M)l f o,
where

2 2 2
(m+1)4+(m+2)4+m"" ,al(m)——(m_l_l)z.

o(m) =
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Proof. From decomposition (4) we obtain

(00]

X(t) — Sx(t) =x(t) —x,(t) = k—f (—cycoskt — dsinkt),

k=1

from which, applying the Bunyakovskii-Schwartz inequality, we have
2

1%(t) — X (DI <

o V2
— (—cycoskt — d sinkt),
12

k=m+1

(o] 2 o
z k_ z k_ [ll—cxcoskt — dysinkt||?] <
k=m+

k=m+
Z Z 7 Ll + ld 1)

k= m+1 k m+1

Taking into account the Parseval equality from (6)

<|

(0]

D leell? + lldili?) = 1113

k=m+1

As

2 B 2 2
(m) = z k* (m + 1)4 (m + 2)4

k=m+1
hen, taking into account (7), from (6) follows the estimate

1%(t) = % (D15 < a*(M)If 3.
From here we find
|%(t) — Xm (Do < a(m)|f o

Applying the Parseval formula to relation (5), we obtain

V2
2O -5 @B = Y el + ] <

k=m+1

SLE S Ty T

k=m+1
From here we find
|x(t) — X (Ollo < o (M| lo.

The theorem has been proven.
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Consider a second-order quasilinear differential equation of the form

d?x
W=Ax+f(t,x), (8)
where, A is a real number, f(t, x) is a 2zn-periodic function in t.

The periodic solution of Eq. (8) is sought in the form

X (t) = ag + V2 3™ (axcoskt + bysinkt), (9)
The coefficients of which are found from the system of algebraic equations
d?x,,(t)
d—’; = Axp (£) + S f (£ %, (D). (10)

Hence we have

m m
\/Ez(—kzsinkt — k?bysinkt) = Aa, + \/Ez(Aakcoskt + Abysinkt) +

k=1 k=1
m
+A(()m)\/fz (Afcm)coskt + B,Em)sinkt), (11)
k=1
where
1 2T
Al = ﬁoj £(t, X (0))dt,
2T 2T
Ay = L] f(t, %, (t))cosktdt, By = L[ f(t, xm (8) )sinktdt
"zﬁno o "‘zx/ino o ’
For expansion coefficients (9), we obtain the system of equations
Aay+ Ay =0,
Aay + k*a;, + A, =0,
Aby + kb, + B, = 0, k=1,m.

Representing the system of equations in the form
Aag+0-a,+0-b+A™ =0,
0-ag+ (A+k2ag+0- b +A™ =0,
0-ag+0-a,+ A+k?)b, +B™ = 0.

and write it in matrix form
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Al

A 0 0 Qo

(0 A+k* 0 )(ak>+ A =0, (12)
0 0 A+ k%) \Dg B

k

or
DMg + FM(q) =0. (13)
where
(m)
A 0 0 h ag
p™ =<0 A+k? 0 ) FM(@) =A™ |, a= <ak>. k=Tm.

0 0 A+ k? g™ by,

k

Let us assume that the function x = x(t), 2m is a periodic solution of equation (3),
then

m
x(t) =a, + \/EZ(dkcoskt + Eksinkt).
k=1

Putting this function into equation (8) and taking into account the operator S,,, we
obtain the following equality
d*x(t)  d*xp(t)
™odtz T dtz
= A%y (£) + S f (£ Fn () + S (F (£, 2()) = F(£: % (D))

This equality is equivalent to an algebraic equation of the form
DM@ + FIW (@) = =Sy, ({6, 2() = £(£, % (D)) = —p(m). (14)
Imagine the difference f(¢t, x(t)) — f(t, fm(t)) as

of (¢, % + 6(x —
0x

X)) (x(0) — %, (1)), 0<6 <1

fex@®) - f(t,xn(@®) =

Hence we have
[Sm (£(6.2©) = £ (6.5 ()| < 1F(£2@®) = (6 2®)] 0 <

of (¢, % + 6(X — %))
0x

<

1%(t) = X () ]o.
0
Further, taking into account the results of theorem 2, from (14) we obtain
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oMl < |f|11%(®) = % ()]0 < amM)If111f o, (15)
or
M)l < [f111%() = X (O] < o1 (M| f111f o (16)
As detD™ = A(A+ 1)?(A+2)? - (A+m)? # 0, (12) should
a+ (D) FM(q) = o, (17)
and if« = @ = (@y, @y, by, ", @y, by ), then from (17) we get
@+ (D) FM (@) = —p(m). (18)
We solve equations (17) by the method of successive approximations
Apr = —(D™) T FM(q), k=012,.. (19)
take, for the initial approximation, the number a, = a.
Let us show the convergence of the sequence (17).
Let us estimate the difference ay —ag =a; —a :
a,—ay=a, —a=—-(DM™) " FM@ —a=(D™)" p(m). (20)
Taking into account estimates (15) and (16), from (20) we obtain
lay — aoll = llay — @l < ||(0™) " F™ (@) + a|| = | (p™) " pm) || <

<|(@™)7| oGl < omIKIf111flo,

or

ley — aoll < 0, MIKIflulflo, T K = [|(D™)7.

Imagine the difference ay ., — a; as
-1
i1 — @ = —(D™) (F(m)(“k) - F(m)(ak—l)) =

-1 aF(m) (ak—l + H(ak - ak—l)) (

=—(pm — QA1)
( ) Ox ag 4% 1)
Suppose that for a larger my, when m > m,, the condition
OF™ (|| _ x
—|| ==, 0<y=<L1
0x =k’ PH X

Then from (21) we obtain the estimate
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aF(m) (ak—l + Q(Ofk — ak—l))
0x

-1
ke — akll < ”(D(m)) ‘ lax — ar_1ll <

<K |ak—ak 1| < xlay —ai_1l, at k=0,1,2,..
Hence, by induction, we obtain
ks — @l < xllax — ap_1ll < xPllag-1 — ax_pll < - < x*llay — apll <

< x*am)K|fl1lflo < x*o(m)KIf|1Iflo, at k=10,12,.. (21)
Further, taking into account (21), we have

| hsp = @] = ||k = Arap—1 + Trrp—1 = Asp—z + - + Apess + || <
= ”a’k+p - ak+p—1” + ”“k+p—1 - “k+p—2” ot lage —all <
S XQPTTHXPTE At x 1< o(mo)KIflalflo <
S XA+ x+ 44+ )ameKIfIflo < —a(mo)lflllflo

Hence, as p — oo, we obtain the estimate

k
lla — all Sl’(_—xa(mo)lflllllfllol- (22)
For k=0, from (22) we obtain

— _ = o(molflilflo _ o1(m)Ifl1lflo
la —aoll =lle —all s =——~—=<=——"". (23)
Inequality (22) implies uniform convergence of sequence (19) to the solution of
equation (17) as k — o.

Let us estimate the difference ||x,,,(t) — X, (t)|lo:

) 1 7 )
bt () = Em (DI = 5= j Bt (£) — Zr (D124t =
0

m 2
= 2
_ ap—a
ap + \/EZ((ak — ag)coskt + (b, — bk)sinkt) ] dt = % +

2T
|
2T
0

ZW— (04— @7 + VB — By?) = 1o~ @I,

1w 2
+§Z 1(V2a, = VZa||* + ||(V2be — V2B )=—||a—a||2

k=1
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Hence, taking into account (21), we obtain
(8 = £ ©llo = 3 lla = @l < 5 03 (m) L2k, (24)
Let us estimate the difference |x(t) — x,,,(t)]:
1%(8) = % (D)o = [X() = X (t) + Xn(t) — X (D)o < [X() — K (®)]o +

|xm(t) - fm (t)|0 (25)
Since, according to theorem 2

|%(t) — xn (D)o < a(m)|f o,

then from (25), taking into account inequality (24), we obtain the estimate

|f| |f|o

X&) = xm (Do < a(m)|flo + —=01(m) (26)

\/_

<om) <2 andg,(m) =

m?2

V2 V2

(m+1)2 ~ m?’

Further, since

(m 1)2
then from (26) follows the estimate
V2 1 V2Iflilfle V2 If111f 1o
#(6) = xm(®lo < 5 1flo+ =25 = 1 Iro(l T X)>
\/_+|f|1_|f|o(\/7+lfll)
—X m?(1—x)
Thus, the main assertion is proved.

asm — o

Iflo

)

Theorem 3. Let the second-order differential equation (8) have a 2z-periodic
solution and satisfy the following requirements:

a) the requirement of theorem 2 is satisfied;

6) [|@ + (D) Fm@|| < otmIKIfLIfle, K = ||(D™)7;

|y < @ am<

0<y<1, ao(m)<
Then, algebraic equation (17) has a unique solution
a = (ag,V2ay,V2by, -+, V2a,,,V2b,,) such that between the exact x(t) and the

approximate solution x,,, (t) found by the Galerkin method, the estimate

Iflo(V2 + If11)
mi(1—y)

1X(t) = % (D]o <
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SOME A PRIORI ESTIMATES FOR A SYSTEM OF QUASI-LINEAR
PARABOLIC EQUATIONS

Turkmanov J.K. %, Agybaev A.S.?, Karynbaeva M.M.
13 Bishkek state university named after K. Karasaev
2 Kyrgyz State Technical University named after 1. Razzakov

In this article we deduce some integral and uniform estimates for Sdutions of the Cauchy
problem associated with a quasi-linear system of singularly perturbed equations parabolic type. In
particular, these estimates characterize the behavior of a solution and it’s derivatives as a small
parameter tends to zero and the time derivative increases infinitely. They are proved to be useful in
investigating the properties of solutions of model problems of gas dynamics.

Key words: Quasi-Linear, parabolic equation, degenerate problem, solution, several lines,
asymptotic expansion, function, continuos derivatives, point generally speaking, standard
algorithms, hogt’s, estimetes, constant.

byn wmakanana mnapaOonanblk THOTETH TEHIEMENEPAUH KBa3H ChI3BIKTYY TYTYMYyHa
OaiimaHplITyy KeHelTuiareH Komm MacenecMHMH MHTETrpablK jkKaHa OWp deHIerd 0aajaoosopyH
Kapaiiobi3. Takrtam aiiTkanga, Oyn 0aanoosiop 4YedMMAMH alalblH KaHa aHbIH TYYHAYJIapblH
MYHO3/I0MT, aHTKEHM KHYMHEKEH mNapaMeTp HeJre YMTYJlaT jkaHa yOakbIT OOIOHYA TYYHAYCY
yekcu3 KkebOeier. ['a3 JIMHAMHKACBIHBIH MOJEIAMK MAacCEJeIEPUHUH  YbITapbUIbIIITAPbIHBIH
KACHETTEPUH M3WI06/16 Naiianyy 3KEeHH JaluIIcHET.

Ypynmmyy ce3oep: KBa3u ChI3BIKTYY, MapaOoJiaJIbIK TEHIEME, KO3TOJIFOH Macese, YEeUHM,
Oup Hede ChI3BIK, ACUMNOTOTHKAIBIK aXbIP0O, (YHKIMSA, Y3TYATYKCY3 TYYHOyJap, YeKHT,
KAJBICBIHAH aWTKaH/AA, CTAHAAPTTYY AJIFOPUTMIEpP, 0aaioonop, TypakTyyJap.
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B 31011 cTaTbe BEIBOAMM HEKOTOPBIE UHTEIPAIbHBIE U PABHOMEPHBIE OLIEHKU PACIIUPEHHOU
3agaun Komy, CBSI3aHHOW C KBa3WJIMHEMHON CUCTEMOW CHHTYJISIPHO BO3MYILIEHHBIX YpaBHEHUM
napaboIMYecKoro TUMa. B 9acTHOCTH, 3TH OLEHKH XapaKTepU3YIOT MOBEACHHE PEIICHHS U €ro
MIPOU3BOJIHBIX, MOCKOJIbKY Majblii MapamMeTp CTPEMHUTCS K HYIIO, a MPOU3BOJHAS MO BpPEMEHU
yBeIU4YMBaeTCss 0€CKOHEYHO. J[0oKa3aHO, UTO OHU MOJIE3HBI MPU MCCICTOBAHUU CBOMCTB PEIICHUI
MOJIETIbHBIX 33/1a4 Ta30BOM JTUHAMUKH.

Kniouesvie cnosa: xBazunuHeiiHOe, mapaboIMyYecKoe ypaBHEHHE, BBIPOXKICHHAs 3ajaya,
pellleHre, HEeCKOJbKO JIMHHM, AacHUMITOTHYECKOe pasjokeHue, (QyHKIuUs, HelpepbIBHbIC
IMPOU3BOJHBIC, TOYKA, B006H_[e TOoBOpA, CTAHAAPTHBIC AJITOPUTMBI, OLICHKU XOI'Td, KOHCTAHTA.

In the strip I1, ={(t,x)[0<t <T, <o <x<oo}, let us consider the Cauchy problem:

ou ou_d

eSS o), w
oV v du

‘o o o @
U|t:O=u0(X), Vlt:0: o(X)’ (3)

where ¢ is a non — negative constant, and u,(x) and v,(x) are continuous bounded

functions possessing bounded derivatives of the first and second order. We will

assume that 0<m, <v,(x), where m, is a constant not depending on the parameter ¢.
Suppose that the function ¢(t,x,v) is continuos and bounded in each of the domains
D, =11, x{a<v<oo}, Where a is an arbitrary positive constant, and possesses in D, the

continuous uniformly bounded derivatives up to the fourth order, inclusive, with

respect to either variable, ¢ (t,xv)<0 and ¢,(t,x,v)>0, and the function

F (t,%,V) H—(ps t,x,s)ds increases infinitely as v — +0.

For o(t,x,v)=(2v)?, =0 the problem (1)-(3) describes motion of shallow

water and isentropic gas motion in terms of the Lagrange coordinates in the case

c_,
C

In [1], for the case ¢(t,x,v)=¢(v), T.D. Ventzel by means of the change of
variables f*=—F(t,x,v)+u(t,x) has shown that in the strip TI, the inequalities

u(t, )| <M,v(t,x)=m>0 |u(t,x)|<M,v(t,x)>m>0 hold, where the constants M, m do
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not depend on e. In the same work in has been proved that under the above

formulated conditions for the function u,(x),v,(x),¢(v) the solution of the problem

exists everywhere in 11, .

Making the change of varioles =£, =2 and denoting again the independent
& &
variobles by t, x, we obtain the problem

ou_au _de(txv,)

- 4

ox? ot dx ()
oy, ov, oy

oV _ V%% 5

ox? ot OX ()
u1|[:0 = Ul(x) ) V1|t:0 = \71(X) ) (6)

where 0,(x),V,(x)are given functions. In what follows, the index in notation of the

solution of the problem (4)-(6) will be omuted and for the solution of the equations

(4), (5) the use will be made of the conventional notation i.e., u(t,x) and v(t,x). The
solution of the problem (4)-(6) will be assumed to exit everywhere in I, and the
inequalities v(t,x)>m>0, |u(t,x)|<M for that solution to be fulfilled everywhere in

IT

0 "

If G(t,x,&,7) =[47r(t—r)]_% xexp{~(x—&)*/[4(t—7)]}, then the problem (4)-(6) can

be written in the form

u(t. )= | G(t,X,é,O)Uo(f)d§+%f dt [ oz, £ V)(t—7) " (x- 9Bt X, & 7)dE, (7)
v(t,) = [ Gt x.&, O)Vo(é‘)di—% [de [ @2 (x=9G(t X, & ru(zr, &)d& . (8)

The estimate
v(t,x) <Mt+1 (9)
can be immediately obtained from (8). Substituling (7), (8) and changing the order of
integration, after elementary transformations we obtain
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VLX) = [ B XEOMAE = [ (x-OB( 1 & 0huy(E)dE +
- ~ (10)
(-8 1,1

11 0
+EE|).dT-:[C(D(T,§,V)|:1—m (t,X,g,T)dgzll—EIZ-FEIg,

From (10) we readily obtain the estimate for the derivative of the function v(t,x) with

respect to the variable x:

V. (t, x)‘ <M+t+1 (11)
Theorem 1. Let the functions U,(x),V,(x) have the limits u~, v respectively,
as x——o and the limits u*, v¢ as x —-+owo, and the functions ¢(t,—x,u”), e(t,x,u*)
have as x —+w the limits ¢, ¢". Then for every fixed value t=t, the functions
u(t,x), v(t,x) have the same limits at infinity as they have for t=0.
Proof. Consider first function v(t,x) defined by equation (10). For the

definiteness let x — +w0. Obviously,

x/2 ) 0
I = j Vo (£)G(t, x, & 0)d & + j [Vo(&)-v" |- G(t, x,£,0)d& +v" j G(t,x,&0)d&E =1, +1,, +1,,.

X/2 x/2

For x— -+, we shall estimate each summand on the right-hand side of the last

equation. For values x such that %D 1, we have,
x/2 0

IMELYE j G(t,X,&,0)dESM - I exp(—z°)dz_
o0 %/(44ft)

Using Millse’s relation [2], we obtain the inequality
‘11,1‘ <M exp[—xz/(4t2)][x/(4\/t_)+«/a)+ x2(16—t)T’

where 4/7<®<2 |t is not difficult to see that I,; >V" as x =~ where

exp| —x*/(4t%) | {«/;[x/(m/f) +\J+x?/(16t) }}1

For the integral 1,, we can easily obtain the inequality |1, |< sup|v,(£)-v'| .
E>x/2

‘11’3 —Vi=|"

Further,

X/2

L= G(t,x,é,o><x—§)[uo<§)—u+}d§+TG(t,x,s,oxx—&)[uo(f)—u*]d&

x/2
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+tr (U™ —u*)exp[ -x*/(16t) |=1,, +1,, +1,.
For the integral 1,, the estimate [1,,|<M+/texp[—x*/(6t)] is valid. Passing to the

estimation of the summand 1,, get

-x/(8+ft)
1212:21/t/7r J' [uo(x+22«/t_)—u*}z-exp(—zz)dz—
-x/(44t)

o0

2t/ x I [uo(x+22\/t_)—u+]z-exp(—zz)dz—x/(SJf)—
-x/(8+)

o0

—~ J' [uo(x+22«/t_)—u*]z~exp(—zz)dz.
—x/(8)
Obviously, for x/(4+t)>1 the fallowing inequalities hold:
-x/(841)
64

[u (x+22\/_) u }z exp(—z*)dz <M exp(—X—Z]

-x/(4)

o0

[u (x+22\/_) u ]z exp(-z )dz<Msup|u (&)—-u"|.
-x/(8t) ,:>7

Finally we pass to the limit I,. Partition it in three summands

X—a(X) ©

—t T T — <) T T T - —¢) T
—!d [ o ,g,v){l T )}Gax«: )d§+jd XJ(X)co(,f,V){l T )}G(tXeg )dé +

X+a(X)

+jdr I (/)(T,f,V){ 2t— 5) }G(t X,&,0)d& =1y, +1;, +1;5,

X—a(X)

—X

where «(x) a monotonically increasing function, a(x)—<— for x>-0 and lima(x)=o.

X—00

By siple calculations, for X 11 1 we obtain the estimate

N

Z<w<2.
16t

I ‘<4'M05(X)\/'Eexp{_[a(x)]2} 16t +[a(X)] _a(x) 4
31 16ta)+[ (x)] +a(x) T

3
Hence I,, <M -t2[a(x)]" exp{—[a(x)f /(16t)} .
An analogous estimate can be obtained for the integral I,,. Thus, using the above-

obtained estimates, we can write equality (10) as follws:
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X+ (X)
2(t, X) = V(t,X) V' =g(t,x) +2° jdf [ [oG.cv)- (o(tév)]{ &) }G(tng)dg (12)

0 X—a(X) )
here g(t,x) is the function, tending to zero as x —+w. on considering equality (12) as
the integral equation with regard to the function z(t,x) we solveit by the method of
successive approximations; hot that as the initial approximation z,(t,x) we shall take
function g(t,x) .
Let inequality x> 2N hold, where the number N is chosen in such a way that

for x> N the relation |g(t,x)|< « is fulfilled. Supposing x—a(x)=N , we shall have

X+a(X) 1

|2,(t, %) — 2, (t, )| < 27 jdf [ ]

x—a(x) 0
% oyt _(X_éj)2
Vo(7,6) V/l oNt—z

Op(z,E V" +02,(t, &)| "
ov |

?,(txV)|,

G(t,x,é,r)dgeMvtg,MV: sup

(t,x)ell;,m<v<M \/t+1

2
and this inequality is valid for all x>N. The inequality |v2(t,x)—v1(t,x)|s[MV%j U

can be obtained analogously. If (Mvéj<1, then the sequence {z,(t, x)} converges, and

the terms of that sequence are uniformly bounded by some constant like M. ..

Hence, for the function v(t,x) for t<M_ * and x>2N the relation \v(t,x)—v+l <

fulfilled. Repeating our reasoning successively for k-M *<t<(k+1)-M*, we shall get
the validity of the assertion of the theorem with respect to the function v(t,x) for all
t>0.

Estimate now the difference u(t,x)—u". It can be easily seen that the first

summand in the expression (7) is investigated exactly in the same manner as the first

one in the expression (10). Let us consider the second summand for x> 2N :

1 w t —a(x)/2\t—
2-1jdfjgo(r,g,v)(t—r)-l(x—g)c;(t,x,g,r)dg:-11—12:-jdr [ olr.x+2zt-7,v)x

o0

t
x(t—7)¥22G(z,47%,0,0)dz — j dr j o(z, %, +22t— 7, v)(t - 1) ¥22G(z,47%,0,0)dz.
0 —a(x)/2ir

It is not difficult to see that for sufficiently large values of N the inequality
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t
‘Tl‘ g!(t—r)‘“/2 exp{ o

}df_ wexp{__z}

16(t—7)

is valid. The integral 1, in the following way:

0

1 t
[t-0%de [ [p(r.x+22t=7,v") =9 |-26(2,47,0,0)dz + 9" [G(x,t, x—a(x), 7)d7 +
0 ~a(x)/(24F) 0

o0

t
+j (t—7)Y4dr j [gp(r, X+ 223t —7,V) — (7, X+ 224t —‘[,V+)]- 2G(z,47,0,0)dz =
0 —a(0)/(2h)

= I2,1 + I2,2 + I2,3 .

Using the estimates for the function v(t,x)-v*, we obtain for x > 2N :

{ [a() } ‘123‘< sup |o(t, &) -
£2N,0<r<t

From these inequalities follows the relation lim

[L.]< sup |o

t>N,0<r<t

22| —

=0. Obviously, the case

x ——oo IS considered analogously.

Remark 1. From the above estimates follow the estimates for the rate of
convergence of the functions u(t,x), v(t,x) to the corresponding limiting values as
x| > . This rate depends on t and on the rate of convergence of the functionsu,(t,x)
Vo(t,X), o(t,x,v7), o(t,x,v") to their limiting values.

Remark 2. It follows from the above reasoning that the behavior of the
function v(t,x) as x —c does not depend on the character of variation of the function
U,(X) as |x|] > and of the function v,(x) as x ——o.

The proof of the theorem below is the same as that of theorem 1.

Theorem 2. Ilm(‘u (x)‘ ‘v (X)D , Iim(‘go'(t,—,

‘X‘A)oo

Theorem 3. If the conditions of Theorem 1 and 2 are fulfilled and, moreover,

v ):0, then

Ilm(

if the integrals:

g@@_j@a@ vpglax)jva@ v g, () = j@@@-wﬁg

—00 —00
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IA(t,x)zT[u(t,f)—w]df exist for t=0, then they do exist for any t>~0 and the
following equalities hold:

{Il(t,O) +1,(t,0) =1,(0,0)+1,(0,0) + (u* —u")t, (13)

L,(t,0) +1,(t,0) = 1,(0,0) +1,(0,0) + (¢" — ")t
Theorem 4 is proved in the same way as Lemma 4 in [3].

Corollary 1. If v #v*, then
I, (t,0)+1,,(t,0) = T [ v(t, x—at) —v‘]dx+T[v(t, x—at)-v* Jix=1,,(0,0)+1,,(0,0),
% ]
where a=(u"-u’)(v' =v)"; if u"=u*, then
I, (t,0)+1,,(t,0) = T [ut, x—bt)—u]dx+_T[u(t, X—=bt)—u" Jix=1,,(0,0)+1,,(0,0) |
: 0

where b=(p - )(u"—u")™.
Theorem 4. Let the function ¢(t,x,v")—¢  be absolutely integrable with respect
to the variable x for xe(—o0;0), and the function ¢(t,x,v')—¢" be absolutely

integrable for x <[0,0) . Let, moreover, the integrals

0 0

L(t) = I(v(t,x)—v’)dx, L(t) = ]).(v(t,x)—v*)dx, L(t) = J'(u(t,x)—u’)dx,

-0 —0

I,(t) = jl(u(t,x)—u*)dx.

Converge for t=0. Then these integrals converge for any t=0 and the inequalities
hold
L(t)+1,(t) < Me' (L+t¥%), 1,(t) +1,(t) < Me' (L +t¥?) (14)
Proof. Consider first the integral I,(t). Denote the function

[1-27(x=&)°/(t-7) |G(t,x.&,7) by Q(t,x.&,7). We have

00

v(t,) v = [[v(&)-v Bt x, cf,o)df—ZlT Uy (E)(X—E)G(L, X, 5,0)d§+21jdfT (7, %, E,V)

xQ(t,x,&,7)dé& :Pl_z—l.P2 +2_1-P3.

Obviosly,

115



0 0

P, = [[%(&) -V J6(t,x,£,0)dé + [ V(&) —v™ |Gt X, £,0)d& =Py, (t, ) + Py, (t,%) ,

—0 0

whence

} [P, (t, )fdx < f V(&) —v\{f G(t, X, &, O)dx}dg <1,(0),

T ‘Pl,z(t, x)‘dx < T{j. G(t, X,§,O)dx}d§ <M+t

Pass now to the estimate of the integral P,. Let us write it in the form

[ [(@-u Jor-080 1002 [[ (@) Jo-HB( o)d§+(u+—u)\/£ exp{_%L

=P,,(t,x)+P,,(t,X)+P,,(t,x) and hence

} [P, (t, )fdx < ML, (0) T [P, (&, )fdx < M AL, 0), T [P, (t, X)fx =

u” —u"-t .
Finally, let us estimate the integral .T|P3(t,x)|dx. We represent the function P,(t,x) as
P,(t, %) = [dz [ [ p(r. £V ) Rt X, £, 2)dé+ [dr[[ oz, £,V) —0(t, & V) QUL X, £, 7)dé +

+{ [de[[p@.ev) R )dE+] drT[(p(r,g,W)]Q(t, x,f,r)dé} =

=P, (t, X) +P,,(t,X) + Py, (t, X) + P, , (t, X) .

For the function P, (t,x) we shall have

—o0

T [P, ,Jdx < jdff .V —p(z,6v)| | Q, x,f,r)dxd§+jdri lo(z, &,V) = p(z,£,v7)|x

&-\2(t-7)
E+2(t-1) t 0 Erf2(t-7)
x [ Qtx&nddé+[dr [|pt.ev)-pt.Ev)| [ Qtx&n)ddE =P, +Py;, +Pyy,
0 0 —0 g_m

Calculating the integral of the function Q(t, x,&,7), we obtain
t 0 t 0
P, < derj v(r,x)-vdx, Py, < derj vt &)-vde.
0 —0 0 —0
For the integral P,,, we can easily get the inequality
2 Y2 , 1 t 0 t 0
P,,={—— [ e ds+——e™"*}|d EV) -t EV)AE<M [ d X)—V)dE.
{M_if v }j f_fw\(ﬂ(réV) olt, &V )de !r_[o\v(rx) vlde
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The integral of the function P,,(t,x) is estimated analogously:

jl [P, (t,x)|dx <M j-driﬁv(t, X) —Vv*idx.
- 0 0

Let us now pass to the integral P,,:

t

0
P&3:Idrj

0 —o0

[p(t.Ev) -9 Rt X E7)dE+9 [dr[Q(t X &,7)dE =Pyq (t,X) 4Py, (t,X) -

Obviously,

0 t ) 0
N 2
P...(t,x)dx<M |d t, X,V )—op [dX, P...(t,x)|dx = —=t%p".
J;‘ 331( )‘ ! T!‘@( ) (0‘ _[O| 332 ( )| 3Vr @
We can easily see that the integral of the function P,, is calculated exactly in
the same manner.

Thus

j v(t, ) -V [dx < M (L++t) + M {jdrj \gp(r,g,v-)—¢-\d§+jdrﬂ¢(t,§,v+)—¢+

d§}+

+Mj.drf|). ‘v(t,x)—v"dx+
0

—00

1
u*—u"'t+(97z) 2

(P+ _¢71‘_t3/2.

Similarly,

T v(t, x) -V dx < M (L++/t) + M {j‘drjf \(p(r,g,v)—¢\d§+jdrﬂ¢(t,§,v+)—¢+

d§}+

Adding term by term the last two inequalities and using the Gronwall Bellmans

lemma, we obtain the first inequality (14). The second one is proved in a similar
manner.

dx +

+M_t[dr_oﬂv(t,x)—v+ u’ —u‘~t+(97z)_;
0 0

(P+ _¢7‘_t3/2 .

The following assertion is proved without any changes.

Theorem 5. If v,(x)-v7, u,(x)-u", ot x,V)—¢ el (—0;0), V,(X)=V", Uy(x)-u",
ot xV)—¢" el (0;+0), p=1, then v(t,x)-v', ut,x)-u el (—0;0), V(t,x)-V",
ut,x)-u" el (0;0%)

Under appropriate assumptions on the initial data of the problem we can

formulate analogous statements for the derivatives of the functionsuft, x), v(t,x).
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Let us pass now to the estimates of the functions under consideration in the
uniform norm.

Theorem 6. Everywhere in the half-plane t - 0 the estimates

u (t, x)‘ +‘ut' (t, x)‘ +

Vy (£, )]+ |V, (&, X)| +|u (6, X)| < M In(e +t),

v,, (6, )| <M/Ine+1)

are valid.
Proof. As follows from equality (8),

%}(m)l [ %()Q(t x.£,0)dE+(4t) ™ [ uy(&)[3(x-&) -t (x-&)° o(t, x, £, 0)d& -

t ©
4t j dr j (t—7) "p(t, £, V) 3-3(t—7) "(x—&)* ++4(t—1) *(x—&)* [B(t,x,£,7)d & =
0 —0
=-21(K,—-K, +K,).
1

In proving the theorem we may assume t0 1. Evidently, |K,|<M-t*, |K,|<M -t 2, and
hence to estimate the second derivative of the function v(t,x) with respect to the
variable x it sufficiently to estimate the integral K,:

16, F - B} -

E.([dr:[ rlp(t—1, X+ &), V(t -7, X+ £)[3-3r7E + 4777 E [G(,£,0,0)dE =

= le;drT {...}d§+21j'dfj g =Kq, + Ky,

) —00

where ¢ is some positive value will be defined below. Since

v, (t,X)| <M+t+1, we can
easily obtain the estimate |K,,|<M/s(t+1) . In the integral K,,, maxing the change of

the variable

£ =22z, we get [K,,|<M|Int-Ing|.

Choosing s =t™, we obtain the intermediate estimate

Vi, (6, )| <M In(e+1).

The estimates

U (t, )| <M In(e +1),

v, (t,X)| <M In(e +1t)

can be found analogously formulas (7) and (8).
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Estimate now the function u_(t,x). From (7) we have
Uy (60 = L (6 0+ L (6 ) ==(20) ™ [ u(£)Q(t x, dE +47 [dr [ oz, &)t —7)* x

x| 27 (t-1)(x—&)* —3(x—&) |G(t, x, & 7)d<.

Obviously, |L(t x)|<M-t™. The integral L,(t,x) can be represented in terms of

L, (t, X) :TdrT {.)d&E+ j dTT {LJdE =L, (6 X) + Ly, (6, %)

Integrating once by parts and using the obtained estimates for the derivatives of

the functionv(t,x), we readily obtain the inequality |L,,(t,x)|< MJE{1+[In(t+1)]2}. It is

1
easily seen that the inequality |L,,(t,x)|<M& 2 holds. Choosing & from the equality

s=[In(t+e)]’, we find the estimate lu, (t, X)| <M In(t +e) . Estimates for the derivatives

of the functions under consideration with respect to the variable t follows from
equations (4) and (5). Getting back to the estimate of the function v_(t,x), we are
able, with regard for inequality (14), to find from (10) the required estimate for that
derivative.

In conclusion, we can formulate an analogue of theorem 6 in the form
applicable to the problem (1)-(3).

Theorem 7. Everywhere in the half-plane t = 0, for the solution of the problem
(1)-(3) the estimates

‘gu'X (t, x)‘ + ‘gut' (t, x)‘ +

£, (t, )| < M /In(e +£)

It should (1) be noted that the results of the above theorem improve the results

ev. (t, x)‘+‘gvt' (t, x)‘+‘gzu;x (t, x)‘ <M In(e +£) ,
&

are valid.

obtained in [1] for the cases ¢ -0 and t - 0.
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ALGORITHM TO INVESTIGATE LINEAR VOLTERRA INTEGRO-
DIFFERENTIAL EQUATIONS WITH PROPORTIONAL RETARDING
OF ARGUMENT

V.T. Muratalieva
Institute of Mathematics of NAS of KR

Supra the author constructed and implemented the following algorithms on a computer.
Given a Volterra integro-differential equation with power coefficients by integral summands;
Volterra integral equations with proportional retarding of argument, the algorithm presents data to
detect existence of solutions and occurrence of arbitrary constants in it. In this paper such items are
considered for a Volterra integro-differential equation integral equation with proportional retarding
of argument.

Keywords: integro-differential equation, unbounded domain, Volterra equation, algorithm,
analytical function
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Myppna, aBTOp TOMOHKY aJTrOPUTMIEPIM TY3YI KaHa KOMIIBIOTEpAE >KY36re aiibIpras.
Hapaxanyy KeOeMTYHAYIYY HWHTErpajibIK KOUIyJIyydyJaapsl Oap BOJBTEPPAIBIK HHTErPoO-
muddepeHIHaNIbIK TeHAEeMe, apryMEHTUHUH KEUHTYYCY NPONOPUUSITYY OOJITOH HHTErpaibIK
TeHJIeMe OepuireH. AJNTOPUTM YbITapbUIBIIIBIHBIH JKAalIOOCYH AaHBIKTOO JXOJYHa MYMKYHIYT'YH
’KaHa aHJa KaajaraHaad TypakTyy caH Oap SKEHIUTMH aHBIKTOO YYYH MajbIMarThl Oeper. byn
Makajaza Oyl CBIAKTYY Macelsiesiep apryMEHTHHHH KEeYUIyycy HpONOpHHSIYy OONIOH HHTErpo-
Qg depeHranIblK TeHIeMe YUYH Kapaar.

Ypynmmyy ce30ep: naterpo-auddepeHInanIpK TeHaemMe, yekrenoeren aiimak, Bonsreppa
TUOMHJIETH TEHAEME, aJITOPUTM, AHATUTHKAIIBIK (PYHKITHS

Panee aBTOp mocrtpousia M peanu3oBala Ha KOMIIBIOTEpPE CIIEAYIOIIME alrOpuUTMbl. [laHb
BOJIbTEPPOBCKOE MHTErpo-AuQdepeHnaIbHoe ypaBHEHUE CO CTENEHHBIMU COMHOXXHUTEISIMU MpU
MHTETPAJIbHBIX CJIAra€MbIX; HHTETPAJIbHOE YpaBHEHHUE C MPOMOPHUOHAIBHO 3amna3/IbIBAIOIIUM
apryMeHTOM. AJITOPUTM MPEACTaBIsSET AAHHBIC AJI OMPEJCNICHUs CYIIECTBOBAHUS pPELICHUS U
HaJU4usl B HEM MPOU3BOJIBHBIX MOCTOSHHBIX. B MaHHOW cTaThe Takhe BOIPOCHl paccMaTpUBAIOTCA
U1 UHTErpo-aud depeHIaTbHOT0 YpaBHEHHSI ¢ IPOMOPIIMOHAIIEHO 3aMa3AbIBAIOIIUM apTyMEHTOM.

Kniouesvie cnosa: wunterpo-auddepeHnnanbHoe ypaBHEHHE, HEOrpaHHMYCHHAs O0JacTh,
ypaBHeHue Tuna BoabTeppa, anroputM, aHanmuTu4eckast pyHKIHS.

Introduction
Algorithmization of some problems in various branches of mathematics is one

of main directions of modern investigations.

Before our publications [1-5], we did not find algorithms on conditions of
existence of solutions of Volterra equations with analytical functions. Supra we
constructed and implemented the following algorithms on a computer. Given a linear
equation with power coefficients by integral summands, the algorithm presents data
to detect existence of solutions and occurrence of arbitrary constants in it. In [6] we
consider integral equations with proportional retarding of argument.

In this paper such items are considered for an integro-differential equation with
proportional retarding of argument. We will use denotations R := (-o0,00); R, := [0;
0); Rey -= (0; 0); Ng:={0,1,2,3,..};N:={1,23, ..}

Remark. We use the term ”Algorithm” as it is usually understood in Analysis:
arithmetical operations and comparison over numbers in R (for rational numbers this
definition coincides with the strict one).

We write discrete arguments in brackets to bring denotations nearer to

algorithmic ones and to bypass the common ambiguity of expressions such as by;,
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1. Equations considered

We will consider equations of type
tu'(t) + 2, ,bt? foatu(s)ds = f(t),0 < a<1, (1)
p=>0, u(t), f(t) areanalytic functions, f(0) = 0.
Suppose that there are not two terms with equal p and a in (1).
We will consider real-valued analytical functions in the form
f@© = ft+ fl2]e* +..., 2)
u(t) = u[0] + u[1]t + u[2]t? + -
Substituting (2) in (1) we obtain

t(u[l1] + 2uf[1]t + 3[2]t* + -+ ) + 3, ,bt? jat(u[O] +u[l]s +-)ds =
0

= fl1lt + fl2]¢% + -
t(u[1] + 2u[1]t + 3[2]t? + ) +
+3, ,btP (atu[0] + a®t?u[1]/2 + a®t3u[2]/3 + ) = f[1]t + f[2]t* + --;
u[1]t + 2u[1]t? + 3ul2]e3 + - +
+2,p (abu[0]tP* + a®bu[1]/2tP*% + a’bu[2]/3tP+3 + ) =
= f[1]t + f[2]t* + - (3)
Equating coefficients by t, t%, t% ... terms we obtain an infinite system (denote it
as (4)) of linear equations for unknown u[0], u[1], ....
2. Description of algorithm
Input:
2.1) The number (K) of integral operators in (1).
2.2) non-negative integer numbers py (in increasing order), k=1..K;
2.3) rational numbers a, €(0,1] (in increasing order for equal values of py), k=1..K;
2.4) non-zero rational numbers by k=1..K;
Output:
2.5) display of the integral equation for the function u(t) = u[0] + u[1]t+... (by
custom, the cases b,=-1 and b,=1 are demonstrated individually; the cases p,=0 and

pk=1 are demonstrated individually).
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Calculation:
2.6) Estimation of the maximal value (mg) of exponents after which the total
coefficients by elder unknowns will be non-zero (see Theorem 1 below);

Output:
2.7) The system (4) for exponents 1.. my+1 of t. (There may be “0” or “O*u[k]” in the
left-hand sides of some equations).

For a human:
2.8) Investigate the system of linear algebraic equations (4). What of u[0], u[1], ...
can be found under conditions on f/0/, f[1], ...?
3. Estimation

Theorem 1. There exists such value (my) of exponents that the total
coefficients by elder unknowns are non-zero after it.

Proof. First case. p[K]=0 (all p[k]=0). The relation (2) is following:

alk]?blkJult] ) _

u[1]t + 2u[2]e? + 3u[3]63 + - + K (alklblklulo]e + L2

= fl1]t + f[2]t% + ---. (5)
u[0] is arbitrary; t™ (m>1): mu[m] + Zs—, a[k]™b[k]u[m — 1]/m = f[m].
All u/1], u/2], ... can be found.
Il case. p[K]=1 (p[0]=...=p[L]=0; p[L+1]=...=p[K]=1).
The relation (3) is following:
ul[1]t + 2u[2]t? + 3u[3]t3 + - +
+3¢_, (a[k]b[k]u[0]t + a[k]?b[k]u[1]/2t% + ) +
+3K_1+1 (a[k]b[k]u[0]t? + a[k)?b[k]u[1]/2t3 + --+) =
= fl1]t + f[2]t% + ---. (6)
u[0] is arbitrary; t™(m=>2):
mu[m] + S, a[k]™b[k]u[m — 1]/m +
+2iop 1 alk]™ b [k]u[m — 2]/(m = 1) = fm].

The general case is similar to this case.
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4. An example of integro-differential equation

We consider the equation

' () = 5, u(s)ds = £ (o). (7)
Here
K=1; p[1]=0; a[1]=1/2; b[1]=-12.
Display of the equation by 2.5):
tu(t) —5* int_0"(1/2) tu(s)ds = f(t).
Substituting:

t/2
u[1]t + 2u[2]t?+... =5 (u[0] + u[1]s+..)ds = f[1]t + f[2]t*+...
0

u[1]t + 2u[2]t?+...=5w[0]t/2 + u[1]t?/3/4+...) = f[1]t + f[2]t%+..
Hence, a solution exists.
5. Conclusion
We hope to construct such algorithms for various classes of integro-differential

equations with proportional retardation of argument.
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MSC 18C05

CATEGORY OF CONTROLLED PROCESSES IN COMPUTATIONAL
MATHEMATICS AND ALMOST-ISOLATED SYSTEMS

Pankov P.S.!, Kenenbaeva G.M.?
YInstitute of Mathematics of NAS of KR
’Kyrgyz State University named after J. Balasagyn

Supra, the notion of category of equations was introduced by the second author with assistance of the
notion “predicate” on the base of the principle of preservation of solution while transformations; elements of
the category of equations and its subcategories were constructed on the base of well-known categories. As a
specification of the second law of thermodynamic for isolated systems, supra the first author introduced new
definitions, proposed general hypotheses and derived estimations from below on increasing of entropy while
motion of a material point both without friction and with friction over definite distance on depending on time
in permanently unstable (affectable) systems. Such definitions are united in this paper.

Keywords: category, entropy, control, differential equation, affectable system, friction,
motion.

Mypna DSKWUHYM aBTOP, ©3TepTYYJIOp/e YbIrapbUIBIITEI CAKTOO MPUHIMOWHWH HETU3WH]IE
“mpeaMkar’ TYLWIYHYT'YHYH jKapiambl MEHEH TEHJAEMENIEpJUH KaTerOpUsCHIHBIH TYIIYHYT'YH KUPIH3TeH;
TEHJIEMENIEPJIUH  KaTeTOPHSCHIHBIH  JKaHa  aHbIH KaTeropusiuaiapblHbIH  DJIEMEHTTEpU  OeIruiIyy
KaTerOpUsIIap/blH HETU3WHJE Kypyirad. YeTTeTwireH cucremala TEpPMOJUHAMUKAHBIH JKUHYU 3aKOHYH
TAaKTOO KaTapbl, OMPUHYM aBTOP >KaHBl aHBIKTaMaJapAbl KUPTU3IEH, KAl TUHOTe3ajapAbl CyHYIITAIl,
TaacHp STHIYYUYY CHCTEMaJa MaTepHaIIbIK YEKUTTH CYPYJIYYCY3 JKaHa CYPYJIYYHYH HETHM3HHIE KaHAaHabIp
OUp apalsibIKKa XBUIIBIPYYJa YOAKbITTaH KO3 KapaHJbl OOJTOH DHTPONUSIHBIH 6CYYCYHYH TOMOHKY 0aachlH
anrad. by makanaga Oy aHbIKTaManap alKabIIITHIPBIITaH.

Ypynmmyy ces0ep: Kareropus, 3HTpONHMA, Oamkapyy, AuQQepeHUHalAbIK TEHIEMe, Taachp
STHIIYYUY CHCTEMA, CYPYJTYY, KBIMBLII00.

Panee BTOpHIM aBTOPOM OBLJIO BBEJCHO TOHSATHE KAaTETOPUM YpPaBHEHUH C MOMOIIBIO TOHSATHUS
“mpenuKaT’ Ha OCHOBE TMPHHIIMIIA COXPAaHEHHS PEIIeHUS NMPHU NMPEoOpa30BaHUAK; MOCTPOEHBI AIIEMEHTHI
KaTEeropul ypaBHEHHU M €€ IMOJKaTeropuii Ha OCHOBE H3BECTHBIX Kareropuil. Kak yTouHeHHe BTOpPOIo
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3aKOHA TEPMOJWHAMUKH ISl M30JMPOBAHHBIX CHCTEM, IIEPBBI aBTOP BBEJ HOBBIE ONPEEIICHUS, TPEITIOKIIT
oOIII¥Ie TUTIOTE3I U MOMYYMIT OLEHKH CHU3Y /ISl BO3PACTaHUs SHTPONHH NP MEPEIBIKCHUN MaTepHaTbHON
TOYKM 0€3 TPEHUS U C TPCHUEM Ha ONpeACIICHHOE PACCTOSHUE B 3aBUCUMOCTH OT BPEMEHHU B IIEPMAHEHTHO
HEYCTOMUYMBBIX cUCTeMax. B naHHON cTaThe 3TH omnpenencHus 00beIUHEHBI.

Kntouegvlie cnosa: xateropusi, OSHTpoONus, yhpasieHwe, auddQepeHIaTbHOe ypaBHEHHE,
MEPMaHEHTHO HEYCTOWYMBAs CHCTEMA, TPEHHE, IBIDKEHHE.

1. Introduction

Investigations in the category of topological spaces in Kyrgyzstan were
initiated [1].

The notion of the category of equations was introduced [2] with assistance of
the notion “predicate” on the base of the principle of preservation of solution while
transformations; elements of the category of equations and its subcategories were
constructed on the base of well-known categories [3], [4].

As a specification of the second law of thermodynamic for isolated systems, on
the base of [5], [6], [7], in [8] a general hypothesis on estimations from below on
increasing of entropy during motion (transformation) was put.

By using new definitions of almost closed systems and permanently unstable
(affectable) systems in [9] some estimations from below on increasing of entropy
while motion of a material point both without friction and with friction over definite
distance on depending on time in such systems were obtained [10]-[12].

Such definitions and results are united in this paper.

Remark. Our as well as other authors’ “Definitions” below are not strongly
mathematical because they mean real objects and processes too.

Section 2 contains necessary definitions.

Section 3 presents definition of the category of energy-entropy-optimization
processes.

2. Definitions

2.1. The basic category is the category of sets Set. Ob(Set) are sets; Mor(Set)
are functions.

2.2. Category of functions Func (synonyms in various branches of mathema-

tics: maps, operators, transformations). It is mentioned in publications but we did not
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find its formal description. Ob(Func) = Mor(Set), Mor(Func) are transformations of
functions.

2.3. Category of topological spaces 7op. Ob(Top) are topological spaces,
Mor(Top) are continuous functions.

This category is used in building of the category Equa-Par-Top.

We proposed

2.4. Category of equations Equa. Ob(Equa) contains tuples
{Non-empty sets X, Y, predicate P(x) on X, transformation B :X—>Y}.

If (7 xeX)(P(X)A(y=B(x)) then yeY is said to be a solution of the equation
{X, Y, P, B}. Particularly, if B is the identity operator I, then we obtain the equation
“P(x) "only. Mor(Equa) are such transformations of tuples {X, Y, P, B} that solutions
(or their absence) preserve.

Some subcategories for the category Equa.

2.5. Category of equations for functions Equa-Func. Ob(Equa-Func) contains
tuples {XeOb(Func), Y eOb(Func), predicate P(x) on X, transformation B:X—Y}.

Mor(Equa-Func) contains invertible transformations of functions inherited
from Mor(Equa) and specific transformations.

2.6. Category of equations with parameters Equa-Par. Ob(Equa-Par) are tuples
{non-empty sets X, F, Y, predicate P(x,f) on XxF, transformation B:X—Y}.

If (KeX)(P(x,)a(y=B(x)) then then yeY is said to be a solution of the
equation {X, F, Y, P, B}.

Mor(Equa-Par) are such transformations of tuples {X, Y, P, B} (except F) that
solutions (or their absence) preserve.

2.7. Category of correct equations Equa-Par-Top

By our approach «correctness» can by a parameter only, hence the category of
correct equations Equa-Par-Top is a subcategory of the category Equa-Par.

Ob(Equa-Par-Top) are tuples {topological spaces X, F, Y, predicate P(x,f) on
XxF, continuous transformation B:X—Y} such that 1) (VfeF)(AyeY)(FKeX)

(P(x,H)A(y=B(x)); 2) the element y depends on the element f continuously.
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Mor(Equa-Par-Top) are transformations preserving properties 1) and 2).
2.8. Category of equations for functions with parameters Equa-Func-Par.
3. Category of energy-entropy-optimization processes

Denote the physical dimension as dim; dim(time)= z; dim(length)=4;

dim(mass)= y; dim (absolute temperature®) = 4. Then dim(energy)= uA°/°.
By one of definitions, entropy is the measure of a system’s thermal energy per unit
temperature that is unavailable for doing useful work. In processes considered below
increment of entropy is defined by the formula AH =) AQ/® where AQ is a
quantity of transferred heat energy or energy that was converted to heat irreversibly
[5]. dim(4H)= pA?l %1 9.

Definition 1. If low energetic outer influences can cause sufficiently various
reactions and changings of the inner state of the system then it is said to be an
“almost isolated”, “permanently unstable”, “affectable” system (A-system).

Such outer influences are said to be commands (these reactions and
changings are implemented by means of inner energy of the object or of outer energy
entering into object besides of commands).

The second law of thermodynamic for isolated systems states increment of
entropy 4H > 0 but does not give quantitative estimations.

One estimation was proven in [6]: the minimal energy (increment of entropy)
to treat one bit of information is the Shannon-von Neumann-Landauer boundary:
AHpi = kg In 2 where kg is the Boltzmann constant.

A hint to such estimation in general case was in [7]: “In any mechanical system
the energy that must be expended to work against friction is equal to the product of
the frictional force and the distance through which the system travels. Hence the
faster a swimmer travels between two points, the more energy he or she will expend,
although the distance traveled is the same whether the swimmer is fast or slow.”

Basing on the notion of economical (cruising) speed, taking into account ide-
as of Ecological Rallies for cars we specified the second law of thermodynamic for
A-systems. We proved some estimations in mathematical models describing such

concrete systems.
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Let there is an A-system. Let it is in any stationary state A now and there it can
pass to any other stationary state B.

Hypothesis 1. There exists such time T, (the adiabatic time of the system),
depending only on the initial state of the system, that AH is not less than any positive
value for any transition from the state A to the state B during T<T,. Moreover, there
also exists such positive constant C, that AH > C, /T 2; dim(Co)= uA?/ 9.

By the principle of determinism, there is only scenario of the future for any
isolated system, that is, there cannot be different possibilities of transitions. Hence,
the system is to be A-system: different possible actions, transforming it from the state
A to the state B are controlled by any outer impetus of sufficiently small energy.

Give a more concrete hypothesis. Let any point of mass m does not move in
any inertial coordinate system at the moment t; and it is at the distance d from its
initial state and does not move at the momentt, =t; + T.

Hypothesis 2. There exists such time T, (the adiabatic time of the system),
depending only on the initial state of the system, that AH> G, m d ¥T 2 for any
transition from the state A to the state B during T<T, ; dim(Cy)= 1/9.

Denote AH for adiabatic time as AH,.

Substantiation. 1) To move the point has to acquire velocity ~ d/T, i.e.
kinematical energy E.,~md%/T% As the point is motionless in the final state, this
energy has to pass into other kinds of energy. But possibilities of kinematical energy
to pass into potential, chemical etc. ones during bounded time are bounded. Hence a
greater part of kinematical energy has to pass into heat, i.e. the increment of entropy
must be AH ~md%T?/@. 2) If any estimation on AH exists then it must be of
dimension of entropy.

Consider the category Energy-Entropy-Opt-Pro of processes.

There is an energy reserve in an A-system. A body has a position, a velocity
and an acceleration at each moment. Energy is used for increasing of velocity.

Braking is being made at the constant temperature @.
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FUNCTIONAL RELATIONS AND MATHEMATICAL MODELS
OF TRANSFORMING VERBS

Pankov P.}, Kenenbaev E.?, Chodobaev S.?
L21nstitute of Mathematics of NAS of KR,
3KNU named after J.Balasagyn

In frames of developing general methods for independent interactive computer presentation of
natural languages, B. Bayachorova and S. Karabaeva proposed to present transforming verbs. Such verbs are
more complex than “sequences of shifts”. In the paper mathematical and computer models of some verbs are
constructed by functional relations between points of virtual objects. Examples in Kyrgyz and English
languages are given.

Keywords: language, transforming verb, computer presentation, mathematical model, independent
presentation

TaOurelii THIAEPAN KOMIIBIOTEPAE KO3 KapaHIBIChI3 WHTEPAKTHBIAMK YarbUIABIPYY YUYH KaJIbl
yCYIAYTYH OHYKTYpYYHYH nunnzae b.basdoposa sxxana C.KapabaeBa e3repTyyuy 3THIITEPIH YarbUIABIPYyHY
CYHYII KbUTIBL. MBIHIAM 3THIITED “KBUIABIPYYIapAbIH YAaalblIITHIBIHAH TaTaanbipaak. byn Makanana k33
OMp OSTHIITEPIMH MAaTEMAaTHKAJbIK >KaHa KOMIIBIOTEPAMK MOJENAECPH D3JIECTETHIAreH OOBEKTTEpINH
YeKUTTEPUHUH apachlHa (YHKIUOHAIIBIK ©3 apa OaiaHellTap apKbulyy Kypyiay. Kelprei3ua »xaHa
aHTJIMCUe MUCaJIap OCpHJIITEH.

Ypynmmyy cesoep: THi, ©3repTyydy 3THIL, KOMIBIOTEPANK YarbUIIABIPYY, MAaTEMaTHKAJIBIK MOJEIb,
KO3 KapaHAbIChI3 YarbUIABIPYY

B pamkax pa3paboTku 0OIIeii METOJUKH HE3aBHCUMOTO HHTEPAKTUBHOTO KOMIIBIOTEPHOTO
MPENICTAaBICHUs] E€CTeCTBEHHBIX s3bikoB b. basuopoBa m C. KapabaeBa mpemiokmin TpeacTaBUTh
npeoOpasyromye riaroybl. Takue rinaroibl - OoJiee CIIOXKHBIE, YeM «IOCIE0BAaTeIbHOCTh CIBUTOBY. B
JAHHOW CTaThe MOCTPOCHBI MAaTEMAaTHYECKHE M KOMITBIOTEPHBIC MOJCIIN MPH MOMONU (YHKIIHOHAIBHBIX
COOTHOIICHHH MEXJy TOYKAMHU BUPTYaIbHBIX 0OBEKTOB. J[aHBI MPUMEPHI HA KBIPTHI3CKOM W AHTIIMHACKOM
SI3BIKAX.

Kniouegvle cnosa: S3bIK, ipeoOpa3yroOmunil T1aroil, KOMIBIOTEPHOE TPECTaBIeHIE, MaTeMaTHIeCKas
MOJ€eJb, HE3aBUCUMOE MPEICTABICHUE.

1. Introduction
At all times, travellers learned languages from inhabitants which did not know
the traveller’s native language. Such method (demonstration of objects and actions
with comments) is described in details in “Gulliver's travels” by J. Swift, 1726. In
1878 M. Berlitz proposed a method with is considered as “the first-known immersive

teaching method”. Such method was improved as “Total physical response” [1].
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Winograd T. [2] proposed giving commands to a robot with such words as
"table", "box", "block", "pyramid", "ball", "grasp", "moveto", "ungrasp".

Using these ideas, since [3] general methods for interactive computer
presentations of natural languages are being developed [4-12]. If a computer
presentation does not depend on the user’s knowledge and skills on similar objects
then it is called independent.

Such presentations are more effective because the user can learn a language
inductively, and they begin thinking in it, without translation in mind.

For further developing of such presentations a corresponding classification of
notions (nouns and verbs) of languages was proposed [13], with a proposal to
develop presentations of transforming verbs.

2. Definitions for independent presentation of notions

Definition 1. If low energetic outer influences can cause sufficiently various
reactions and changing of the inner state of the object (by means of inner energy of
the object or of outer energy entering into object besides of such influences) at any
time then such (permanently unstable) object is an affectable object, or a subject, and
such outer influences are commands.

Definition 2. A system of commands such that any subject can achieve desired
efficiently various consequences from other one is a language.

Hypothesis 1. A human's genuine understanding of a text in a natural language
can be clarified by means of observing the human's actions in real life situations
corresponding to the text.

Definition 3. Simple mathematical models consist of fixed (F;) and movable
(M;) sets and temporal sequence of conditions of types (M; c F;)), (M; » Fi =©),
(Mj N Fi z9).

They present verbs consisting of a “series of shift”.

Transformation mathematical models also include transforming objects (tools)
and transformable objects [13]. We propose, as extending of definitions [14]:

Definition 4. A transformable object is a (varying) set or union of sets, some

points of it are connected with functional relations.
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Transformation of objects can be presented by a controlled differential equa-
tion. Firstly, we consider motion of a flat object without inertia and not-self-moving
objects. Let SeR? be initial position of the object; S(t) be the position and shape of
the object at time t.

Y (tz)=F(1, S(1),u(1)), 0st<co (1)
with initial condition y(0)=1z €S,
where u(t) is a control function (given by the user), the function F(s,u) (to be imple-
mented by the programmer) is bounded, y(t,z): [0, «0) xS — R? is the trajectory of the
pointz e S.

Let S and S(t) be defined by points zj, z,,...,z¢€S and their images correspon-
dingly. Then F=F(t,y, Y2, ..., vk, U(t)). Values yy, ¥, ...,y are to be connected with
functional relations.

Computer interactive presentations are built on the base of mathematical
models.

Definition 5. Let any notion (word of a language) be given. If an algorithm
acting at a computer: generates (randomly) a sufficiently large amount of instances
covering all essential aspects of the notion to the user, gives a command involving
this notion in each situation, perceives the user's actions and performs their results
clearly on a display, detects whether a result fits the command, then such algorithm is
said to be a computer interactive presentation of the notion.

Certainly, commands are to contain other words too. But these words must not
give any definitions or explanations of the notion.

Definition 6. If all words being used in Definition 5 are unknown to the user
nevertheless s/he is be able to fulfill the meant action (because it is the only natural
one in this situation) then the notion (word of a language) is said to be primary. If the
user has to know supplementary words to complete the action then the notion is said
to be secondary. Thus, there arises a natural hierarchy of notions.

Hypothesis 3. Any notion has a minimalistic mathematical model (involving

minimal number of entities in Occam’s sense).

133



3. Mathematical models for transformable and transforming objects and verbs

3.1. k=1. The object is not transformable. It can be used for (non-transfor-
ming) verbs XXbIJIJIbIPYY-MOVE,SHIFT; KOU-PUT; AJI-TAKE.

3.2. k=2, the functional relation is dist(y,y,)=const. It can be used for verbs
BYP-ROTATE, TURN; TAPT-PULL.

3.3. k=3, the functional relations are y,;=const, y,=const, dist(y,,yz)=const. It
can be used for the verb MIT-BEND.

3.4. k>3, the functional relations are

dist(yy,y2)= dist(y,,y3)=...= dist(yk1,Yx)= const (HbIHXXbIP-CHAIN)

The verb TAPT-PULL. It was implemented in [15].

3.5. k>2. Firstly, two S; and S,. y,€S; and y, €S, . The relation is y,=y, for

any t>t;. (Or more than two distinct objects).

EEN EEE HEENR EEN EEN

nn | EEEEEEER | EEEEENE EEERN |
EEN HE ENR

Yapusiner TY3! CUMMETPUAIIA! BAUJIA!

MAKE a square! SYMMETRIZE! CONNECT!

3.6. Transforming object (tool).

0
EEN EEN
aEEN-----e- EEN
EEN EEN

Kunru 6sruak MEHEH KEC!
CUT the needle WITH the knife!

3.7. k=2. The functional relations are y;=const, dist(y;,y,) increases. The verb

KEP-STRETCH.

134



4. Conclusion
This paper enlarges the scope of verbs and nouns of objects which can be
presented interactively in the frames of general project of developing mathematical
models of various notions for independent presentation of natural languages. We

hope that such software would be interesting and useful for people to learn languages.
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MSC 68T30

COMPUTER PRESENTATION OF MATHEMATICAL KNOWLEDGE AS
TASKS

Pankov P.S.}, Burova E.S.?
L2Institute of Mathematics of NAS of KR

General problem is considered: what mathematical knowledge can be presented as tasks?
Proposed kind of presentations has the following features: no preliminary knowledge on the object
IS necessary; the user masters the object while treating with a computer mouse; mathematical objects
are treated as real ones with peculiarities; each presentation is also a task; after successful solution of the task
the soft announces: “Congratulations! You have mastered the notion ...”.

Keywords: mathematics, task, computer presentation, independent presentation, interactive
presentation.

TemeHnmery keirei kapaiaT: Kaiicbl MaTEMAaTHUKAJIBIK OWIIMM Macellelep Karapbl KepceTyle aiat?
CyHyI KbUIBIHI'AH YarbUIABIPYYyJapAblH TYPIOPYHYH KacHETTEpU TOMOHIOIY. 00BbEeKT OOIOHYA ajablH aja
6I/IHI/IM Keperu JKOK; KOJAOHYYUY O6T>CKTTI/I KOMIIBIOTEPAUK MayC MCHCH GSI[GHITYPGT; MaTEMaTUKaAJIbIK
OOBEKTTEp ©3re4eNIYKTOpY OONTOH YBIHBITHI OOBEKTTEp KaTapbl O0ap; ap OMp YarbUIABIPYy OIIOHAOH 3Iie
Macese 0ap; MaceleHH MMTHINKTYY YbIrapyyAaH KHMUH MporpaMManbIk xabayy skapeusuiaiiT: «KyrrykToo!
Cu3 ... TYIIYHYTYHE 33 00ayHy3!» nen.

Ypynmmyy ce30ep: ™aTemaTHKa, Maceje, KOMIBIOTEPAMK 4YarbUIABIPYy, Ke3 KapaHABICHI3
YareUIIBIPYY, HHTEPAKTUBAYY YarbUIIBIPYY.

PaccmatpuBaeTcs cnenmyromias oOmias mnpoOieMa: Kakhue MaTeMaTHYeCKHE 3HAaHHS MOTYT OBITh
MpesicTaBiIeHbl B Bue 3amau? OCOOSHHOCTH MPEeIUIOKEHHBIX MPEACTaBICHUN Clenyrolue: He TpeOyrTes
MpenBapUTeNbHbIe 3HaHUA 00 OOBEKTE; ITOJIb30BaTENlb OCBAaWBaET OOBEKT C IOMOIIBI0 KOMITBIOTEPHOH
MBIIIIM; MAaTEMAaTUYECKUE OOBEKTHI IPEJCTABIISAIOTCS, KaK peaibHbIe OOBEKThI C OCOOCHHOCTSAMH; KaXKI0e
MPEJICTABICHUE SIBJIACTCS TaKXKe 3ajadei; IOocClie YCICIIHOTO peIIeHHUs 3aaadyud  CoPT OOBSBISET:
«IloznpaBnsito! Bel ocBOWIIM NOHSTHE ...»

Knioueswvie cuoesa. MareéMaTHka, 3ajgayda, KOMIIBIOTEPHOC peaACTaBJICHHUE, HE3aBHCHMOC
MMpEACTABJIICHUE, MHTCPAKTUBHOC IIPCICTABJICHHIC.

1. Introduction

We consider the following general problem: what mathematical knowledge can
be presented as tasks?

We proposed a definition of independent computer presentation of an object
[1]. Particularly, it means that the user is able to master foundations of the subject by
using corresponding software (with interactive actions with feedback) without any
preliminary knowledge, regardless or with minimal use of their native language.

Also, we introduced definitions of “almost-closed or affectable objects”

(including both humans and computers), of “commands” (low-energetic outer
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influences on affectable objects causing sufficiently various high-energetic reactions
and consequences).

We propose a kind of presentations with the following features: no preliminary
knowledge on the object is necessary; the user masters the object while treating with
a computer mouse; mathematical objects are treated as real ones with peculiarities;
each presentation is also a task; after successful solving of the task the soft
announces: “Congratulations! You have mastered the notion ...”.

Probably, the first known publication on the problem of evident presentations
of mathematical objects and processes with feedback was [2]. For instance, “pull the
four-dimensional solid through the two-dimensional surface”.

Remark. Because of lot of publications, of softs etc. it is difficult to
distinguish and insist on novelty in such publications.

2. Classification of presentations

Presentations can be classified as avatar (A-presentation) and non-avatar (N-
presentation).

Remark. There is duality in perception of N-presentations. If the user watches
some changes on the screen then they can imagine either motion of themselves in the
space or motion of space (of objects in space). The first is used in computer games
and the second one is in mathematical software ‘“Mathematica”, “Matlab”,
“MathCad”.

Both for examination and for interest each run of the software generates
slightly different environment within the same mathematical object.

The unified denotations for the user in proposed software.

Background is in the spectrum from white till black; sometimes chess color
(light grey and dark grey) for 2D-spaces is used. Drag-and-Drop object, or Avatar
object is green and is denoted as A-object below. Function, or result of A-object is
red and is denoted as F-object below. Target for F-object is yellow and is denoted as
T-object below. Approaching T-object is accompanied by music of “hot-cold” type
too. Tracks of A-object (light green) and F-object (light red) can also stay while 2D-

motion.
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4. Examples of presentations

1) Solving of the equation F(x)=0. A-point can move along the abscissa axis
only. T-object is the abscissa axis.

2) Searching for min F(x). A-point can move along the abscissa axis only. T-
object is gradient of yellow color down.

3) Solving of the system of equations F(x,y)=u, G(x,y)=v (firstly, linear ones;
the user discovers linearity). A-point is (x,y), F-pointis (F,G), T-pointis (u,v).

3a) Solving of the equation vz=ws 0 for complex numbers. The origin z=0
repels A-point. The user discovers the following: to reach T-point going around the
origin is necessary [3].

3b) The item 3) is interpreted as transformations of the plane. For example, F-
point is the mirror reflection of A-point.

4) Searching for min F(x,y). The value of F and T-object as gradient of yellow
color down are on a separate part of a display.

Measures as invariants.

5) Length of a curve. A-object with F-object is a red curve with the leading
green endpoint. While pulling its length preserves. T-objects are several curves of
various lengths. The user is to detect the T-object with corresponding length and pull
A-object on this T-object [5].

6) Area of a figure. A-object with F-object is a red rounded figure with the
green boundary. While pulling its area preserves. T-objects are several figures of
various areas. The user is to detect the T-object with corresponding area and pull A-
object on this T-object.

Remark. Programming of preserving area while continuous transformations of
a figure is an interesting task itself.

7) N-presentations of non-Euclidean spaces filled with T-objects and brown
Obstacles [3]. The user drives a green car, with additional possibilities to put marks
etc. The screen is the windshield of the car. The task is to find and gather T-objects

without breaking Obstacles.
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7a) Moebuis band. The user can verify that a right boot left on a street will be
met as a left boot after passing half of the street.

7b) Topological torus (a square with opposite sides glued). This space used to
be discovered by many programmers independently. Motion in arbitrary direction
will led to the initial position someday.

7¢) Riemann surface of the function vz, with the third coordinate up. (3a)

above).

7d) Riemann surface of the function W(z2 - a?), with the third coordinate up.
Passing between two unbreakable pillars only leads to another part of the space.

7e) Motion with creating the Riemann surface of the function H(z,w)=0, His a
given polynomial. This is the only way to investigate its branching points and general
structure.

Remark. Collective investigations of mathematical objects can be involved
too. These spaces allow multiple users who can see and meet others naturally.
71) Projective plane with the third coordinate up. While motion along the street trees
on this side move to us as usually but trees on the opposite side move from us.

Remark. This space does not permit multiple users.

8) N-presentations for 4D-space filled with 4D-solids [4].

8a) The 3D-coordinates are presented as usually, the fourth coordinate (call it
“deep”) is denoted with continuous darkening of the environment. We look at the
space through 3D-slit and can “deep” and “undeep”. The task is to detect 4D-solids.
For instance, the 4D- “deepical” cone is seen as little ball ... enlarging ball ... none
while motion “deep”.

8b) [6] Denote coordinates as X, Y, Z,W. The user can choose each of 2D-
subspaces XY, XZ, XW, YZ, YW, ZW, see projections of 4D-solids and rotate them
around this plane. The task: to extract a right boot from 3D-space and return it to

same 3D-space as a left boot.
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5. Conclusion
We hope that successful implementation of proposed and other such presen-
tations of mathematical objects would distinguish new essential features of various
mathematical objects and be interesting both for programmers and for users

regardless their relation to mathematics.
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MSC 18C05

IMPLEMENTATION OF ALGORITHM TO DETECT PATTERNS
IN IRGOO-TYPE PROCESSES

Tagaeva S.B.
Institute of Mathematics of NAS of KR

Algorithm to detect simple patterns on a plane is implemented. Processes of generation of order from
chaos (irg66-type processes by the name of the first process of local diminishing of entropy due to dissolving
of energy mentioned in literature) are considered. Main features of such processes: they are real (including
running computers) and random, are defined by some components (states of computer) at each moment.
Supra, by the authors’ definition, appearance of phenomena in systems only with large number of
components is said to be the effect of numerosity. The least number of components preserving such
phenomenon was said to be the constant related to it.

Keywords: algorithm, order, chaos, irgéd, numerosity, effect, phenomenon, differential equation,
difference equation.

Teruszgukre KeHOKeW calManapAbl AaHBIKTall TAaHyydy @ITOPUTM  HIIKE  AllbIPbUITaH.
bamanamanipIkTaH TapTHI Naiaa 0onroHy mporecctepu (agabusTTa OMPHHYM OCNTHIYY OOJNIOH SHEeprus
TapTKAaThUITAaHBIHAH SHTPONUSIHBIH JKEPIrHJIMK a3al0y MPOLECCHHUH aTalbllibl OOIOHYA alraHaa, «upree»
THOMHJETH TIpolleccTep) KapanaT. MbIHAall TPOLECCTePIUH HETM3rH ©3reUYeyKTOPYH TOMOHKYYe
OeNruIeHIeT: ajnap YbIHBITbl (AHBIH HYMHIIC KOMIBIOTEPIICPANH apakeTTepH) jkaHa KOKYCTaH, ap Oup ydypia
Oup Hede KOMIIOHEHTTep (KOMIBIOTEpAMH abanjapbl) MEHEH aHbIKTaldaT. Mypaa, aBTOPJIOp CyHYIITAaraH
aHpIKTaMa OOIOHYA, KON 3JeMEHTTEPAEH TypraH CHCTeMalap IaHa Y4YyH naiima Oomyydy KyOymymirap
«kemye» 3pdekTrcu gen artanradH. MpIHIal KyOysyliKa aiiblll KEJIyydy, OIIOJ KyOyilyIll MEHEH
OaliaHbIIIKaH, 3H KHYMHE CaH TypakTyy OONIyn caHajar.

Ypynmmyy cesdep: anroput™m, wuper, OamlaraMaHABIK, UpPree, «kemue», 3¢¢exT, KyOymy,
UG GepeHIHaANIBIK TCHICME, allbIpMallyy TeHICME

Peanu3oBan ajropuT™M i BBISIBICHHS TPOCTBIX Y30pPOB Ha IIOCKOCTH. PaccMaTpuBaroTcs
MPOLIECCHl BOHMKHOBEHUS TOPSJIKA U3 Xaoca (MPOILECChl THIA «UPree» I0 HA3BaHUIO IEPBOTO TaKOI'o
mpolecca JIOKAJIBHOTO YMEHBIICHUS DHTPONMU BCJICACTBUE JIUCCUIAIIMM DSHEPrUH, W3BECTHOTO B
nmutepatype). OCHOBHBIE MPU3HAKY TaKUX MPOIIECCOB: OHU - PealibHbIC (BKIIIOYAs EHCTBHSI KOMITBIOTEPOB) U
CITy4YaiHbI, OMPEACISIOTCA HECKOJIBKMUMU KOMIIOHEHTAMH (COCTOSHUSIMA KOMIIBIOTEPA) B KAXKIbI MOMEHT.
Panee, mo ornpenereHn0 aBTOPOB, BO3HUKHOBEHHUE SIBJICHUN TOJIBKO JIJISI CUCTEM C OOJIBIIIMM KOJIMYECTBOM
KOMITOHEHT Ha3BaHO 3PQPEKTOM «MHOKECTBEHHOCTH». CaMoe Majioe YHMCIIO, BBI3BIBAIOIIECE TAKOE SBIICHHE,
HA3BaHO IOCTOSHHOM, CBA3aHHOM C 3THM SBJICHHEM.

Knouesvle cnosa: anroputM, TMOPSIOK, XaoC, HPree, MHOKECTBEHHOCTb, 3(PQEKT, SBJICHHE,
mddepeHnmansHOe ypaBHEHHE, pa3HOCTHOE ypaBHEHHE.

1. Introduction
Algorithm to detect simple patterns on a plane is implemented in the paper.
Processes of generation of order from chaos (irgd6-type processes by the name
of the first such process of local diminishing of entropy due to dissolving of energy

mentioned in literature [1]) are considered in the paper. Main features of such
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processes: they are real (including running computers), random, are defined by some
components (states of computer) at each moment.

Considering a computer as a real object and computer presentations as real
processes was noted in [2]. Our as well as other authors’ “Definitions” below are not
strongly mathematical because they mean real objects and processes.

Discoveries of new "phenomena™ and "effects" used to be sufficient steps in
developing science but there were not definitions of these notions before [4] with
corresponding definitions and examples, methodic to search new “phenomena” as
consequences of “effects”.

Differential equations (excluding some simplest ones) are not “processes” in
our sense because differential equations in general cannot be “solved” to detect any
“phenomena”. Difference equations (excluding some simplest ones) are not
“processes” in our sense because they in general cannot be “solved” to detect any
“phenomena”. Because of computational errors and instability numerical experiments
with them can give other results. Hence, a program run on a concrete computer only
is a “process”.

Section 2 presents definition of effect of numerosity.

There is the example of some known process in Section 3.

In Section 4 we propose an algorithm to detect a pattern.

2. Effect and constants of numerosity

The law of large numbers can be considered as some phenomena in statistic.

Supra, by our definition, appearance of phenomena in systems only with large
number of components was said to be the effect of numerosity.

We found some phenomena due to this effect not related to statistic.

Definition 1. Appearance of phenomena in systems only with large number of
components is said to be the effect of numerosity.

Definition 2. If a phenomenon occurs less often for number of components less
than N and does more often for number of components greater than N then the

number N is said to be the constant of numerosity for this phenomenon.
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3. Example of irgoo-type process

We searched self-ordering of discrete electrical charges in viscous media [3].
Motion of equal, repelling by the Coulomb law electrical charges from a random
initial distribution on a topological torus (bounded surface without an edge) formed a
final regular grid was modeled by computer.

Motion of N electrical charges can be described by a system of N two-
dimensional differential equations. These differential equations were approximated
by a system of difference equations.

4. Algorithm and program

Construction of an algorithm was proposed [5].

For detecting patterns we propose

Algorithm. Let a finite set of K distinct points {z[1].. z[K]} in a bounded
metrical (locally Euclidean) space be given. Choose a constant v>1.

A) Found the minimum M[i]:=min{|z[i] z[j]]: j=i }, 1<i=<K.

B) Calculate numbers of neighbors and the average

C[i]:=card{j: M<| z[i]z[jlI=sMv}, i=1..K; S:=2{ C[i]: i=1..k}/K.

C) If most of numbers C[i] are equal (let their common value be C*) then a pattern
exists.

For example, in R*: if C*=3 then a hexagonal grid exists;

iIf C*=4 then a hexagonal grid exists;

if C*=6 then a triangular grid exists.

The following program with graphical demonstration of the initial distribution
and of the final one was written in pascal (with N=256), v=1.18.
program sab_alg; uses crt, graph, math;
var hxy,vx,vy,dx,dy,dxy,dxyl,hxyl,z,z2,xj,yj,dxy2,dxyd,
d_xy2, mn, rel_xy, scous: double;

I, J, nxy, it, nt, np, ihand, n_time, ik: longint;
ncount: array[1..500] of longint;

SXy,smn,s_nc,r_xy: string; var drv, mode, f, n: integer,;
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x,y:array[1..500] of double; xn,yn:array[1..500] of integer;
function dxy_2(ii,jj:longint): double;
begin xj:=x[jj]; if Xj>x[ii]+z2 then xj:=Xxj-z; if xj<x[ii]-z2 then Xj:=X]+z;
yi:=ylijl; if yj>ylii]+2z2 then yj:=yj-z; if yj<y[ii]-z2 then yj:=yj+z;
dxy_2:=sqgr(x[ii]-xj)+sqr(y[ii]-yj); end;
begin {main} drv:=0; mode:=VgaHi;
InitGraph(drv,mode,'c:\tp\bgi'); randomize;
SetTextStyle(0,0,2);
OutTextXY (30,20, Tagaeva, 2022. Repelling charges on torus and algorithm’);
nxy:=256; str(nxy,sxy);
OutTextXY(70,40," "+sxy+' (Wait a little) *);
2:=700.; z2:=2/2.0; np:=10; hxy:=1.0; hxyl:=hxy; nt:=1000;
for ik:=1 to nxy do begin x[ik]:=z*random; y[ik]:=z*random;
xn[ik]:=round(x[iK]); yn[ik]:=round(y[ik]);
Setcolor(green); circle(xn[ik]+80,yn[ik]+70,2); end,;
for it:=0 to nt do begin {it} if it>np then hxy:=2.0*hxy1;
If it>2*np then hxy:=4.0*hxy1,
for i:=1 to nxy do begin {i=ix} vx:=0.; vy:=0.; for j:=1 to nxy do
begin if j<>i then begin dxy2:=dxy_ 2(i,j)+1.;
dxyl:=z/(dxy2*sqrt(dxy?2)); if dxyl<sqgr(z)/nxy{*0.5} then begin
dx:=(x[i]-xj)*dxy1; dy:=(y[i]-yj)*dxy1;
vx:=vx+dx; vy:=vy+dy; end; end; end;
X[1]:=x[1]+vx*hxy; if X[1]>z then x[i]:=x[i]-z; if x[i]<0. then x[i]:=x[i]+z;
ylil:=yli]+vy*hxy; if y[i]>z then y[i]:=y[i]-z; if y[i]<O. then y[i]:=y[i]+z;
end {i=ix};
for ik:=1 to nxy do begin xn[ik]:=round(x[ik]);
yn[ik]:=round(y[ik]) end; end {it};
Setcolor(white);
repeat

for ik:=1 to nxy do begin circle(xn[ik]+80,yn[ik]+70,8);
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circle(xn[ik]+80,yn[ik]+70,6); circle(xn[ik]+80,yn[ik]+70,4);
circle(xn[ik]+80,yn[ik]+70,2) end,
delay(2100); scous:=0.0;
for i:=1 to nxy do begin mn:=100000.0;
for j:=1to nxy do
begin if i<>] then mn:=Min(mn, dxy_2(i,j)) end;
ncount[i]:=0; for j:=1 to nxy do
begin if (i<>}) and (dxy_2(i,j)<mn*1.3) then ncount[i]:=ncount[i]+1 end;
scous:=scous+ncount[i]; end;
scous:=scous/nxy; str(scous:8:1,smn);
OutTextXY (480,40, average neighbors '+smn);
until keypressed; END.
5. Results of experiment

This program was run five times to calculate S for each N being a square of
integer.
N=25:209,2.6,2.4,28,2.7 S=2.7
N=36: 3.5,3.3,3.4,2.9,2.8 S=3.2
N=49: 3.5, 3.0, 3.3,3.5,3.7 S=34
N=64: 3.7, 3.9, 3.7, 3.8, 3.8 S=3.8
N=81:3.9,4.3,4.6,5.5,63.7 S=4.4
N=100: 4.0, 3.9, 3.8, 3.8, 3.7 S=3.8
N=121:3.8,4.1,4.8,5.0,4.2 S=44
N=144: 40, 3.9,3.8,4.0,4.3 S=4.0
N=169: 3.8,4.1,4.8,5.0,4.2 S=44
N=196: 3.9, 4.0, 3.9, 3.9,4.0 S=3.9
N=225:5.0,4.3,5.0,5.0,4.7 S=4.8
N=256: 4.0, 4.0, 4.9, 4.0, 4.0 S=4.2
N=289:5.3,5.0,4.9,54,5.0 S=5.1
Hence, the constant of numerosity is ~ 64 (beginning of alternation).
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Also, when the number of charges is a square of even number then the grid is
square in most of experiments; when it is a square of odd number then the grid is
triangular in most of experiments.

Conclusion

We hope that proposed definitions would yield new phenomena in reality and
in computational experiments and constants of numerosity would be found for other
real and virtual processes. The general problem: what kinds of patterns can be

detected by any algorithms?
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MSC 34A26, 35A16

ALGORITHMS TO ENLARGE DOMAINS OF SOLUTIONS BY MEANS OF
FUNCTIONAL RELATIONS

Kenenbaev E.
Institute of Mathematics of NAS of KR

New task for sets is considered: to enlarge domains of solutions by means of functional
relations. Solutions of some differential equations have values connected by functional relations.
Asgeirsson’s identity for partial differential equations of hyperbolic type is used. An algorithm for
rectangular domains is implemented.

Keywords: functional relation, ordinary differential equation, partial differential equation,
solution, domain, algorithm, pascal.

Kentykrep yd4yH >kaHbl Maceine Kapaiar: (QYHKIMOHANIBIK ©3 apa OaiiaHelmTap
YBITAPBUIBIIITAP/IBI ~ AHBIKTOO  alWMakTapblH KEHEeWTYyy. Ap KaHgall TUNTErH  alpbiM
i QepeHIMaNIbIK  TEHJIEMENEpIUH  YbITapbUIBIITAphIHAa  (YHKIMOHAJABIK €63  apa
OaiinanplnTapra OaimaHbBIITYy MaaHwiep Oap. ['unepOonanbik THOTETH U dEepeHIHATIBIK
TeHJeMelNep YuyH AcreidpccoH OMpAEHIuIru KonioHynay. Tuk Oypuryy aliMakTap Y4yH aJfOpUTM
UIIIKE alllbLUIIbL.

Ypynmmyy cez0ep: (yHKIMOHANIBIK ©3 apa OallaHbI, YBITApPBUIBI, KaJUMKH
muddepeHIManAbIK TeHAEMe, alupbiM TYyHAYINyy auddepeHranaplk TeHJIeMe, YbIrapbUIbIII,
AHBIKTOO aiiMarkl, aropuTM, pascal.

PaccmarpuBaercs HoOBas 3ajada A MHOXKECTB: PAaCIIMPUTh OOJACTh ONpPEACIICHUS
pelieHrii ¢ HMCMOJIb30BaHMEM (YHKLIMOHAJIBHBIX COOTHOIIEHWH. PemeHus HEKOTOPBIX
mup¢epeHINaIbHbIX ~ YPaBHEHWH  pa3MYHBIX  TUIOB  MMEIOT  3HAUEHUs,  CBS3aHHbIC
(GYHKIMOHATIBHBIMU ~ COOTHOIIEHMsIMHM.  [IpuMeHeHO  ToxaecTBo  AcredipccoHa  Juis
i depeHIMaIbHBIX  ypaBHEHUN rurnepOonuueckoro Tuma. Peanu3oBaH — airoput™M  amis
NPSIMOYTOJIbHBIX 0O01acTei.

Kniouesvie  cnosa:  (pyHKIMOHQJIBHOE  COOTHOIIEHUE, pEUIEHHE, OOBIKHOBEHHOE
middepeHnranbHoe  ypaBHeHHe, Au(pdepeHIualbHOe YpaBHEHHWE B YacTHBIX IPOU3BOIHBIX,
perieHre, 00JIacTh ONpeeIeH s, aIropuT™, pascal.

1. Introduction
New task for sets is considered: to enlarge domains of solutions by means of
functional relations. It is known that solutions of some types of differential equations
have functional relations (in our terminology) connecting their values in different
points. By given values of solutions in several points one can find their values in
other points. In the paper we use functional relations for enlarging of domains of
solutions.

Sometimes known values of function in some points (multi-point value
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problem) define it within all the domain. Otherwise, we proposed

Definition. If the function f(x):X— F is known on a set X, < X, there is a
functional relation (FR) on values of the function f(x) and the function f(x) can be
defined on a set X; by means of (*), X, < X;c X then X; is said to be an (FR)-
enlarging of X,.

The second section contains examples of functional relations with one-step
enlargings. All references are given in [2].

The third section contains an algorithm for enlarging of pairs of rectangular
domains for Asgeirsson’s identity and propositions on using this algorithm.

The fourth section contains a program in pascal for enlarging of rectangular
domains implementing this algorithm.

2. Examples of functional relations with enlarging

In this paper we will use functional denotations of type x[n] instead of x,.
Denote the functional relation number F for every equation as the minimal number of
connected points (if it exists). We will give either mention of k-point value problem
(k-PVP) or a formula for (FR)-enlarging.

2.1. The linear differential equation of the k-th order y¥(x)=0, or a polynomial
of (k-1)-th order: F=k+1. Let numbers x/1/, x/2],...x[k+1], y[1], v[2],....v[k+1] be
given. Construct the Lagrange interpolation polynomial of the (k—1)-th order by the
values x/1], x/2],....x[k] wy[1], v/2],....y[k] then (*) L(x[k+1])—y[k+1]=0. k-PVP.

2.2. The first result on functional relations (in our terms) for a linear ordinary
differential equation was obtained by C. J. de la Vallée Poussin (for instance see [1]):
the k-PVP y®x)+p:(x) y D) +...+ pu(X) y(x) = 0, asx<h,

p(X) eC[a,b], y(x[i]) = c/i/, i=1, ..., k has a unique solution when
11 Palliasy(b—a)+ 11 Palliasy (b—2)2/ +... + | pallgasy (b—2)"nt < 1.

2

6 -
dx; 9x, u(xq,x,) = 0 fulfills the

2.3. A solution of the hyperbolic equation

Asgeirsson’s identity (F=4): (FR) u(wy, vi)+ u(w,, vo)—u(wy, Vo) —u(w,, vq)=0.

It is considered in the next section.
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2 2
2.4. A solution of the wave equation %u(xl,xz) = 667u(x1,x2) fulfills the
1 2

similar Asgeirsson’s identity (F=4): for four vertices of a rectangle obtained by
means of rotation of the rectangle (6) on 45°.
3. Algorithm with using Asgeirsson’s identity
This algorithm was announced in [2].
Let X; ={(x.y) € R?| (7 (X0, o) € R?)
(((Xo, Yo) € Xo) A (X0, Y) € Xo) A ((X, Yo) € Xo)))}-
Let the set Xy be a union of several boxes By.
Consider the domain being the union of two rectangles
Xo:=(Uix Vi) U (Uax Vy).
Algorithm 1. Given B;:=(U;xV;) and By:= (U, x V,).
A If (Ui U, = DA (Vin Vo = ©)) then no additional points appear.
B) If (B1n B, ) i.e. (Ui U, =) A (VinV, =) then
{U:=U; vU,; Vy :=V; UV, exclude By}
O If (UinUy=9) ANV =) thenVy:=V,:=VU Vs,
D) If (Ui U, 2) A (VinV, = ) then U= U,:= Uy, U,
Algorithm 2 (briefly). After enlarging all possible pairs of boxes consider
triples of boxes for future enlarging.
4. Text of program
PROGRAM elaman; uses crt, math;
var b: array[1..4,1..20] of integer; k, mab: integer;
procedure enl(i,j:integer);
begin {no intersection}
if ((b[1,j]>b[2,i]) or (b[2,j]<b[1,i])) and
((b[3,j]>b[4,i]) or (b[4,j]<b[3,i]))) then writeIn(* no change’);
{intersection}
if ((((b[1,j]>=b[1,i]) and (b[1,j]<=b[2,i]))) or
(((b[2,j]>=b[1,i]) and (b[2,j]<=b[2,i])))) and

((((b[3,j]>=D[3,]) and (b[3,j]<=b[4,i]))) or
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(((b[4,j]>=b[3,i]) and (b[4,j]<=DbI[4,i])))) then
begin b[1,i]:=Min(b[1,i],b[1,j]); b[2,i]:=Max(b[2,i],b[2,j]);
b[3,i]:=Min(b[3,i],b[3,j]); b[4,i]:=Max(b[4,i],b[4.i]);
writeln(' exclude B[',j:2,'T); end,
{v-intersection}
if (((b[1,j]>b[2,i]) or (b[2,j]I<b[1,i])) and
(not ((b[3,j]>b[4,i]) or (b[4,j]1<b[3,i]))) ) then
begin b[3,i]:=Min(b[3,i],b[3,j]); b[4,i]:=Max(b[4,i],b[4.j]);
b[3,j]:=b[3,i]; b[4,j]:=b[4,i]; end;
{u-intersection}
if ( ((b[3,j]>b[4,i]) or (b[4,j]<b[3,i])) and
(not ((b[1,j]>b[2,i]) or (b[2,j1<b[1,i]))) ) then
begin b[1,i]:=Min(b[1,i],b[1,j]); b[2,i]:=Max(b[2,i],b[2,]]);
b[1,j]:=b[1,i]; b[2,j]:=b[2,i]; end; end;
{main program}
begin
writeln(' E.Kenenbaev, 2022. Enlarging’);
write(" Input ul[1],um[1],vi[1],vm[1]: );
readIn(b[1,1],b[2,1],b[3,1],b[4,1]);
write(" Input ul[2],um[2],vI[2],vm[2]: );
readIn(b[1,2],b[2,2],b[3,2],b[4,2]);
enl(1,2); writeln(* B[1]: ',b[1,1]:3,b[2,1]:3,b[3,1]:5,b[4,1]:3);
writeln(' B[2]: ',b[1,2]:3,b[2,2]:3,b[3,2]:5,b[4,2]:3);
readln end.
5. Conclusion

We hope that such methods would yield new properties of solutions of ordinary
and partial differential equations, would promote a unified classification of
multidimensional partial differential equations and without existing classifications

which are based on formal writings of them.
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DETERMINATION OF THE OPTIMAL AREA AND PROJECT OF
CONSTRUCTION OF A HOUSING BUILDING

Asankulova M.!, Jolborsova A.J.?, Iskandarova G.S.?3
L3I nstitute of Mathematics of NAS of KR,
2KGU named after I.Arabaeva

In the article [1], a mathematical model of the problem of choosing the optimal area and the
project for the construction of a residential building was formulated. This paper shows the
performance of the mathematical model on the given numerical example.

Keywords: mathematical model, selection problem, construction project, performance,
numerical example.

Byra ueiinn makanazna [1] Typak »kail UMapaTblH KYpyYHYH ONTHUMAJIIYy AasHTBIH JKaHa
J0J000pYH TaHJ00 Maceslecu YUYH MaTeMaTUKaJIbIK MOJIENb TY3YJIreH. byn Makanaga KenTupuires
CaHJIBIK MHUCAJl apKaJyy MaTeMaTUKAaJIbIK MOJICJIIUH aTKapyy KOHAOMY KOpCOTYIIIOH.

Ypynmmyy co30ep: maTeMaTUKaJIbIK MOJIENb, TAHI00 MacelecH, Kypyy A01000py, aTKapyy
KOH/IOMY, CaHJIbIK MHUCAJ.

B cratee [1] Obuia chopmynupoBaHa MareMaTHyeckas MOJENb 3aJadd  BbIOOpa
ONTHMAJIBHOTO pailoHa M MPOEKTa CTPOMTENBCTBA KIIHUIIHOTO JoMa. B naHHOI paboTe mokas3aHa
paboTOCIOCOOHOCTh MAaTEeMAaTHYECKOM MOJICIIN Ha MPUBEICHHOM YHCIIOBOM TIpUMEpE.

Kntouesvie cnosa: wmarematwueckas MOJENb, 3aJada BbIOOpa, MPOEKT CTPOUTENBCTBA,
paboToCcrocoOHOCTh, YHUCTOBON TIPUMED.

Recently, more and more attention has been paid to the scientific approach to
all issues related to the development of the national economy of our country,
including the construction organization. The construction organization is a branch of
material production, covering the most important issues and the most complex

processes that satisfy material social needs.
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Optimization of the development of the production of a construction
organization, in particular a construction company engaged in housing construction,
Is the choice of the most profitable option for locating a construction object from
possible sets and a project that will deliver maximum profit to it.

We present the problem statement. Let there be a construction company that
Is engaged in the construction of multi-apartment residential buildings in 3 possible
districts of the city, s = 1, 2, 3. For the construction of a monolithic multi-apartment
residential building in these areas, 3 projects are proposed, u =1, 2, 3.

In each u-th project for the district, i-th apartments are provided in the amount pZ,

i=1,2,3, u=1,23,5s=12,3 1e.

PL PL PL) (855 P, P, P )| (8105
P 351 p;l pgl pgl =585, Pis 3522 p;z p222 pg =110 5 51,
Py P Py ) \558 Py Pn P) \B858

plls p123 p133 58 10
= pés p§3 pga =585
Pi P Py ) 999

P

3,5=3

The needs of the population of the city in the i-th type of apartments are known
and equal to the value b; = (b, by, bs) = (25, 20.25).

The following materials are used in construction: concrete, rebars of various
sizes, plastic materials for windows and doors, i.e. j = 1, 2, 3. The total area of the i-th
apartment in the project of an apartment building under construction and its cost,

depending on the area (in soms) are given in Table 1.

Table 1
Kinds |square | S=1 (district) S=2 (district) S=3 (district)
quart | (sq.m.) | p=1 u=2 u=3 u=1 p=2 p=3 p=1 p=2 u=3
i=1 33 29000 | 25000 | 26000 | 27000 | 28000 | 29000 | 27000 | 28000 | 29000

iI=2 48-50 | 31000 | 29000 | 28000 | 31000 | 32000 | 33000 | 31000 | 32000 | 33000

=3 91.2 36000 | 34000 | 38000 | 37000 | 38000 | 39000 | 37000 | 38000 | 39000

To determine the volume of concrete used for each i-th apartment, the

dimensions given in table. 2, tab. 3, tab. 4.
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Table 2

Ne | Name of the Dimensions | Volume of Volume of Rebar Plastic
apartments apartments | concrete concrete volume materials
(M) without with openings | d=10 (M)
openings for (mm) and
windows and windows and | d=8 (mm)
doors (m®) doors (m°®) (tons)
1 | three-room 10*10 29,048 26,69~27 1.5 1150
2 | two-room 8*6 19.84~20 16.0 1.3 950
3 | one-room 5,6%6 13.6 12.58 1.1 350
Table 3
Ne | Name of the | walls Length | Height | Thickness of the | Volume
apartments (m) (m) wall (mm) concrete (m°)
1 | three-room | external | 39.04 |3 0.15 17.73
internal | 24.88 | 3 0.12 8.96
2 | two-room external | 29.1 3 0.15 13.09
internal | 15 3 0.12 6.75
1 | one-room external | 24 3 0.15 10.04
internal | 10 3 0.12 3.6

To calculate the volume of window and door openings for all apartments,

standard sizes were used, which are given in Table. 4.

Table 4
Ne | Name of the Width | Height | Thickness | Quantity | Volume
apartments (m) | (m) of the (n) opening (M%)
walls
(mm)
1 | three-room | Doors 1 2 0.15 6 1.8
Windows | 2 1.70 0.15 4 2.04
2 | two-room Doors 1 2 0.15 5 15
Windows | 2 1.70 0.15 3 1.53
3 | one-room Doors 1 2 0.15 3 0.9
Windows | 2 1.70 0.15 2 1.02

Based on the data in Table 2, Table 3, Table 4, the volume of building

material for each i-th apartment j=1,2,3,s=1, 2, 3, i.c.
Gi, O3 O | [12.58 16.00 26,69

33 02 q225 qgs =11 1.3 15
0s, 93 g3 | [70.00 190.00 230.00

u
qjs

The total volume of building material used for each project is determined by

the formulas:
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Qi =i xn, 151,23, (*)
where n is the number of floors in an apartment building.
62.9 80.00 133.45
Then gi= |55 66 75 |, =123, s=123.
350 950 1150
The cost per unit volume of the j-th type of building material c,, j = 1, 2, 3, i.e.
Cj = (C1, Cy, C3), i.6. C; = 5000 soms price of one cubic meter of reinforced concrete,
C, =45 soms price of one kilogram of rebar d = 10 mm and d = 8 mm, ¢z = 300 soms
price of one linear meter of plastic material.
It is assumed that overhead costs and payment for services of a residential
building under construction for the i-th type of apartments for all projects © =1, 2, 3

and districts s are known and equal to each other (in soms), i.e.

i=1 =2 i=3 i=1 =2 i=3
105000 130000 135000
i 1168960 1059600 1200600 iE123, S = E123.
® 11123850 1105960 1259060 125000 135000 140000
1099650 1159900 1269900 130000 140000 143000

It is required to choose such a housing construction project and their location
among the possible locations of city districts in such a way as to satisfy the needs of
the city population for each type of room apartments and at the same time of the
construction, company would receive the maximum profit.

Let us calculate the coefficients of the variables according to the formula

3 3
¢/ =il =Y e~ (el +8,), =123, s=123.
i=1 j=1

c =961840, ¢’ =697906, c’=785900, c.=866134, c2=951274, c=956950,
cl =885334, ¢ =970474, ¢} =976150, ' =1189900, c? =1017900, c’ = 931900,
ct =1138540, c? =1224540, ¢ =1310540, ct=1079600, cZ=1165600, c?=1251600,
c! =1392996, ¢ =1220824, ¢’ =1557342, ck=1415622, c?=1493882, c}=1579968,
¢t =1401782, c? =1480042, ¢} =1566128.

Then the numerical model of the problem has the form.

Find a maximum
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L(y ) = 961840y +697906 y* + 785900 y? +866134 y. + 951274 y? +956950 y* +
+ 885334 y! + 970474 y2 + 976150 y?+1189900 y +1017900 y* + 931900y +
+1138540y! + 1224540y + 1310540 y° + 1079600y + 1165600 y% +
+1251600 y: + 1392996 y* +1220824 y* + 1557342 y* +1415622 y: +
+1493882 y> +1579968 ¢ + 1401782 y! + 1480042 y + 1566128 y: (1)
Under conditions
8Y,+ 5y, +5y;+8Y,+10y; + 5y;+ 5y; +8y; +10y; =25,
5yl +8y2+5y*+ 10y + 5y’ 45y +5y: + 8y +5y: >15, (2)

5y; +5y/+8y/+8y,+5y;+8y;+5y;+5y; + 5y; >21,

3

Zys =1, s=1,2,3, (3)
u=1

Ho_ O’

7 1=1,2,3, s=1,2,3. (4)

Let's solve problem (1)-(4) by the method given in [2] and get the optimal plan
for choosing a project from among the possible ones:

X={y; =8, y;=4, ¥;=3, ;=10, ¥;=5, ¥,=5, y;=5, ¥/=8, y,=8, y;=5}.
With such a choice of projects for the construction of apartments, the maximum
profit of the construction company is 11348148 soms, i.e.

L(y) =11348148 soms.
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APPLICATION OF THE MAXIMA MATHEMATICAL PACKAGE FOR
CREATING 2D AND 3D GRAPHICS FOR THE PROBLEM OF HIGHER
MATHEMATICS
To make the plots, Maxima

Yunusov Sh.E.*, Yunusov I.E.?
! Kyrgyz National University named after J. Balasagyn
2Kyrgyz State University |. Arabaev

In the present article touches, upon the issues of using the Maxima package for solving some
typical problems of higher mathematics.
Key words: package Maxima, matrix, differentiation, integration.

byn makanaga Maxima makeTHH KOTOpKY MaTeMaTUKaHBIH alipbIM HETU3TH MaceseIepUHUH
2D sxana 3D rpadukrepun Typry3yyzia KOJJI0HYY KapajiraH.
Ypynmmyy ce30ep: Maxima naketu, 2D >xana 3D, rpaduk.

B nmanHoii paboTe 3aTparuBaroTCsl BOIIPOCHI MCIIONB30BaHMs Makera Maxima A perieHus
HEKOTOPBIX THUIOBBIX 33]1a4 BBICIIICH MaTEMAaTHUKH.
Knrouesvie cnosa: makera Maxima, matpuua, nuddepeHnupoBanme, HHTETPUPOBAHUE.

The Maxima is a descendant of Macsyma, the legendary computer algebra
system developed in the late 1960s at the Massachusetts Institute of Technology. It is
the only system based on that effort still publicly available and with an active user
community, thanks to its open source nature. Macsyma was revolutionary in its day,
and many later systems, such as Maple and Mathematica, were inspired by it.

The Maxima branch of Macsyma was maintained by William Schelter from
1982 until he passed away in 2001. In 1998 he obtained permission to release the
source code under the GNU General Public License (GPL) [2]. It was his efforts and
skill which have made the survival of Maxima possible, and we are very grateful to
him for volunteering his time and expert knowledge to keep the original DOE
Macsyma code alive and well. Since his death, a group of users and developers has
formed to bring Maxima to a wider audience.

Maxima is updated very frequently, to fix bugs and improve the code and the
documentation. Maxima is a system for the manipulation of symbolic and numerical

expressions, including differentiation, integration, Taylor series, Laplace transforms,
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ordinary differential equations, systems of linear equations, polynomials, sets, lists,
vectors, matrices and tensors. Maxima yields high precision numerical results by
using exact fractions, arbitrary-precision integers and variable-precision floating-
point numbers. Maxima can plot functions and data in two and three dimensions [1-
4].

The Maxima source code can be compiled on many systems, including
Windows, Linux, and MacOS X. The source code for all systems and precompiled
binaries for Windows and Linux are available at the SourceForge file manager.

Consider the issues of using the Maxima package to solve some typical
problems of higher mathematics.

Consider the application of the Maxima mathematical package to create 2d and
3d graphics for the task of higher mathematics

To make the plots, Maxima can use an external plotting package or its own
graphical interface Xmaxima (see the section on Plotting Formats). The plotting
functions calculate a set of points and pass them to the plotting package together with
a set of commands specific to that graphic program. In some cases those commands
and data are saved in a file and the graphic program is executed giving it the name of
that file to be parsed.

When a file is created, it will begiven the name maxout xxx.format,
where Xxx is a number that is unique to every concurrently-running instance of
Maxima and format is the name of the plotting format being used (gnuplot, xmaxima,
mgnuplot OF geomview).

There are commands to save the plot in a graphic format file, rather than
showing it in the screen. The default name for that graphic file is maxplot.extension,
where extension is the extension normally used for the kind of graphic file selected,
but that name can also be specified by the user. The maxout_xxx.format and maxplot.extension
files are created in the directory specified by the system variable maxima_tempdir. That
location can be changed by assigning to that variable (or to the environment variable
MAXIMA_TEMPDIR) a string that represents a valid directory where Maxima can create

new files. The output of the Maxima plotting command will be a list with the names
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of the file(s) created, including their complete path, or empty if no files are created.
Those files should be deleted after the maxima session ends.

If the format used is either gnuplot Or xmaxima, and the maxout xxx.gnuplot OF
maxout_xxx.xmaxima Was Saved, gnuplot Or xmaxima Can be run, giving it the name of that file
as argument, in order to view again a plot previously created in Maxima. Thus, when
a Maxima plotting command fails, the format can be set to gnuplot Or xmaxima and the
plain-text file maxout_xxx.gnuplot (Or maxout_xxx.xmaxima) can be inspected to look for the
source of the problem.

The additional package draw provides functions similar to the ones described in this
section with some extra features, but it only works with gnuplot. Note that some
plotting options have the same name in both plotting packages, but their syntax and
behavior is different. To view the documentation for a graphic option opt, type 22 opt in
order to choose the information for either of those two packages.

Examples:

1. Explicit function.

(%i1) plot2d (sin(x), [x, -%opi, %pi])$

sin(x)
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2. Plot of a function of two variables:

(%i1) plot3d (ur2 - v*2, [u, -2, 2], [v, -3, 3], [grid, 100, 100],

nomesh_lines)$

ut2-v"2

o O O A N O N N
1

1
—
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APPLICATION OF THE MAXIMA MATHEMATICAL PACKAGE IN
TEACHING HIGHER MATHEMATICS PROBLEM SOLVING

Yunusov Sh.E.*, Yunusov I.E.?
'Kyrgyz National University named after Zhusup Balasagyn
2Kyrgyz State University |. Arabaev

In the present article touches, upon the issues of using the Maxima package for solving some typical
problems of higher mathematics.

Key words: package Maxima, matrix, differentiation, integration.

byn makanmama Maxima makeTHH >KOTOPKY MaTeMaTHKAaHBIH ailpblM HETH3TH MaceleliepuH 4eqyye
KOJIZIOHYY KapaliraH.

Ypynmmyy co3z0op: Maxima naketu, Matpuiia, tuddepeHnnpiee, HHTErpaII0o0.

B nanHoii paboTe 3aTparuBarOTCs BOIPOCH UCIIOB30BaHMsI MakeTa Maxima Jjisi pelieHHsI HEKOTOPBIX

TUIOBBIX 3a/1a4 BBICIIEH MaTeMaTHKH.
Knroueswie cnosa: nakera Maxima, matpuua, 1uddepeHunpoBaHue, UHTETPUPOBaHHUE.

The Maxima is a descendant of Macsyma, the legendary computer algebra
system developed in the late 1960s at the Massachusetts Institute of Technology. It is
the only system based on that effort still publicly available and with an active user
community, thanks to its open source nature. Macsyma was revolutionary in its day,
and many later systems, such as Maple and Mathematica, were inspired by it.

The Maxima branch of Macsyma was maintained by William Schelter from
1982 until he passed away in 2001. In 1998 he obtained permission to release the
source code under the GNU General Public License (GPL) [2]. It was his efforts and
skill which have made the survival of Maxima possible, and we are very grateful to
him for volunteering his time and expert knowledge to keep the original DOE
Macsyma code alive and well. Since his death, a group of users and developers has
formed to bring Maxima to a wider audience.

Maxima is updated very frequently, to fix bugs and improve the code and the
documentation. Maxima is a system for the manipulation of symbolic and numerical
expressions, including differentiation, integration, Taylor series, Laplace transforms,
ordinary differential equations, systems of linear equations, polynomials, sets, lists,

vectors, matrices and tensors. Maxima yields high precision numerical results by
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using exact fractions, arbitrary-precision integers and variable-precision floating-
point numbers. Maxima can plot functions and data in two and three dimensions [1-
4].

The Maxima source code can be compiled on many systems, including
Windows, Linux, and MacOS X. The source code for all systems and precompiled
binaries for Windows and Linux are available at the SourceForge file manager.

Consider the issues of using the Maxima package to solve some typical
problems of higher mathematics.

Consider working with matrices in Maxima [2], [5].

Maxima defines rectangular matrices.The main way to create matrices is to use

the function matrix. Call syntax: matrix(rowd,... ,rown).
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Figure 1. General view of the xMaxima working window when working with matrices

Each line is a list of expressions, all lines are the same length. On the set
matrices define the operations of addition, subtraction, multiplication and division.
These operations are performed element by element if the operands are two matrices,
a scalar and a matrix, or a matrix and a scalar. Erection to degree is possible if one of

the operands is a scalar. Multiplication matrices (generally a non-commutative
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operation) is denoted symbol “. ". The operation of multiplying a matrix by itself

treated as exponentiation. Raising to the power of —1 - as inverses (if possible).
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% wxMaxima 21.05.2 (Windows 10 (c6opka 19041), 64-6ut peaakums) [ MNpumep 1.wxmx* ]
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Figure 2. General view of the xMaxima working window when working with differentiation and

integration
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